Object

Title: Loss modeling with mixtures distributions in R package

Title in english:

Silesian Statistical Review

Creator:

Sitek, Grzegorz

Description:

Śląski Przegląd Statystyczny = Silesian Statistical Review, 2017, Nr 15, s. 183-199

Abstrakt:

Finite mixtures of probability distributions may be successfully used in the modeling of probability distributions of losses. These distributions are typically heavy tailed and positively skewed. Finding the distribution that fits loss data well is often difficult. The paper shows that the use of mixed models can significantly improve the goodness-of-fit of the loss data. The paper also presents an algorithm to find estimates of parameters of mixture distribution and gives an illustrative example. The analytical approach is probably the most often used in practice and certainly the most frequently adopted in the actuarial literature. It is reduced to finding a suitable analytical expression which fits the observed data well. For parameters estimation we use the maximum likelihood method applying the Newton-Raphson and EM algorithm. Computations of goodness-of-fit can be judged using the Akaike information criterion

Publisher:

Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu

Place of publication:

Wrocław

Date:

2017

Resource Type:

artykuł

Resource Identifier:

oai:dbc.wroc.pl:37333

Language:

eng

Relation:

Śląski Przegląd Statystyczny = Silesian Statistical Review, 2017, Nr 15 (21)

Rights:

Pewne prawa zastrzeżone na rzecz Autorów i Wydawcy

Access Rights:

Dla wszystkich zgodnie z licencją

License:

CC BY-NC-ND 3.0 PL

Location:

Uniwersytet Ekonomiczny we Wrocławiu

Object collections:

Last modified:

Jun 11, 2022

In our library since:

Sep 15, 2017

Number of object content hits:

834

Number of object content views in PDF format

827

All available object's versions:

https://dbc.wroc.pl./publication/41415

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

Similar

×

Citation

Citation style:

This page uses 'cookies'. More information