Object

Planned object

Title: Design of aspheric spectacle lenses using non-dominated sorting genetic algorithm

Creator:

Xiang, Huazhong ; Ding, Qihui ; Li, Nianning ; Zhang, Xin ; Wang, Peng ; Li, Hongtao ; Zheng, Zexi ; Zhang, Dawei

Contributor:

Urbańczyk, Wacław. Redakcja

Description:

Optica Applicata, Vol. 53, 2023, nr 4, s. ; Optica Applicata is an international journal, published in a non-periodical form in the years 1971-1973 and quarterly since 1973. From the beginning of the year 2008, Optica Applicata is an Open Access journal available online via the Internet, with free access to the full text of articles serving the best interests of the scientific community. The journal is abstracted and indexed in: Chemical Abstracts, Compendex, Current Contents, Inspec, Referativnyj Zhurnal, SCI Expanded, Scopus, Ulrich’s Periodicals Directory ; click here to follow the link

Abstrakt:

An effective algorithm for optimization of lens parameter can greatly eliminate the aberration and reduce the thickness, making the wearer more comfortable. Aim: We proposed a non-dominated sorting genetic algorithm (NSGA-II) for generating sets of base curves and aspheric coefficients to minimize the residual astigmatism and aberration of the lenses, while satisfying the constraints on the lens thickness and power. Approach: By simulating natural selection using the NSGA-II algorithm, the design parameters considered the inventory of the semi-finished blank. A comparison of aspheric and spherical spectacle lenses with –8 diopters was designed, simulated, processed, and measured. Results: The measured spherical and cylindrical power distributions were consistent with the simulated results with corrected oblique astigmatism and distortion. Conclusions: The aspheric spectacle lenses had the required aesthetic shape and weight reduction compared to a spherical lenses of the same power. It is verified that this paper puts forward an effective NSGA-II algorithm for the optimization of lens parameters.

Publisher:

Oficyna Wydawnicza Politechniki Wrocławskiej

Place of publication:

Wrocław

Date:

2023

Resource Type:

artykuł

Resource Identifier:

doi:10.37190/oa230411

Source:

<sygn. PWr A3481II> ; click here to follow the link ; click here to follow the link

Language:

eng

Relation:

Optica Applicata ; Optica Applicata, Vol. 53, 2023 ; Optica Applicata, Vol. 53, 2023, nr 4 ; Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki

Rights:

Wszystkie prawa zastrzeżone (Copyright)

Access Rights:

Dla wszystkich w zakresie dozwolonego użytku

Location:

Politechnika Wrocławska

Group publication title:

Optica Applicata

Edition name Date
×

Citation

Citation style:

This page uses 'cookies'. More information