Object structure
Title:

Depth object recovery using a light line and a regression neural network

Group publication title:

Optica Applicata

Creator:

Munoz Rodriguez, J. Apolinar ; Rodriguez-Vera, Ramon ; Asundi, Anand

Contributor:

Gaj, Miron. Redakcja ; Wilk, Ireneusz. Redakcja

Subject and Keywords:

optyka ; shape detection ; light line projection ; regression neural network ; Gaussian approximation

Description:

Optica Applicata, Vol. 35, 2005, nr 2, s. 295-309

Abstrakt:

A technique for measuring the objects shape is presented. In this technique, the object is scanned using a light line. From the scanning a set of images is captured by a CCD camera. By processing these images, the object surface is recovered. To determine the surface dimensions, a regression neural network is applied. This network is built using data from images of a light line projected onto the objects, with known dimensions. The data are extracted from the images by applying Gaussian approximation. By using the neural network in this technique, the surface measurement is determined without using the parameters of the set-up. It improves the accuracy of the techniques of light line projection for shape detection, because errors of parameters of the set-up are not introduced to the system. This technique is tested in an experimental way and its results are verified with a contact method.

Publisher:

Oficyna Wydawnicza Politechniki Wrocławskiej

Place of publication:

Wrocław

Date:

2005

Resource Type:

artykuł

Source:

<sygn. PWr A3481II> ; click here to follow the link ; click here to follow the link

Language:

eng

Relation:

Optica Applicata ; Optica Applicata, Vol. 35, 2005 ; Optica Applicata, Vol. 35, 2005, nr 2 ; Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki

Rights:

Wszystkie prawa zastrzeżone (Copyright)

Access Rights:

Dla wszystkich w zakresie dozwolonego użytku

Location:

Politechnika Wrocławska

×

Citation

Citation style: