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The influence of one dimensional plane thermal wave on probing Gaussian beam phase and
deflection by complex geometrical optics methods has been analyzed in the work. The probing
beam detection by quadrant photodiode has been investigated. The dependence of photodiode
current signal on the probing beam diameter, its waist, sample position, angular modulation
frequency and the height of the beam over the sample has been studied. 
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1. Introduction

Nowadays, investigations of solid state thermal properties have great importance,
especially for different nonhomogeneous layered systems. Among them the most
essential are those photothermal methods that are based on differences between
thermal properties of different parts of that layered system. Temperature changes in
such a system are measured directly or indirectly and on this principle we can conclude
about its structure.

One of the indirect methods for measuring sample surface temperature changes is
photodeflective method. In this method, the periodically heated sample changes the
temperature of surrounding gas, and next it changes the gas refraction index. The last
changes are detected by probing light beam with known light intensity distribution
passing through the heated gas layer. Changes in the gas refraction index cause
deflection and phase change in the probing beam. 

At present two theoretical methods for description of these phenomena are used
[1, 2]. The first one is the ray method. It is based on the small shift of light beam
(deflection) in optically nonhomogeneous media. There is also a generalization of that
method to wide probing beams [3, 4]. The second method is the wave one [2]. In this
work, the wave equation was solved for the probing beam propagation but only its
phase change was taken under consideration. 
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A complete (with arbitrary accuracy) description of light beam propagation in
optically nonhomogeneous medium can be found in the frame of geometrical optics
method by the use of Debye’s expansion [5–7]. The proper analysis using complex
geometrical optics methods and taking into account only the phase change of probing
light beam, caused by thermal waves, was presented in [7, 8].

All of the works quoted assumed that deflection of probing beam is registered by
the use of quadrant photodiode, from which we can obtain two signals: normal and
tangential one. The first one responds to illumination difference between upper
and lower and the second one between left and right photodiode halves (defined
relatively to the “horizontal” surface of the sample under investigation). In real
experimental situation the thermal field in the gas over the sample because the pumping
beam or sample heterogeneity is 3-dimensional. This type of thermal field was
presented in some works, e.g., [3]. In this situation, both normal and tangential parts
are present in the deflective measurements. In this work, we present a new method for
calculating the influence of thermal field on the probing Gaussian beam parameter.
For good presentation of this method we use a rather simple shape of thermal field. If
the sample stimulation is much wider than the width of the probing beam, the
theoretical description is one-dimensional and only the normal signal is important. 

2. Gaussian beam in an optically homogeneous medium 

From work [6] it follows, that the electric field distribution in Gaussian beam with
radius a and wavelength λ (wave number k = 2π/λ ) which propagates in homogeneous
medium with refraction index n0 can be written as:

(1)

where

(2)

The beam enters the system on the plane z = 0 and propagates in the plus direction of
the OZ axis, and its waist is placed on the plane z = L. E0 is the electric field intensity
in the middle of the waist. The parameter zR = ka2n0 is called Rayleigh’s length, the
quantity ψ0 – wave eikonal and A0 – its amplitude (of zero order). The beam ray
coordinates  are defined by equations:
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 (3)

 

where [ξ, η] are the ray start point coordinates from the plane z = 0 (XY),
zRC = zR – iL and τ is the running coordinate (in general case the complex one) along
the ray. It is easy to notice that relations (3) represents straight lines in 6-dimensional
complex space.

For a given observation point  (e.g., point on the detection
plane) we need to find all rays coming to that point. For this purpose, a solution of the
set of Eq. (3), relatively to “rays” variable [ξ, η, τ ], needs to be found (the so-called
geometrical optics reversal problem). After linearization we get: 

(4)

From this solution it follows, that for this simplification we have a particularly simple
situation – to all observation points there comes only one ray. Equations (4) define
exactly the start point of the ray (ξD, ηD) when its observation point (xD, yD, zD) is
known.

3. Gaussian beam in a thermally disturbed medium

Let us consider a standard experimental set-up scheme for the solid state photothermal
investigation with photodeflective detection (Fig. 1). Modulated light beam is incident
on the sample and gives it periodically specified energy flux. As a result, the sample
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and surrounding gas (e.g., air) are heated and in stationary state we deal with periodical
temperature changes in time and space, so-called thermal waves. In typical photo-
thermal measurements, the total increase of sample temperature is of the order of
fraction of Kelvin and changes in temperature amplitude are about an order smaller.
The temperature field of the thermal wave in gas above the sample can be written as:

(5)

where ag – constant rise of gas temperature, bg – amplitude of the sample surface
temperature, ϕg – phase shift between the sample surface temperature and stimulation
beam, – wave number of the thermal wave (equal to its attenuation
coefficient), κg – thermal diffusivity of gas, Ω – angular frequency of modulation. The
quantities ag, bg and ϕg depend on some thermal and geometrical parameters of the
gas and the sample and are not considered here. 

These thermal waves cause changes in the gas refraction index [9–11], which gives
rise to modification of the probing beam parameters. In the first approximation we can
assume that 

T0 = const(r) (6)

where n0 – gas refraction index at temperature T0, – refraction index
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Fig. 1. Experimental set-up scheme for solid state investigation by photothermal method with
photodeflectional detection. The gas heated region have the width ∆z = zp – zl and its left edge distance
from the set-up beginning (light beam “input”) is equal zl. We assume that the heated region width along
the OY axis is much more greater then the probing light beam diameter. The light beam radius in their
waist is equal a and it is placed at distance L from the “input”. The screen (detector) is placed at distance
zD from the light beam “input”.

Sample
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thermal sensitivity. In such a situation, the dielectric constant of the medium in the
thermally changed region is expressed by the equation 

(7)

Changes in the probing beam are expressed by ν.

4. Gaussian beam deflection in the thermal wave field 

The Gaussian beam deflection is one of the effects of its propagation in the thermally
disturbed medium. This means that the ray trajectory change in the thermal wave field
must be found. Because of the fact that temperature distribution is merely a function
of variable x, only this coordinate of the ray trajectory is changed. The other ray
coordinates are described by the second and the third equations in (4). The first
correction to the ray x coordinate is given by [5]:

(8)

which gives (after regarding (7) and boundary conditions) correction to x ray-coordinate
(see Appendix 1):

(8a)

(8b)

(8c)

Above, we use H(τ ) – Haeviside’s step function. Finally, the perturbed ray coordinates
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(9)

5. Gaussian beam phase change in the thermal wave field

The Gaussian beam eikonal can be written as [5]:

(10)

where integration is carried along the corrected probing beam ray (9). 
Finally, correction to the eikonal is given in the form:

(11)

where ψ1d –  the component (proportional to P(ξ0) that arises from Gaussian beam
deflection in the thermal wave field, ψ1f – the component resulting from the thermal
field influence on the Gaussian beam phase (two terms proportional to ag and bg,
respectively).

6. Gaussian beam ray amplitude change in the thermal wave field

The Jacobian of the transition from Cartesian to ray coordinates in the region τ > τp is
as follows (in paraxial approximation):
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Using (9) we are given the probing beam amplitude changes expressed by the
relation:

(13)

7. Normal signal from quadrant photodiode 

The current normal signal from the photodiode under reverse bias is proportional to
the light intensity incident on it (see Appendix 2). In such a case, the signal analyzed
arises from the illumination difference between the upper and lower photodiode halves:

(14)

where Kd – photodetector constant (its sensitivity). In expression (14), it has been
assumed that the sample curtains a part of the photodiode (in the region –∞ < xD < –h). 

In our case, when a lock-in nanovoltmeter is used for the diode current
measurements, only IV (rD) is measured. We have three different contributions to this
signal, and due to this

(15)

After calculating proper integrals (see Appendix 2) we obtain

(16)

The total deflective part of the signal is the sum of two last expressions in (16):
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(18)

(19)

Finally, the full signal is the sum of the deflective and phasial components and it
can be written in the form

(20)

where

(21)

(22)

8. Numerical calculations and graphs 

Calculations were done for the interaction of He-Ne laser beam with thermal waves
in air. The values of the parameters taken into account were as follows: sample width
zp – zl = 5 mm, sample left edge position zl = 0.5 m, sample right edge position
zp = 0.505 m, beam waist position L = 0.5 m, detector position zD = 1.5 m, total power
of probing beam Pl = 1.0 W (“normalized” value), wavelength of probing beam
λ = 636 nm, gas refraction index at temperature T0 was n0 = 1.0, refraction index
thermal sensitivity sT = 1.0 K–1 (“normalized” value), our sample was silicon with
thermal diffusivity κs = 6.7×10–5 m2/s and thermal conductance λs = 110 W/(mK).
The results of numerical calculations (formulas (21), (22) and (A2.17), (A2.18),
(A2.23)) are presented in graphs with photothermal signal amplitude Ak [arb. u.] and
additional phase shift ϕk [rad] (i.e., relative to the temperature phase on the sample
surface) dependence on some experimental set-up parameters. Here, k = {d, f, t}
relative to deflective or phasial component and total signal.

In the signal analyzed, as was mentioned in theoretical part of this work, two
different parts were marked out – phasial and deflective ones. From experimental point
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of view this differentiation is not essential and difficult to determine. But from
theoretical point of view it is important, because as mentioned in the Introduction, two
types of theoretical descriptions for deflective experimental analysis are used in
literature. In all our calculations we determine both parts as well as the total signal and
compare them. This enables us to determine the validity of the theory presented
and those used in literature.

In typical photothermal measurements, the amplitude Ak(h) and phase ϕk(h) of
photothermal signal dependence on distance between probing beam axis and
illuminated sample (Fig. 2) are investigated. With an increase of the height of probing
beam over the sample the signal dramatically decreases, which results from the fact
that attenuation of the thermal wave is very strong in the medium. Analysing the graphs
it can be concluded that the course of these curves is strongly dependent on both the
probing beam diameter a and angular modulation frequency Ω. Figure 2b presents
the shape of deflective and phasial components of photothermal signal.

Figure 3 presents the amplitude and phase of photothermal signal dependence on
probing beam diameter for different angular modulation frequencies and heights of
the probing beam over the sample. There is a value of the beam diameter for which
the signal amplitude reaches a maximum. For small values of probing beam height

a

b

Fig. 2. Quadrant photodiode signal amplitude and additional phase shift changes relatively to probing
beam height over the sample for: Ω = 600 rad/s, a = 50 µm (curve 1); Ω = 2000 rad/s, a = 500 µm
(curve 2); Ω = 600 rad/s, a = 500 µm (curve 3); others parameters are zD = 1.5 m, zp = 0.505 m, zl = 0.5 m
and L = 0.5 m – a. Components of the total normal signal: deflectional (curve 1) and phasial (curve 2) for
Ω = 2000 rad/s (a = 500 µm, zD = 1.5 m, zp = 0.505 m, zl = 0.5 m and L = 0.5 m); curve 3 presents the
total signal – b.
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over the sample a minimum is also seen. The beams of small radius are wholly
disturbed by thermal wave, while the beams of large a pass through the thermal field
in different phase, which causes their phase shift. Because of that current signals from
quadrant photodiode are also in different phase and they can extinguish each other. On
the amplitude of photothermal signal dependance on probing beam diameter it can be
seen as a minimum of the signal. For much larger values of a we enter the region in
which the thermal wave is being declined, which means that the probing beam is not
disturbed and the value of the signal decreases. 

As can be seen from Fig. 4, the signal from quadrant photodiode rapidly decreases
with an increase of angular modulation frequency for some values of h and a (curves 1
and 2). This arises from the fact that with an increase of frequency the thermal wave
attenuation also increases. With an increase of frequency the temperature field gradient
also increases, which causes an increase of deflective component of the total
photothermal signal. This effect can be seen in curves 3 and 4. It is worth mentioning
that the range of angular modulation frequency changes is determined by those values
of Ω that are possible to attain using a mechanical modulator. With an increase of
angular modulation frequency the thermal waves attenuation increases, and that is why
very high values of Ω are not used in photothermal measurements.

Fig. 3. Quadrant photodiode signal amplitude and additional phase shift changes relatively to probing
beam diameter: Ω = 60 rad/s, h = 200 µm (curve 1); Ω = 60 rad/s, h = 800 µm (curve 2); Ω = 600 rad/s,
h = 200 µm (curve 3); others parameters are zD = 1.5 m, zp = 0.505 m, zl = 0.5 m and L = 0.5 m – a.
Components of the total normal signal: deflectional (curve 1) and phasial (curve 2) for Ω = 600 rad/s,
h = 200 µm (others parameters are zD = 1.5 m, zp = 0.505 m, zl = 0.5 m and L = 0.5 m); curve 3 presents
the total signal – b.

a

b
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Figure 5 presents the dependence of photothermal signal on detector coordinate
for different angular modulation frequencies, different radii of the probing beam and

Fig. 5. Quadrant photodiode signal amplitude and additional phase shift changes relatively to detector
position: a = 50 µm, Ω = 60 rad/s, h = 200 µm (curve 1); a = 50 µm, Ω = 600 rad/s, h = 200 µm
(curve 2); a = 50 µm, Ω = 600 rad/s, h = 1200 µm (curve 3); a = 500 µm, Ω = 600 rad/s, h = 1200 µm
(curve 1); pthers parameters are zp = 0.505 m, zl = 0.5 m and L = 0.5 m – a. Components of the total
normal signal: deflectional (curve 1) and phasial (curve 2) for a = 50 µm, Ω = 60 rad/s, h = 200 µm
(zp = 0.505 m, zl = 0.5 m and L = 0.5 m); curve 3 presents the total signal.

a

b

Fig. 4. Quadrant photodiode signal amplitude changes to modulation angular frequency: a = 50 µm,
h = 200 µm (curve 1); a = 50 µm, h = 1200 µm (curve 2); a = 500 µm, h = 1200 µm (curve 3);
a = 500 µm, h = 2400 µm (curve 4); others parameters are zD = 1.5 m, zp = 0.505 m, zl = 0.5 m and
L = 0.5 m – a. Components of the total normal signal: deflectional (curve 1) and phasial (curve 2) for
a = 50 µm, h = 200 µm (others parameters are zD = 1.5 m, zp = 0.505 m, zl = 0.5 m and L = 0.5 m);
curve 3 presents the total signal – b.

a b
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its height over the sample. There is a rapid drop of the signal when the beam waist is
over the detector and a rise when the beam waist is a bit in front of or behind it. 

As can be seen from Fig. 6, for small values of the probing beam radii there is drop
of the signal when the beam waist is over the detector, and rise when the beam waist
is a bit in front of or a bit behind it. No such property of the signal is observed for large
values of the probing beam radii. In this case, the curve increases monotonically. 

Figure 7 shows the signal amplitude and additional phase shift dependence on the
sample position of probing beam. The value of the signal decreases when we approach
the detector. Phasial component gets smaller when the sample approaches the detector,
but deflective component reaches a maximum when the beam waist is over the sample,
and then decreases again. 

On the graphs with phase change of photothermal signal from quadrant photodiode
some discontinuities can be seen. They are the result of only “partial” phase
normalization of the ambiguous component of the signal phase to the range (0, 2π).

9. Conclusions 

The influence of different experimental set-up parameters on signal value determined
in photothermal investigation with mirage effect has been analysed in the work. The
signal dependence on such parameters as probing beam radius, waist position, height
over the sample surface and detector position was considered. The theory worked out,
based on complex geometrical optics methods, offers the possibility of taking into
account many other parameters (e.g., probing beam modulation frequency), which are
important for interpretations of measurement results. The so-called phasial and
deflective components of normal signal created as a result of phase change and
deflection of the beam, which is probed the one-dimensional field of the thermal wave
propagated in the gas over the sample exited by harmonically modulated pumping

Fig. 6. Quadrant photodiode signal amplitude changes to beam waist position: a = 50 µm, Ω = 60 rad/s,
h = 200 µm (curve 1); a = 50 µm, Ω = 600 rad/s, h = 200 µm (curve 2); a = 50 µm, Ω = 60 rad/s,
h = 1200 µm (curve 3); a = 500 µm, Ω = 600 rad/s, h = 1200 µm (curve 4); others parameters are
zD = 1.5 m, zp = 0.505 m, zl = 0.5 m – a. Components of the total normal signal: deflectional (curve 1)
and phasial (curve 2) for a = 50 µm, Ω = 600 rad/s, h = 200 µm (zD = 1.5 m, zp = 0.505 m, zl = 0.5 m);
curve 3 presents the total signal.

a b
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beam, were considered. Quadrant photodiode detection has been analysed. Results are
presented in analytical form and in the form of graphs and can be used for experimental
set-up optimization. This means that by proper choice of the probing beam radius,
waist position, height over the sample surface and detector position, probing beam
modulation frequency we are able to increase the total normal signal or, if necessary,
one component of it (phasial or deflective one) can be eliminated. 

In the theory presented, we take into account for first time simultaneously two
processes that are essential for photothermal signal creation – probing beam deflection
and probing beam phase change. The dividision of the normal signal into deflective
and phasial parts has rather theoretical meaning. Elimination of these parts from
measurement signal will be very difficult or impossible. We present this dividision in
order to make it possible for our readers to compare our theory with other ones, which
take into account only one of the processes presented above. We use a new method
for this type of calculation – complex geometrical optics method – and the results
obtained are not fully equivalent to those of other calculations. From the graphs
presented we can conclude that in many cases the results are qualitatively comparable
with those of other theories. 

The analytical formulas obtained are rather complicated, but, in our opinion, this
is mainly due to the assumed method of detection, namely by a quadrant photodiode.

Fig. 7. Quadrant photodiode signal amplitude and additional phase shift changes relatively to sample
position: a = 50 µm, Ω = 60 rad/s, h = 200 µm (curve 1); a = 500 µm, Ω = 600 rad/s, h = 1200 µm
(curve 2); a = 50 µm, Ω = 60 rad/s, h = 1200 µm (curve 3); others parameters are zD = 1.5 m and
L = 0.5 m – a. Components of the total normal signal: deflectional (curve 1) and phasial (curve 2) for
a = 50 µm, Ω = 60 rad/s, h = 200 µm (zD = 1.5 m, L = 0.5 m); curve 3 presents the total signal.

a

b
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It needs additional integration of the probe beam intensity (expression (14)). Of course,
it is possible to use other methods of detection. Some of them were analyzed in [8],
but for phasial component of the normal signal only.

10. Appendix 1

The thermal wave really exists only over the sample surface, so relation (5) is to be
rewritten as

(A1.1)

Because of the small value of the thermal wave amplitude bg in standard
experimental situation (of an order of mK) in relation (8) we neglect derivation over
the z coordinate. This means that we neglect additional phase shifts caused by input
and output of the probing beam into and out of the region with thermal wave. In such
a situation, we obtain from relation (8):

(A1.2)

where from relations (3) and (4) in paraxial approximation we have

(A1.3)

Because of a linear character of relations (A1.3) the integral in (A1.2) is elementary
one but it has very large and complicated shape. However, our calculations are not
exact – we use paraxial approximation and perturbation calculus. So, if we have
(zp – zl) << zD instead of exact value of the integral in (A1.2) we can apply its simplified
value obtained by middle point method:
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 

sinexp



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0

τ

∫×
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 –


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
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

× dτ '

x τ'( )
zRC in0τ'+

zRC izD+
------------------------------ ,= z τ '( ) n0τ '.=

f τ τ ',( )dτ '
τ1

τ2

∫ f τ τs,( )τpl,≅ τs

τ1 τ2+

2
------------------- ,= τpl τ2 τ1.–=
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In our case, because of Heaviside’s step functions in integral (A1.2), quantities
τs and τpl depend on zl and zp (see formulas (8c)). It is clear that in this case the accuracy
of the simplified integration can be easily controlled.

The same simplified method of integration is used in other places when integration
over the τ ' is needed. It is worth noting here that in some cases integrals are not
elementary.

11. Appendix 2

The amplitude and the phase of probing beam on the detector surface (quadrant
photodiode) can be written as:

(A2.1)

(A2.2)

where A0(zD), ψ0(zD) are expressed by Eq. (2) and ψ1(zD) is described by Eq. (11);
a1(zD) from (A2.1) can be written as:

(A2.3)

where P(ξ ) is expressed by (16b) and zs = n0τ s. Finally, the electric field distribution
of probing beam on the surface of detector (quadrant photodiode) can be written as

(A2.4)

We are allowed now to calculate the intensity distribution on that detector:

(A2.5)

Correction to the phase and amplitude is complex, so it can be written as:

(A2.6)

and we are given:

A zD( ) A0 zD( ) 1 a1 zD( )+ ,≅

ψ zD( ) ψ 0 zD( ) ψ 1 zD( )+≅

a1 zD( ) 1
2
---

zD zs–

n0

------------------
 
 
  ∂P

∂ξ
---------

ξ ξ0=

τpl

1 i
zD

zRC

-----------+
-------------------------------------------------------–=

u rD( ) A0 zD( ) 1 a1 zD( )+ ik ψ 0 zD( ) ψ 1 zD( )+
 
 
 

.exp≅

I rD( ) u rD( ) 2∝ A0 zD( ) 1 a1 zD( )+
2

ik ψ 0 zD( ) ψ 1 zD( )+
 
 
 

exp

2

.=

ψ 1 zD( ) ψ 1R zD( ) iψ 1I zD( ),+= a1 zD( ) a1R zD( ) ia1I zD( ),+=
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(A2.7)

(A2.8)

I0g(rD) is the undisturbed Gaussian beam intensity distribution, but IV (rD) represents
changes in the probing beam intensity caused by its interaction with the thermal wave
field. From relations (A2.8) we have

(A2.9)

This means that we can divide IV (rD) into two parts: deflective and phasial ones.
Deflective component of Gaussian beam intensity changes has the shape:
Igd(rD) = IgA(rD) + Igψd(rD) where IgA(rD) – deflective component resulting from the
Gaussian beam amplitude changes in the thermal wave field, Igψd(rD) – a part of
the deflective component arising from the Gaussian beam phase change connected
with ray path moving. The last term in (A2.9) is a phasial component of the Gaussian
beam intensity changes arising from the Gaussian beam phase change in the field of
thermal wave.

In our case (lock-in measurements) only IV (rD) is measured. Taking into account
(A2.7) and (A2.8) we get: 

(A2.10)
where

(A2.11)
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and Pl – the total power of undisturbed probing beam. Moreover, we need relations
(A2.3) and (11), where we have:

(A2.12)

(A2.13)

In all calculations, we assume that zD > zp, i.e., quadrant photodiode is placed
behind the sample.

11.1. Phasial component of the normal signal

Taking into account relation (A2.9) we have

(A2.14)

where (comp. (11))

(A2.15)

We neglect here constant component proportional to ag – this component is not
measured by lock-in technique. After calculating the proper integrals we are given:

(A2.16)

where

(A2.17)

(A2.18)
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(A2.19)

(A2.20)

and erf(ξ ) is the error function.

11.2. Deflective component of the normal signal

Deflective part of the normal signal in our case has two components, the first one
comes from the diversion of the Gaussian beam in the thermal wave field (relations
(13), (A2.1) and (A2.3)), and the second arises from the Gaussian beam phase change
connected with ray path moving (relations (11), (A2.8) i (A2.9)). 

For the first component calculation we have:

(A2.21)

Taking into account relation (A2.3) we obtain:

(A2.22)

(A2.23)

where
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(A2.24)

(A2.25)

For the second component calculation we have:

(A2.26)

where

(A2.27)

After calculating proper integrals we are given:

(A2.28)
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(A2.29)

where

(A2.30)

(A2.31)
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