
Wrocław University of Technology
Faculty of Computer Science and Management

Dissertation

Supervisor: dr hab. inż. Ireneusz Jóźwiak, prof. PWr

Wrocław 2010

I

Image-space radiosity lighting
method for dynamic and complex

virtual environments

mgr inż. Paweł Rohleder

Abstract

The main goal of current real-time graphics applications (like computer games, or flight

simulators) is to imitate natural phenomena to provide realistic and natural-looking virtual

environments. Many lighting techniques such as soft shadows, high-dynamic range effects, surreal

lighting or post-processing effects have been developed over the last few years to enhance the

quality of rendered image. One of the method which greatly improves the level of realism in

computer graphics applications is global illumination.

This dissertation demonstrates very neat and efficient method for calculating global

illumination for dynamic and complex scenes in real-time. The proposed solution utilizes image

space to compute inter-reflections between different quanta of virtual scene in very fast and robust

way. New algorithm, called ISR (Image-Space Radiosity) has been introduced which takes

advantage of graphics hardware acceleration to provide realistic lighting computations in real-time

at very reasonable frame rates. ISR is independent from scene complexity and very easily pluggable

into any existing rendering pipeline. Compared to previous lighting techniques, ISR is faster, more

accurate and very well scalable.

Apart from the implementation details of the new algorithm along with the theoretical

background and explanation, this work contains quality and performance thorough analysis and

evaluation for different cases, like closed and open-spaced virtual environments.

II

Streszczenie

Głównym celem dzisiejszych graficznych aplikacji komputerowych czasu rzeczywistego

(takich jak gry komputerowe, czy symulatory lotu) jest dokładne naśladowanie rzeczywistych

zjawisk w celu uzyskania fotorealistycznych wizualizacji scen wirtualnych. Wiele technik obliczeń

oświetlenia, takich jak miękkie cienie, surrealne oświetlenie, czy efekty montażowe mających na

celu poprawienie jakości generowanego obrazu zostało zaprezentowanych w ostatnich latach. Jedną

z metod, która istotnie zwiększa poziom realizmu w aplikacjach graficznych czasu rzeczywistego

jest oświetlenie globalne.

Niniejsza rozprawa przedstawia nowy i efektywny sposób liczenia oświetlenia globalnego

dla dynamicznych i złożonych scen wirtualnych w czasie rzeczywistym. Proponowane rozwiązanie

wykorzystuje przestrzeń obrazu do obliczeń oddziaływań oświetlenia pomiędzy różnymi

fragmentami sceny wirtualnej. Pokazano nowy algorytm, nazwany ISR (ang. Image-Space

Radiosity), który wykorzystując możliwości nowoczesnych kart graficznych służy do obliczania

realistycznego oświetlenia przy bardzo dobrej wydajności. W porównaniu do istniejących technik,

ISR jest szybszy, bardziej dokładny i odpowiedni dla różnego rodzaju danych.

Oprócz szczegółowej teoretycznej analizy algorytmu wraz z dokładnym opisem

implementacji, niniejsza rozprawa zawiera dokładną analizę i ocenę zaprezentowanego algorytmu

dla różnych przypadków, tj. zamknięte i otwarte przestrzenie wirtualne.

III

To my wife, my family and friends.

IV

Acknowledgments

This dissertation would never have been emerged without the support of many people. First

of all, I would like to thank my supervisor, prof. Ireneusz Jóźwiak, for his support and encouraging

me through my work. His kindness and optimism made me believe that there are no impossible

goals to achieve. I also thank prof. Adam Grzech and prof. Zbigniew Huzar from Wrocław

University of Technology for their invaluable comments and remarks during the formation of this

thesis.

I would also like to thank Jakub Klarowicz, Maciej Jamrozik and other co-workers from

Techland for their knowledge and sharing the ideas. Special thanks go to Nicolas Thibieroz from

ATI/AMD for very constructive talks, ideas and support on cutting-edge computer graphics

technology.

Finally and the most importantly, I would like to thank my parents Regina and Krzysztof,

my brother Maciej, and in particular my wonderful wife Katarzyna for their support during this

project. Without their patience and understanding this thesis would never have been possible.

Paweł Rohleder

Wrocław 2010

V

Table of contents

1. Introduction..1
1.1. Overview...1
1.2. Radiosity overview...2
1.3. Outline..4

2. Background and related work...5
2.1. Introduction to lighting...5
2.2. Indirect lighting...6

2.2.1. Ray-tracing..6
2.2.2. Radiosity...9

2.3. Rendering equation...13
2.4. Path tracing...14
2.5. Photon mapping..16
2.6. Ambient occlusion..17
2.7. Deferred rendering and MRT..20
2.8. Related work...20
2.9. Problem formulation...24

3. Terminology and models..26
3.1. Coordinate system...26
3.2. Model of 3D virtual scene..26

3.2.1. Geometry...27
3.2.2. Lights...27

3.3. Pixels and images..28
3.3.1. Pearson product-moment correlation..29

3.4. Quality function..29
4. Image-space radiosity algorithm..31

4.1. Overview...31
4.2. Rendering pipeline..31
4.3. Reconstructing world position (linear eye-space z method)...36
4.4. ISR step...39
4.5. Lighting phase...41
4.6. Shadowing..44
4.7. Discussion...47

5. Experiments and evaluation..48
5.1. Tools..48

5.1.1. POV-Ray...48
5.1.2. 3DSMax and MentalRay...50
5.1.3. V-Engine..51
5.1.4. Imalyzer...53
5.1.5. Perl..53

5.2. Experiment course..53
5.2.1. The idea...54
5.2.2. Test sets...55
5.2.3. Collecting snapshots..57
5.2.4. POV-Ray rendering...57
5.2.5. Output image analysis...59

5.3. Results...60
5.3.1. Performance ...60

VI

5.3.2. Quality analysis...62
5.3.3. Perception aspect...66
5.3.4. Discussion...66

6. Conclusions..71
A. List of abbreviations..75
B. Notations..76
C. Derivation of radiosity equation..78
D. V-Engine-based simulator..82
E. Perl test script...86
F. Glossary..89
Bibliography...90

VII

List of figures
Figure 1.1: Sunlight with volumetric light rays in “Call of Juarez” game...1
Figure 1.2: Comparison between direct lighting and radiosity (indirect lighting) methods3
Figure 1.3: Alchemists Laboratory by Jaime Vives Piqueres, rendered with POV-Ray, 2001.............4
Figure 2.1: Ray-tracing algorithm overview..6
Figure 2.2: Glasses by Gilles Tran, rendered with POV-Ray, 2006...7
Figure 2.3: Irradiance and radiant exitance at surface point...10
Figure 2.4: Interrelation between two arbitrary patches...12
Figure 2.5: A single sphere (S, R) which occludes surface at point x..14
Figure 2.6: A crystal ball with caustic (rendered via photon mapping)..16
Figure 2.7: Ambient occlusion in old room scene..18
Figure 2.8: A single sphere (S, R) which occludes surface at point x..19
Figure 4.1: MRT G-buffer configuration..32
Figure 4.2: ISR rendering pipeline
(a) render G-buffer in MRT pass; (b) downsample into 4 times smaller buffer;
(c) ISR and SSAO generation pass; (d) filtering ISR and SSAO buffers with Gaussian blur;
(e) final composition with direct and indirect lighting components...35
Figure 4.3: Viewing camera frustum..36
Figure 4.4: Pixels as patches in 3D space...40
Figure 4.5: Shadowed regions quality differences...45
Figure 5.1: Office by Jaime Vives Piqueres, rendered with POV-Ray, 2004.....................................49
Figure 5.2: A-Wing in the forest rendered with MentalRay...50
Figure 5.3: General experiment pipeline..55
Figure 5.4: Call of Juarez in-game screenshot ..56
Figure 5.5: Imalyzer input images (a,b) and the output negative difference image (c)......................59
Figure 5.6: Different number of samples per pixel: (a) 24; (b) 48; (c) 80..61
Figure 5.7: Performance costs for the different number of per-pixel samples...................................61
Figure 5.8: Mean error for direct lighting and ISR techniques..63
Figure 5.9: Percentage quality gain for each image sample...63
Figure 5.10: Percentage quality gain for each image sample...65
Figure 5.11: Best case (positive) correlation coefficient gain (image 150)..65
Figure 5.12: Worst case (negative) correlation coefficient (image 190)..65
Figure 5.13: Comparison between direct lighting (left) and ISR (right) techniques for open-space
environment scenes...67
Figure 5.14: Comparison between direct lighting (left) and ISR (right) techniques for indoor scenes
(room)...68
Figure 5.15: Comparison between direct lighting (left) and ISR (right) techniques for indoor scenes
(barn)..69
Figure 5.16: Comparison between direct lighting (left) and ISR (right) techniques for simple scenes
with soft shadows...70

VIII

List of tables
Table 1: POV-Ray radiosity configuration block ..58
Table 2: Performance results for 227 rendered images..60
Table 3: UML symbols and definitions..77

IX

List of listings
Listing 1: Ray-tracing algorithm pseudo-code...8
Listing 2: Path tracing algorithm pseudo-code...15
Listing 3: Image-space radiosity (ISR) algorithm pseudo-code...34
Listing 4: Render depth buffer in MRT pass..37
Listing 5: 3D view/world position reconstruction from screen space..38
Listing 6: Per-pixel ISR step algorithm pseudo-code...41
Listing 7: Per-pixel lighting pseudo-code..44
Listing 8: ESM shadowing with PCF in deferred rendering pass..46
Listing 9: Fragment of a POV-Ray script exported by V-Engine...58

X

1. Introduction
This chapter outlines the content of this dissertation and introduces the real-time

global illumination problem.

1.1. Overview

Modern graphics hardware give the possibility to simulate open space environments in a

very realistic way. Plenty of different approaches of imitating natural environmental effects

like: sunlight, water or clouds have been developed during the last decades. One of the most

essential phenomena in real-time computer graphics is lighting effect.

Figure 1.1: Sunlight with volumetric light rays in “Call of Juarez” game

Many lighting techniques such as soft shadows, high-dynamic range effects, surreal

1

lighting or post-processing effects have been developed to enhance the quality of rendered

image. One of the method which greatly improves the level of realism in computer graphics

applications is a global illumination algorithm called radiosity.

This dissertation demonstrates very neat and efficient method for calculating global

illumination for dynamic and complex scenes in real-time. The proposed solution utilizes

image space to compute inter-reflections between different quanta of virtual scene in very fast

and robust way. New algorithm, called ISR (Image-Space Radiosity) has been introduced

which takes advantage of graphics hardware acceleration to provide realistic lighting

computations in real-time at very reasonable frame rates. ISR is independent from scene

complexity and very easily pluggable into any existing rendering pipeline. Compared to

previous lighting techniques, ISR is faster, more accurate and very well scalable.

The presented technique is based on deferred shading algorithm which utilizes

multiple render targets technique to generate specified per-pixel information through vertex

and pixel shader GPU programs. Obtained data is being used to compute image-space

ambient occlusion and simple approximation of global illumination.

Apart from the implementation details of the new algorithm along with the theoretical

background and explanation, this work contains quality and performance thorough analysis

and evaluation for different cases, like closed and open-spaced virtual environments.

1.2. Radiosity overview

Two major techniques have been extensively studied and developed for modeling the

illumination process, ray tracing and radiosity. Ray tracing examines light rays traveling from

the camera to the light sources which is computationally expensive. The behavior of light rays

going through the virtual world, which can be absorbed, reflected or refracted by the objects

on the scene, is modeled by the simple law of optics. More recent and innovative way for

lighting calculations is the radiosity method.

Radiosity is a global illumination algorithm used in 3D computer graphics rendering to

2

determine the illumination factor on a scene. The radiosity term is derived from the theory of

thermal radiation which relies on computing the amount of light energy transferred among

surfaces by tracking the energy flow of light interacting with different materials. Unlike

standard shading models which compute only direct illumination (surfaces influenced

straightforwardly by the light source), the radiosity method is also taking into account light

reflected from the nearby surfaces on the scene (which is called the indirect illumination).

Figure 1.2: Comparison between direct lighting and radiosity (indirect lighting) methods

The images generated using radiosity technique (or generally, using indirect lighting)

appear more photo-realistic, however, are computationally more expensive comparing to

standard direct lighting methods and much more difficult to obtain in real-time time. In this

dissertation we emphasize on the approximation of radiosity technique for real-time computer

graphics software. We prove that computationally expensive illumination model can be

efficiently simplified and applicable in real-time to provide higher level of realism in

computer generated images.

3

Figure 1.3: Alchemists Laboratory by Jaime Vives Piqueres, rendered with POV-Ray, 2001

1.3. Outline
This dissertation is composed of six chapters. At the beginning we introduce the real-

time radiosity problem very briefly. Chapter 2 contains some background information about

radiosity as well as related work in the area of global illumination in computer graphics.

Subsequently, in chapter 3 we covered detailed description of lighting models in real-time

computer graphics applications. We also introduced the problem of real-time radiosity.

Chapter 4 elaborates the novel algorithm, called Image-Space Radiosity (ISR) which is

followed by the experiments and evaluation placed in chapter 5. Finally, the dissertation

concludes with a short summary and the list of possible future work ideas in chapter 6.

4

2. Background and related work
This chapter introduces the basic terms and previous work related to lighting

techniques in real-time computer graphics. It explains the differences between direct and
indirect lighting and shows the advantages of using radiosity method.

2.1. Introduction to lighting

Apart from the accurate graphical representation of objects on virtual scene, the lighting

effects are the most important in the manner of photorealism. Computer graphics lighting

refers to the simulation of light in computer graphics based applications. The term

illumination determines the amount of light reaching a surface and is being used in shading

process which calculates the color and intensity of light reflected toward the viewer for each

pixel representing the surface. The color value depends on the various properties of light

source (like position or color) as well as the reflective characteristics of the surface itself.

Basically, lighting effects are described with models that consider the interaction of

electromagnetic waves with object surfaces involving the principles of physical laws that

describe surface light intensities. Many basic models use empirical simplification of

photometric calculations to minimize required computation time. More accurate models, such

as the radiosity algorithms which represent the indirect illumination models, determine light

intensity by taking into account the propagation of radiant energy between the object surfaces

on the scene. Although indirect lighting algorithms provide more photo-realistic

representation of virtual scenes, they are often to computationally complex and can not be

utilized in real-time computer graphics applications.

In the following section we take a look into basic illumination models which represent

direct lighting; afterwards, we discuss more accurate and simultaneously more time-

consuming indirect lighting algorithms. Subsequently, we introduce the ambient occlusion

term and radiosity approach to real-time computer graphics rendering. The chapter ends with

the description of related work in closing with conclusion and problem formulation.

5

2.2. Indirect lighting

2.2.1. Ray-tracing

Ray tracing [29][75][4] represents the technique that is capable of produce digital

images at very high level of photorealism. It utilizes tracing the path of light through pixels in

an image plane to evaluate corresponding pixel color value. The algorithm generates better

quality images comparing to standard rasterisation rendering methods, but at a greater

computational cost which makes the ray-tracing suitable for non real-time computer graphics

utilization, like movie industry.

Figure 2.1: Ray-tracing algorithm overview

The idea behind ray tracing is that physically correct images are composed of light rays

fired up from the light source and bounced in a scene before hitting the virtual camera. This

intuitive approach provides a simple and powerful rendering technique for obtaining global

transmission and reflection effects. Ray tracing algorithm is also supports visible surface

6

detection, shadowing effects, transparency or multiple light source illumination.

There are many extensions to the basic ray tracing algorithm which provide very

sophisticated and highly photo-realistic images generation. RT, for example, works very well

with shiny objects rendering (as presented in the figure below), however it requires

considerable computation time to generate, therefore inappropriate for real-time requirements.

Figure 2.2: Glasses by Gilles Tran, rendered with POV-Ray, 2006

Pseudo-code for basic ray-tracing algorithm looks as follows:

7

Listing 1: Ray-tracing algorithm pseudo-code
for every pixel on the screen
{

create 3D ray from view position passing through this pixel
find the nearest intersection point of the ray with scene geometry

if (intersection not found)
fill the pixel with background color

else
{

for each light fire a ray from that point to see if it is in the
shadow

if surface is reflective – generate recursive reflection ray
if surface is transparent – generate recursive refraction ray
fill this pixel with the result of shading computation function

}
}

At the very beginning the algorithm generates a ray path passing through the center of

each pixel position on the screen. For each pixel ray it tests each surface in the scene to

determine if it is intersected by the specified ray. If the surface is intersected, we calculate the

distance from the camera to the intersected point – the closest intersection point identifies the

visible surface from the given pixel. Subsequently, we produce the reflection (for reflective

surfaces) and refraction (for transparent surfaces) rays which are called the secondary rays

and we repeat the above procedure for each of them. The recursive ray tracing algorithm

terminates when the depth reaches the maximum (user defined) level, or if the ray hits the

light source.

The pixel color value which corresponds to the amount of illumination it receives is

determined by accumulating the intensity contributions from the ray tracing tree. If no surface

is intersected by the current pixel ray, the pixel is assigned the intensity of the background

color. If the ray from the corresponding surface point to the light source collides with solid

object then the pixel is in shadow and the light does not contribute to its shade.

The great advantage of RT over other rendering methods is its simplicity and legibility.

Effects like shadows, reflection, refraction, scattering or ambient occlusion are a natural result

8

of ray tracing algorithms as opposed to scan-line rendering algorithms. Another advantage is

that the calculations for each ray can be done separately which means that the algorithm can

be easily parallelized.

The most serious disadvantage of RT is the performance due to the heavy

computational cost. To perform calculations in the reasonable time the scene information

needs to be stored in a space-partitioning data structure, like oct-tree, kd-tree or BSP-tree.

Despite of pre-computed scene information the performance is far from real-time,

furthermore, the problem with virtual worlds changing dynamically arises.

2.2.2. Radiosity

Radiosity method considers the radiant energy interactions between all surface in the

scene by calculation the differential amount of radiant energy (dQ) leaving at each surface

point and summing the energy contribution over all surfaces. The radiosity term refers to

radiant exitance, which is the power emitted from the surface. For better understanding of

what the term radiosity means we look at the basic radiometric quantities explained accurately

in [7].

The light can be expressed as a radiant energy (Q) which is the energy of

electromagnetic waves. Radiant energy derives from the integration of radiant flux (radiant

power) over time and is measured in Joules. Radiant flux is the total power of electromagnetic

radiation which can be expressed as:

=dQ
dt (1)

and is measured in Watts.

The radiant flux per unit area at a point on the surface is called radiant flux density. The

radiant flux density is referred to as irradiance when the flux is arriving at the surface from

any direction, and radiant exitance when the flux is leaving in any direction above the

9

surface.

Irradiance is expressed in Watts per square meter as:

E=d 
dA (2)

where Φ is the radiant flux arriving at the point and dA is the differential area surrounding the

point, whereas radiant exitance is defined similar to irradiance as:

M=d 
dA (3)

where Φ is the radiant flux leaving at the point and dA is the differential area surrounding the

point.

Figure 2.3: Irradiance and radiant exitance at surface point

Radiance is the amount of radiant flux contained in the ray of light arriving at or leaving the

point on a surface in the given direction. Radiance is measured in Watts per square meter per

steradian and is defined in the following way:

L= d 2
d dA cos

(4)

10

dA dA

where  is radiant flux, dA is the differential area surrounding the point and d 

is the differential solid angle of the elemental cone and  is the angle between the ray and

the surface normal.

One of the most vital quantity in radiosity calculations is the form factor [31] which

related th proportion of energy transmitted which can be transferred to another object. Given

two arbitrary oriented patches dE i emitting some quantity of flux i and dE j receiving

a portion of emitted flux ij we denote the dimensionless form factor:

F ij=
ij

i
(5)

After expanding the above equation (in accordance with [7]) the form factor from a

differential area dE i to another differential area dE j is given by:

dF dEi−dE j
=

cosi cos j dA j

r 2 (6)

where i and  j are angles between a line connecting dE i and dE j and their

respective surface normals n i and n j and dA j is the differential area of dE j

11

Figure 2.4: Interrelation between two arbitrary patches
(patch dE j receiving flux ij from patch dE i)

Thus, the form factor from the finite area patch E i to another finite area patch E j is

defined as:

F ij=
1
Ai
∫
Ai

∫
A j

cosi cos j

 r2 dAi dA j (7)

Having the radiant exitance and the form factor defined we can formulate the radiosity

equation such as:

M i=M 0ii∑
j=1

n

M j F ij (8)

where M 0i and i stand for initial exitance and the reflectance of patch E i respectively.

Radiosity method has some limitations comparing to ray-tracing techniques. First of all,

the radiosity theory assumes that all surfaces are ideal diffuse reflectors and for specular

surfaces and transparent materials the combination with other lighting techniques is required.

12

dE i

dE j

n i

n jij r

Another limitation is the geometry surface representation. Ray tracing can use implicit

equations to define curved surfaces, whereas the radiosity model operates on 3D patches

which can be modeled by a typically nonuniform polygon meshes. This is not a serious

limitation since every surface can be approximated by a polygon mesh with the desired

accuracy.

2.3. Rendering equation

A primary challenge in realistic rendering is trying to solve the rendering equation

simultaneously introduced into computer graphics by David Immel and James Kajiya in 1986.

The rendering equation [45] is an integral equation which denotes the total amount of

illumination at specified position as a sum of emitted and reflected radiance under a geometric

optics approximation:

L0 x ,=Le x ,∫
x

f r x , ' ⇔Li x , ' cos  ' d' (9)

where:

• L0 - total amount of illumination (exitant radiance) at x into direction 
• Le - self-emitted light (self-emitted radiance) at x into direction 
• Li - incoming light (incident radiance) at x from direction 
• f r x , '⇔ - bidirectional reflectance distribution function (BRDF) at x for scattering from a

direction  into direction  ' (or vice versa)
• x - specified location on a surface
•  - outgoing direction at location x
•  ' - incoming direction over the hemisphere around x
•  ' - angle between  ' and surface normal at x
• d  ' - infinitesimal solid angle containing direction  '
• x - hemisphere of directions above x

13

Figure 2.5: A single sphere (S, R) which occludes surface at point x

The reflected light itself is the sum of incoming light from all possible directions

multiplied by the surface reflection coefficient (BRDF) and the attenuation of the inward light

due to the incident angle. The BRDF function characterizes the reflectance of a surface at

specified point x and is defined as a ratio of an outgoing radiance over the incoming

irradiance.

The rendering equation (also known as the light transport equation) derives from the physics

and the law of conservation of energy and describes the equilibrium distribution of radiance

over the given environment.

2.4. Path tracing

In the 1980s, James Kajiya presented a method capable of fully solving the rendering

equation which is called path tracing [48][35]. Path tracing is a probabilistic point sampling

technique which extends the original ray tracing algorithm by tracing a bunch of ray paths

from the camera back to the lights where the light contribution along the path is being

evaluated. Although the proposed technique is very accurate and it allows to simulate nearly

all effects of the light transport, it is inefficient due to the very large number of rays that need

14


  '

x

to be traced to avoid visible artifacts in the form of noise emerged in point sampling process.

Pseudo code for path tracing is shown below:

Listing 2: Path tracing algorithm pseudo-code
Color TracePath(Ray r, int depth)
{

if (depth == Maxepth)
return Color::Black; /// Maximum depth reached

Surface s = r.FindNearestIntersectedSurface();
if (s == NULL)

return Color::Black; /// Ray hits nothing

Material m = Surface.GetMaterial();
Ray r2;

r2.Origin = r.GetIntersectionPoint();
r2.Direction =

PickRandomDirectionOverHemisphere(r.GetIntersectionNormal());
float cosa = dot(r2.Direction, r.GetIntersectionNormal());

Color reflected = TracePath(r2, depth+1);
float BRDF = m.Reflectance/PI;
return m.Emmitance + BRDF * cosa * reflected;

}

In path tracing a new ray is being randomly generated (within the hemisphere of an

intersected point) and traced further, whilst traditional ray tracing samples lights directly

when there is a hit with diffuse surface. That means the path may hit many diffuse surfaces

before interacting with a light (unlike in RT).

It is possible to trace rays in the opposite direction – from light source to the observer

point. This method is called photon tracing and is use to simulate realistic photon behavior in

closed environment. Photon tracing is fairly simple to implement using simple ray tracer and

also gives the global illumination and radiosity solution for free, but the computation time is

very big and inappropriate for real-time computer graphics.

15

2.5. Photon mapping

Henrik Jensen has developed a two-pass global illumination algorithm called photon

mapping [43][42][91] as an alternative to pure Monte-Carlo ray-tracing techniques. In the

first pass rays from the light sources and the camera are traced independently until some

specified criterion is met. Subsequently, the results are being merged in the second step to

produce the radiance value, which is used in realistic simulation of light interaction between

objects.

Photon mapping decomposes the lighting calculations from the scene geometry by

representing the solution in the spatial data structure called photon map [38] which allows to

calculate the rendering equation terms separately. This makes the photon mapping very

flexible and expandable for accounting the specified media effects, like sub-surface scattering

caustic effects, or diffuse inter-reflection.

Figure 2.6: A crystal ball with caustic (rendered via photon mapping)

The first pass of photon mapping algorithm creates the photon maps by spreading the overall

power of light over photons leaving the light sources. If the specified photon hits the surface it is either

16

reflected, refracted or absorbed and the probability is calculated from the surface's material properties

(Monte Carlo method called Russian roulette is used to choose one of the mentioned actions). We

continue this step keeping up to date with photon maps until the photon is fully absorbed. Once the

photon maps have been populated, the stored information is being used in the second pass (the

rendering pass) to obtain the reflected radiance at surfaces and in participating media by gathering n

nearest photons taken from the photon map (using the nearest neighbor search function). For the sake

of efficiency, the rendering equation is being decomposed into separate factors, like direct

illumination, indirect illumination, specular reflection and caustics:

L=LdirectL specularLcausticsLindirect (10)

Direct lighting factor can be accurately estimated by tracing a ray from the intersection points to each

light source. Specular reflections can be also calculated using ray tracing procedures. The contribution

of caustics is being denoted from caustics photon maps directly. Finally, the indirect lighting part

comes from the reflected radiance calculated from global photon map.

2.6. Ambient occlusion

Ambient occlusion [47][73] refers to crude approximation of global illumination. In

general, ambient occlusion in a specified point in 3D space is the amount of occlusion

received due to surrounding occluding objects. This amount of occlusion at point x with a

surface normal n is given by the following equation:

AO x ,n= 1
∫

V x , n⋅d  (11)

where V  x ,  represents the visibility function from x along direction  (returns 1 if

occluded and 0 if not) over the hemisphere Ω.

There are many existing ambient occlusion algorithms since this technique greatly

17

improves the level of realism in real-time computer graphics industry. In [47] a method called

Ambient Occlusion Fields has been introduced which pre-computes a field in a surrounding

space that encodes the occlusion caused by the object. This technique provides very nice

results in image quality, however it is dependent of the scene complexity and not suitable for

large and complex scenes, like outdoor environments. [73]demonstrates image space

approach for high-frequency ambient occlusion which is similar to the method described in

this chapter but they do not consider bilateral filtering nor upsampling. Additionally their

method includes distant-occluder approach for low frequency ambient occlusion which is also

dependent on scene complexity. The idea of bilateral upsampling is borrowed from [76] where

real-time soft global illumination technique is being explained.

Figure 2.7: Ambient occlusion in old room scene

In this work the amount of ambient occlusion at location x is being approximated by

calculating spherical cap delimited by the sphere <S,R> on the unit hemisphere at x and

18

relative position of the occluding sphere <S,R> to x (more detailed description can be found

in [73]):

AO S , R , x ,n=C S , R , x⋅maxn⋅Sx ,0 (12)

The surface area of the spherical cap (Fig 1) can be expressed as:

C S , R , x =2⋅⋅h⋅1=1−1− R
∣Sx∣

2

(13)

R
S

x
r = 1

h

Figure 2.8: A single sphere (S, R) which occludes surface at point x

Final equation for calculating ambient occlusion at location x is given by:

AO S , R , x ,n=[1−1− R
∣Sx∣

2]⋅maxn⋅Sx ,0 (14)

19

2.7. Deferred rendering and MRT

Deferred rendering [37] idea was primarily introduced by Michael Deering et all. in the

paper entitled The triangle processor and normal vector shader: a VLSI system for high

performance graphics. The term deferred shading [59][87] describes the technique which uses

intermediate buffers (called g-buffer) storage with screen-space, per pixel information such as

diffuse color, normal vector or depth value. A g-buffer is a collection of screen-sized render

targets (MRT), which can be generated in a single pass with the modern graphics hardware

(significantly reducing the rendering load) . The g-buffer is used then as an input to the

shading algorithm (for example a lighting equation) without the necessity of browsing the

original geometry (all information required for the calculations at this stage, like position of

the pixel in 3D world space, can be extracted from the g-buffer). In this way the algorithm

operates only on visible pixels which greatly reduces the computation complexity and

memory bandwidth.

The main advantages of the deferred shading approach are the simplification of the

rendering pipeline, ease of managing complex shader resources and calculations, and finally

simple and robust management of complex lighting resources (like dynamic lighting). The

technique is used with great success in modern post-processing rendering effects, like: screen-

space ambient occlusion, depth of field [93], motion blur and anti-aliasing. The key drawback

of this technique is inability to handle transparent objects on the scene properly. Order-

independent transparency can be achieved by using depth-peeling technique [84], but at the

cost of performance due to additional drawing batches and g-buffer size.

2.8. Related work

Global illumination is a very extensive area of research, especially in the last few years.

Radiosity and ray-tracing based methods are often used for off-line film production rendering

[81]. Real-time computer graphics usually utilizes vast approximation of global illumination

20

techniques, like ambient occlusion. [47] describes a real-time technique for calculating inter-

object ambient occlusion by pre-computing an approximation of the occlusion caused by each

object in the surrounding space. This information stored in cube map textures is used at run-

time for evaluation the shadow cast on the receiving objects. Despite of good results this

method suffers from large pre-computation step. It also utilizes big number of textures

(cubemap per each mesh) which is not suitable for complex scenes. Finally, this technique

does not handle deformable objects (due to pre-computation step) and is limited to rigid body

motion.

[73] describes real-time AO approximation as a multi-pass algorithm that consists of two

independent and parallel detailed and distant AO methods. First (detailed) technique utilizes

image space to approximate AO due to the nearby occluders caused by high surface details,

whereas the second approach uses approximated version of the occluder geometry. The high-

frequency AO method requires no pre-computation step and is very easily pluggable into any

existing rendering pipeline, however it requires a huge amount of surrounding samples to

achieve satisfying results. This dissertation extends among other things the idea from [73]

using reformulated equation for calculation the amount of occlusion due to the spherical

occluder. Image-space ambient occlusion (SSAO) technique has also been extensively studied

in [44] and [9].

[13] approximates AO and simple GI by treating polygon meshes as a set of disc-based

surface elements which can emit, transmit, or reflect light and can occlude each other. The

method works on a per-vertex level and requires huge pre-computation step which eliminates

fully dynamic scenes handling. Additionally, the method requires high-tessellated scene

geometry to provide good-looking, acceptable results.

[19] proposes to capture the scene geometry causing indirect illumination by an extended

shadowmap and to distribute secondary light sources on directly lit surfaces. Rendering of the

secondary lights contribution extends their previous work and is being performed in a

21

deferred shading process which makes rendering time independent from the scene complexity.

The approximated indirect lighting does barely exhibit coarse artifacts, however does not

produce soft shadows. Additionally, the algorithm operates on final display resolution which

suffers from performance issues.

[46] utilizes shadow maps and the accumulation buffer to approximate the indirect lighting

over a set of photons traced stochastically from the light source. The algorithm uses the quasi-

random walk based on the method of quasi-Monte Carlo integration to generate virtual point

lights which simulates indirect lighting. Instant radiosity suffers from far from real-time

performance and variance problems due to inadequate VPL sampling like other Monte Carlo

methods. [72] extends instant radiosity method by introducing a bidirectional sampler to find

relevant virtual point lights for a given point of view in a fast and efficient way. It also utilizes

deferred shading approach to optimize the influence of many point lights, however the

algorithm still remains inappropriate for interactive rendering and not for real-time

applications.

Another work which derives from instant radiosity is presented in [71] where Delaunay

triangulation-based algorithms [34] is used for maintaining the VPLs efficiently. Proposed

method is capable of rendering single bounce of indirect illumination from static geometry to

static and dynamic geometry in real-time. It also lacks indirect shadows caused by the

dynamic objects and did not solve the problem of VPLs visual importance for complex

scenes.

[18] reformulates the rendering equation to use implicit visibility achieved by introducing

new quantity called anti-radiance. Anti-radiance refers to the idea of negative light which is

propagated along with the radiance and is stored in directional elements in the scene.

Presented approach has some limitations which are increased memory footprint for the

directional data structures and excessive subdivision for dynamic scenes. Although described

technique is able to compute indirect illumination much faster than traditional methods based

22

on rendering equation it is still to slow for real-time computer graphics applications like

complex 3D FPP games.

Precomputed radiance transfer (PRT) [77][90] offers precomputing complex lighting

interactions which are being used during real-time scene rendering. PRT can be utilized to

determine diffuse lighting of the scene in dynamically changing lighting environment by

computing the illumination of a point as a linear combination of incident irradiance. Spherical

harmonics [33][40][3] is the efficient way to encode the light transportation function in PRT

method.

The similar technique named precomputed radiance maps (PRM) [80] obtains the indirect

illumination caused by multiple scatterings of the light from partial light paths that are

precomputed and stored in the preprocessing phase. Both PRT and PRM methods can handle

dynamic light sources and give very respectable results, but work in static environment only

and suffer from large precomputation step.

[10] presents the real-time radiosity method which does not use PRT or any pre-computed

stuff. For the performance reasons it calculates the radiosity equation for each 16 samples per

frame and then applies blurring to eliminate noise effect. The technique works similar to light

maps which maps every mesh in the scene onto unique texture updated dynamically every

frame. In conclusion, presented technique consumes a lot of video memory (single texture per

mesh) and is quite slow which is not suitable for complex scenes, like open space

environments.

Finally, [78] describes hierarchical indirect lighting computations in screen space. The

algorithm is compatible with deferred rendering pipeline and is very fast (it consumes less

than 10 ms per frame on GPU for typical settings). Presented technique is very similar to the

ISR algorithm examined in this dissertation ([78] has emerged at the final stage of writing this

thesis).

23

2.9. Problem formulation

Global illumination, which simulates global interaction of light with objects in a 3D

scene, is a complex problem. Number of different approaches in real-time global illumination

techniques have been developed and evaluated over the recent years. Majority of them can

handle very simple scenes only and are not suitable for complex and dynamic worlds

appearing in cutting-edge computer games and virtual reality simulators. Many of them

suffers from huge precalculation step which strongly affects the application's content

generation pipeline and requires additional resources like CPU power or memory capacity.

Our main goal is to develop and implement efficient method of calculating real-time

radiosity algorithm that overcome the above issues and can be easily applicable in any

computer graphics-based application. It is expected to be independent from scene complexity

and flexible to handle both dynamic and static scenes equally. Additionally, it should produce

real-time images with higher quality comparing to the images illuminated with standard direct

lighting techniques.

We have given two images IA and IB which refer to the images rendered in real-time

using standard direct lighting and rendered off-line using accurate global illumination

techniques. We claim that it is possible to render image IX in real-time which approximates

global illumination in real-time producing image quality closer to the model IB.

Above all, the solution should meet the following requirements:

• speed: the algorithm needs to be as fast as possible (suitable for real-time computer

graphics-based applications, like computer games or flight simulators);

• complexity: the algorithm should be independent from scene complexity and it should

work efficient for simple as well as complex virtual environments;

24

• dynamics: algorithm should be able to handle static as well as dynamic virtual scenes.

Any pre-rendering or pre-calculating steps are prohibited;

• quality: algorithm should produce high-quality-lighting images with visible indirect

lighting factor;

• accessibility; it is expected that new algorithm works completely in real-time and

requires no content generation pipeline changes. It should also be easily

implementable in any existing rendering pipeline;

• user-friendliness: the algorithm should avoid non-intuitive coefficients/variables and

should be easily to configure and manipulate by artists to obtain satisfying results;

25

3. Terminology and models

This chapter introduces the model and conventions used throughout the dissertation.
We also present mathematical problem formulation along with specification details.

3.1. Coordinate system

A Cartesian coordinate system is characterized by three mutually perpendicular axes: x,

y and z. This dissertation uses left-handed Cartesian coordinate system with positive x-axis

pointed to the right, positive y-axis pointed up and positive z-axis directed away from the

viewer. The point v(x, y, z) in 3D space can be expressed as:

v=i⋅xj⋅yk⋅z (15)

where i, j and k are unit vectors parallel to the three perpendicular axes.

3.2. Model of 3D virtual scene

3D virtual scene (virtual space) describes the computer-simulated environment which is

modeled by triple:

S=E ,L ,c

where:

• E represents a collection of virtual entities e; an entity determines an instance of a

geometric mesh g positioned and oriented in virtual space;

• L corresponds to a set of point light sources l;

• c describes virtual camera orientation in virtual space; c is represented by a pair of view (Mv)

26

and projection (Mp) matrices which determine the virtual observer position in virtual space,

viewing direction and field of view;

3.2.1. Geometry

Each object in 3D virtual scene is represented by a geometric mesh build from 3D

triangles spread along the vertex array. Model of a single mesh contains:

g= gv , gn , guv , gdiff , g i , g mat 

where:

• gv is the array of vertices (R3);
• gn is the array of vertex normals (R3);
• guv is the array of mapping coordinates (R2);
• gdiff is the array of diffuse color values (per each vertex);
• gi is the list of indexes which form the triangles;
• gmat is the mesh material identifier;

We define vertex normal as a resultant vector of a sum of the adjacent triangles normal

vectors. Vertices of a mesh are positioned relative to the mesh origin (mesh pivot) which we

call model space.

3.2.2. Lights

Lights are considered to be spherical point light sources described as:

l=l pos , l r , l pow , l c , f atten

where:
• lpos is the position of light;
• lr is the light radius;
• lpow is the light power multiplier;
• lc is the color emitted by the light;
• fatten is the attenuation function of distance.

27

The attenuation function for the light l any point P in 3D virtual scene is defined as follows:

f atten l , P=saturate 1−
∣l pos−P∣

l r


2

 (16)

3.3. Pixels and images

We define pixel as a picture element which is the smallest piece of information in a

digital image. In this work pixel is considered as a 3-component vector composed from red,

green and blue components:

P=[r ,g ,b]

The luminance [53] of a pixel P is expressed as:

lumP =0.27 P r0.67 Pg0.06 Pb (17)

Pixel are arranged in a 2-dimensional grid, called image (or pixmap) which refers to the

spatially mapped array of pixels. Image is characterized by its dimension and represents data

structure which is used to store digital images labeled as I label

The difference between image I1 and I2 is defined as a difference image D:

∀ x∈ℕ , xw ; y∈ℕ , yh D12x , y =∣I 1 x , y− I 2x , y∣ (18)

where Ii(x, y) refers to the pixel at location x, y in the image Ii..

28

We also define an error factor computed from difference image D which is the mean value of

all pixels components:

D=
1

3wh∑x=0

w

∑
y=0

h

Dx , y rDx , y gD x , y b (19)

3.3.1. Pearson product-moment correlation

Pearson product-moment correlation coefficient (PMCC) [63][54] measures the strength

of linear dependence (correlation) between two given variables. PMCC is equivalent to

dividing the sample covariance between two variables by the product of their sample standard

deviations.

For the finite population the PMCC is defined as follows:

 X , Y =1
n∑i=1

n  X i−X

X Y i−Y

Y  (20)

where:

X i−X

 X
, X and X

stand for standard score, population mean and population standard deviation respectively.

3.4. Quality function

In section 2.9. we have formulated the statement about the image quality better to the

other one. Let's say we have two images I1 and I2 and the model image I0 each representing the

same scene with the view. The mathematical meaning of the quality statement can be

expressed by the quality function f q I 0, I 1, I 2 :

29

D01=∣I 0− I 1∣ - difference image between I0 and I1;

D02=∣I 0− I 2∣ - difference image between I0 and I2.

f q I 0, I 1, I 2={−1,
0,
1,

if 0102

if 01=02

if 0102

(21)

Quality function f q returns -1 when I2 is closer to I0, 1 when I1 is closer to I0 and 0 when the

error factors for both I1 and I2 are equal.

30

4. Image-space radiosity algorithm
In this chapter we describe the novel image-space radiosity (ISR) algorithm along

with the implementation details. We also present additional effects like image-space ambient
occlusion and shadowing through exponential shadow mapping technique to improve the
quality of final rendered image.

4.1. Overview

This section reveals the idea of a novel image-space radiosity (ISR) algorithm. First we

describe the general rendering pipeline including G-buffer configuration and ISR algorithm

idea in step-by-step pseudo-code. In the forthcoming sections we present fast and efficient

method for the world position reconstruction from the depth buffer which is extremely vital

for ISR algorithm. Afterwards, we explain the ambient occlusion and color bleeding steps

along with the implementation details. This part is the core of the ISR method and is covered

very attentively. Subsequently, we present exponential shadow map implementation in

deferred rendering which can be easy plugged-in into ISR rendering pipeline as an additional

step to improve the level of realism in real-time computer generated images. We finish this

chapter with a short conclusion and future ideas regarding ISR algorithm.

4.2. Rendering pipeline

ISR algorithm operates on every single frame and does not require any pre-computed

data, nor additional content pipeline changes. It works on the fly and is suitable for simulation

both simple/static and complex/dynamic virtual environments.

We start by introducing the MRT G-buffer configuration utilized during the geometry

rendering pass at the very beginning of the frame generation cycle. In general, we use 4

surfaces during virtual scene rendering pass (as shown in Figure 4.1):

31

• hardware depth/stencil surface (DS) which is used simply for visible surface

determination during geometry rendering phase; stencil buffer is used to mark out

background pixels;

• albedo color surface (CLR) containing unlit rendered geometry with basic material

properties (textures, diffuse color); alpha channel of this surface holds the radiation

mask used during radiosity calculations;

• normal surface (NRM) which stores world space normalized per-pixel geometry

normal vectors; each normal component is packed into the range from 0 to 255 (8 bits

per component) and can be easily decompressed using the formula:

cunpacked=
2c packed

255
−1 (22)

• additional depth buffer (DPT) containing 32-bit floating point linear eye-space z

coordinate for fast 3D view/world space position reconstruction (described accurately

in section 4.3.).

Figure 4.1: MRT G-buffer configuration

After the G-buffer is ready we perform the clear operation which is followed by

rendering scene geometry with specified technique. The geometry rendering pass traverses the

32

R8 G8 B8 A8
stencil

diffuse RGB rad mask
normal XYZ (8-bit components) unused

linear eye-space z (FP32)

DS

NRM

DPT

CLR

depth 24 bpp

scene for the visible objects and renders them into the G-buffer filling the appropriate color

and depth-stencil video surfaces. This step depends on the scene complexity and is

responsible for visible surface determination (i.e. frustum culling) to perform the rendering

pass as efficient as possible. The visibility problem is one of the major issues in the field of

3D computer graphics and is beyond the scope of this dissertation [15][92].

At this point we have color, normal and depth buffer ready for the later use in the post-

processing step. Subsequently, we reduce the sampling rate for the sake of performance

during ISR/SSAO calculations by downsampling CLR, NRM and DPT surfaces into four

times smaller coarse buffers (CLR_4, NRM_4, DPT_4) by averaging four adjacent samples in

each buffer.

The next phase is to calculate ISR/SSAO surface with scene radiosity and ambient occlusion

information. It is the most significant step of the algorithm and is examined penetratingly in

section 4.4. Once the coarse ISR_4 buffer has been determined we perform blurring in both

horizontal and vertical directions to get smooth representation of indirect lighting as shown in

Fig 4.2. Filtering is done by convolving the image with a Gaussian function [20][30][36].

The final step is per-pixel lighting calculations which produce the ultimate view of the

illuminated scene. During this phase, both direct and indirect lighting information (taken from

the previous step) are being utilized to generate image with photo-realistic illumination (see

section 4.5. for detailed description).

33

Listing 3: Image-space radiosity (ISR) algorithm pseudo-code
RenderFrameWithISR()
{

/// Setup render targets
SetupMRTBuffers(CLR, NRM, DPT);

/// Clear G-buffer
Clear(color, depth, stencil);

/// Render scene (geometry) with selected technique
RenderLevel(technique = “std”);

/// Downsample G-buffer into 4x coarse buffers
CLR_4 = DownsampleBuffer(CLR);
NRM_4 = DownsampleBuffer(NRM);
DPT_4 = DownsampleBuffer(DPT);

/// Perform ISR/SSAO calculations on coarse buffers
ISR_4 = RenderISR(CLR_4, NRM_4, DPT_4);
/// Blur coarse result buffer
ISR_4_tmp = BlurHorizontal(ISR_4);
ISR_4 = BlurVertical(ISR_4_tmp);

/// Final lighting composition + bilateral upsampling ISR/SSAO
LGT = Lighting(CLR, NRM, DPT, ISR_4, DPT_4);
/// Show final buffer (copy into back-buffer)
Present(LGT);

}

34

Figure 4.2: ISR rendering pipeline
(a) render G-buffer in MRT pass; (b) downsample into 4 times smaller buffer;

(c) ISR and SSAO generation pass; (d) filtering ISR and SSAO buffers with Gaussian blur;
(e) final composition with direct and indirect lighting components

35

4.3. Reconstructing world position (linear eye-space z method)

During screen-space ambient occlusion or screen-space color bleeding calculation there

is a necessity to retrieve world space coordinates of the adjacent pixels. In other words, we

need to reconstruct a specified number (i.e. 24) of world space coordinates per each screen

pixel. That means we need to perform the calculations as fast as possible to avoid

performance issues.

Figure 4.3: Viewing camera frustum

The idea is to calculate specific frustum far plane orientation vectors f o , f u , f v

which multiplied by the normalized linear z coefficient will result in the expecting view or

world space 3D position.

At first, we need to store linear eye-space z value instead of post-perspective z coordinate

during MRT rendering. We normalize this value by dividing it by the frustum far coefficient.

36

tan  
2
=

f y

z f

f y=z f tan  
2


zf

fx

fy
2

f u

f v

f o

The HLSL shader code looks as follows:

Listing 4: Render depth buffer in MRT pass
/// Vertex shader code
float4 pos_in_world = mul(input.Position, WorldMatrix);
float4 pos_in_view = mul(pos_in_world, ViewMatrix);
output.Depth.x = pos_in_view.z * Frustum.w; // (equivalent to:
pos_in_view.z / Frustum.z)

/// Pixel shader code
output.Depth = float4(input.Depth.x, 0, 0, 1);

To summarize the depth buffer creation, we store the linear z from camera space divided

by the far frustum plane value zf instead of the post-perspective z from projection space.

Afterwards, in order to get the 3D view/world space position from depth buffer we need to

denote the camera far plane point according to the specified screen coordinates. In order to

achieve this we need to calculate three vectors f o , f u , f v as shown in figure 4.3.

For the view space we simply need to calculate the upper-left corner of camera frustum in

view space:

f x=z f tan 
2


f y=aspect⋅ f x

f z=z f

f w=
1
z f

(23)

where z f is the camera far plane,  is the vertical field of view and aspect means the

screen resolution width to height aspect. We also keep
1
z f

 in fw coordinate to avoid division

operation in the vertex shader.

37

Having the upper-left corner of camera frustum we can deduce any point in frustum using

f o , f u , f v vectors (see figure 4.3):

v x , y = f o x f u y f v (24)

therefore 3D view space position has the following form:

v x , y = f ox f u y f v=− f x , f y , f z x 2 f x ,0,0 y 0,−2 f y , 0=x f x ,− y f y , f z

For 3D world space position reconstruction we need to transform f o , f u , f v vectors into

world space by multiplying them by inverse view matrix M v
−1 .

At this point we have everything we need to reconstruct 3D world/view position form depth

buffer in a very efficient way.

Pixel shader code using our alternative version is much more simpler now:

Listing 5: 3D view/world position reconstruction from screen space
/// p.xy [0..1, 0..1], p.z - sampled linear eye-space z
float3 ScreenSpaceToCS(float3 p)
{

float2 h = p.xy * 2 - 1;
return float3(Frustum.xy * h.xy, Frustum.z*p.z);

}

/// p.xy [0..1, 0..1], p.z - sampled linear eye-space z
float3 ScreenSpaceToWS(float3 p)
{

return CameraPos.xyz + (FrustumO.xyz + FrustumU.xyz*p.x +
FrustumV.xyz*p.y) * p.z;

}

38

4.4. ISR step

Calculations for the ambient occlusion and radiosity factors in ISR method are being

performed completely in screen space. The algorithm takes three input buffers:

• coarse color buffer (CLR_4);

• coarse normal buffer (NRM_4);

• coarse depth buffer (DPT_4);

and produces one output buffer (ISR_4) with illuminated pixels which approximate global

illumination. The result buffer is being utilized in the further lighting phase.

ISR denotes indirect lighting bounce as well as ambient occlusion factor in the following way:

for every pixel corresponding to 3D world position P with normal n, the direct radiance is

being calculated from fixed N neighborhood samples mapped over the surrounding

hemisphere, each covering the solid angle of
2
N using the radiosity equation in the

following form :

LP X =P
2
N

F PX L X (25)

where LP X  is the radiance at point P coming from point X, P is the reflectance

sampled from alpha channel of CLR_4, N is the number of samples, F PX is the form

factor between points P and X and finally LX is the initial radiance at point X sampled from

RGB channels of CLR_4. Equation (25) calculates color bleeding from point X into point P

and represents derived form of radiosity equation (8).

39

Figure 4.4: Pixels as patches in 3D space

As shown in figure 4.4, each pixel on the screen corresponds to the surface patch in 3D space

with normal vector and associated area based on the camera space z component sampled from

the depth buffer. This statement facilitates calculation form factors between adjacent pixels

which is fundamental in determining the radiance value.

Having pixel P and the neighborhood samples A,B,C,D transformed into world space we can

calculate the form factor from equation (6) straightforwardly.

We also denote SSAO at point P by determining the amount of occlusion by treating each

neighborhood sample as a spherical occluder to point P. We utilize the equation (14) in the

following form:

SSAOP  X =2
N 1−1− r

∣PX∣
2⋅max n⋅PX ,0 (26)

where SSAOP  X  is the amount of occlusion at point P caused by occluder at X, r is the

occluder radius based on the distance in camera space sampled from the depth buffer and n

is the normal at point P sampled from the normal buffer.

Both radiance and ambient occlusion components are being accumulated per pixel in the

40

P

A

B
C

D

output ISR_4 result buffer.

Listing 6: Per-pixel ISR step algorithm pseudo-code
for each pixel (input TexCoord0)
{

n0 = decode(sample normal from NRM_4 at TexCoord0);
z0 = sample z from DPT_4 at TexCoord0;
p0_ws = ScreenSpaceToWS(TexCoord0, z0);

ao = 0;
gi = (0,0,0);

for (z=0; z<num_samples; z++)
for (x=0; x<num_samples; x++)
{

tx1 = calculate offset for SSAO sample
tx2 = calculate offset for ISR sample
n1 = decode(sample normal from NRM4 at tx1);
n2 = decode(sample normal from NRM4 at tx2);
z1 = sample z from DPT_4 at tx1;
z2 = sample z from DPT_4 at tx2;
c1 = sample color from CLR_4 at tx1;
c2 = sample color from CLR_4 at tx2;
p1_ws = ScreenSpaceToWS(tx1, z1);
p2_ws = ScreenSpaceToWS(tx2, z2);

/// Calculate ISR factor from equation (25)
gi += CalculateIsrFactor(p0_ws, p2_ws, n0, n2, z0, z2, c2);

/// Calculate SSAO factor from equation (26)
ao += CalculateSsaoFactor(p0_ws, p1_ws, n0, z0, z1);

 }

return float4(gi.xyz, ao);
}

4.5. Lighting phase

After filling the buffer with ambient occlusion and indirect lighting factors we can go

through the ultimate per pixel lighting calculations. The most important part of the lighting

phase is the upsampling from coarse ISR_4 buffer into the native resolution before the final

lighting calculations for the corresponding pixel. The most intuitive bilinear filtering during

41

upsampling causing discontinuities in the receiver geometry visible across the object

silhouettes. To address this issue we have changed the interpolation kernel and handles

upsampling with a variant of bilateral filtering [85][25][57][61]. For each target pixel we take

four samples from the coarse ISR_4 buffer and interpolate them through weights based on

their difference with the depth of the corresponding pixel. This approach leads to the

contribution of source samples that are similar to the target pixel and greatly reduces

discontinuities between distant pixels.

Given the target pixel p at specified location and corresponding 2×2 block of coarse

source samples indexed by i=1,2,3,4 we denote the interpolation weights by:

w i '=w i
b wi

z (27)

where the individual weight factors are defined as following:

w i
b={1− x1− y  , x 1− y  , 1−x  y , xy }

w i
z= 1

∣z p−z i∣

w i
b corresponds to the standard bilinear weights determined by the 2D position (x, y) of the

target relative to the source samples whereas w i
z denotes the dimensionless bilateral

upsampling weights based on the difference with the depth of the source samples and target

pixel.

Final weight factors used for interpolation are being normalized using the formula:

w i=
wi '

∑
j=1

4

w j '
(28)

42

As mentioned in [76] it is possible that all four unnormalized weights w i ' are nearly zero

which means no coarse sample sufficiently matches the target pixel. To address this issue we

could perform an additional pass with an accurate shading calculations utilizing the entire list

of contributing proxies. This problem however arises at very few pixels along silhouettes and

has been neglected throughout this dissertation since no visual artifacts has been perceived.

Once the ISR information has been leveraged, we can compute the final pixel illumination

applying the formula as follows:

L final= C0 k dl saturate LSSAO1−k SSAO  L ISR k ISR (29)

where:

• C0 is the color sampled from CLR color buffer at the corresponding pixel location;

• k dl is the direct lighting coefficient;

• LSSAO is the weighted ambient occlusion factor;

• k SSAO is the ambient occlusion power (from 0 to 1);

• L ISR is the weighted indirect lighting factor (calculated from equation 25)

• k ISR is the indirect lighting power (from 0 to 1).

By changing the k SSAO and k ISR we can change the contribution of ambient occlusion and

indirect lighting factors. These factors have been balanced experimentally to get the most

convincing results.

Pseudo-code below represents the shader which calculates per-pixel lighting including

ambient occlusion and indirect lighting components:

43

Listing 7: Per-pixel lighting pseudo-code
for each pixel (input TexCoord0)
{

n0 = decode(sample normal from NRM at TexCoord0);
z0 = sample z from DPT at TexCoord0;
c0 = sample color from CLR at TexCoord0;
p0_ws = ScreenSpaceToWS(TexCoord0, z0);

isr = (0,0,0);
ao = 0;

float4 bilinear_weights = CalculateBilinearWeights();
float4 bilateral_weights = CalculateBilateralWeights();
float4 weights = bilinear_weights * bilateral_weights;

coarse_isr = get 2x2 block of ISR_4 source samples;
isr = accumulate coarse_isr samples using weights factor;

k_dl = calculate direct lighting using n0;

if (shadowing enabled)
{

sf = CalculateShadowingFactor();
k_dl = k_dl * sf;

}

return c0.xyz * k_dl * saturate(ao+1-k_ssao) + k_isr*isr.xyz;
}

The above listing modifies the direct lighting factor when shadowing calculations are

being enabled (see the next section for more details).

4.6. Shadowing

Improved shadowing algorithm based on exponential shadow maps [68][69][2][70] has

been implemented to increase visual quality of rendered images. ESM derives from shadow

mapping technique [52][55][79] and denotes the shadowing factor by evaluating the

continuous exponential function of the distance between shadow caster and shadow receiver:

f e r , o=e−cr−o  (30)

44

where c is a constant coefficient which modifies the difference between the shadow map pixel

value and the depth value in the light space (r-o). This approach alleviates the difference

between shadowed and lit regions resulting in sort of soft shadowing effect which gives

significantly higher quality shadows. The c coefficient can be used to control the level of

softness on the border of the shadowed regions.

Comparing to standard shadow mapping technique, ESM introduces shadow map filtering

step:

• render shadow map (depth map) from the light point of view;

• filter (blur) the shadow map (i.e. using Gaussian blur technique);

• render the scene and determine the shadowed regions taking advantage of exponential

function fe.

Figure 4.5: Shadowed regions quality differences
starting the left side: a) standard shadow mapping technique; b) PCF technique; c) ESM technique

45

The shadow map generation process remains the same as for the standard shadow

mapping algorithm. The next step is to blur the shadow map using floating point format

temporary texture. The results presented in Figure 4.5 are achieved by logarithmic blur

utilization explained in [68].

The filtered shadow map is used during deferred rendering full screen quad lighting

phase. Each pixel is transformed from screen space into the world space and then into the ligh

space to determine the shadow factor through the equation 30. Additionally, percentage cloder

filtering (PCF) technique has been applied to reduce aliasing and roughness artifacts on the

shadowed region border. The HLSL code below introduces ESM+PCF algorithm

implementation details:

Listing 8: ESM shadowing with PCF in deferred rendering pass
float4 ls = mul(float4(p0_ws.xyz, 1.0f), LightViewProjMatrix);
ls.xy = float2(0.5f, 0.5f) + 0.5f * ls.xy;
ls.y = 1.0f - ls.y;

#if SHADOWS_ESM == 0
float eps = 0.005f;
shadow_factor = (tex2D(SamTexShadowMap, ls.xy) + eps < ls.z) ? 0.0f:

1.0f;
#else

/// Calculate bilateral weights
float2 SM_SIZE = float2(512 ,512);
float2 unnormalized = ls.xy * SM_SIZE;
float2 fractional = frac(unnormalized);
unnormalized = floor(unnormalized);

float z_bias = 0.0f;
float zw = ls.z;

float4 shadow_s;

shadow_s.x = zw - tex2D(SamTexShadowMap, (unnormalized.xy +
float2(0,0))/SM_SIZE) - z_bias;

shadow_s.y = zw - tex2D(SamTexShadowMap, (unnormalized.xy +
float2(1,0))/SM_SIZE) - z_bias;

shadow_s.z = zw - tex2D(SamTexShadowMap, (unnormalized.xy +
float2(0,1))/SM_SIZE) - z_bias;

shadow_s.w = zw - tex2D(SamTexShadowMap, (unnormalized.xy +
float2(1,1))/SM_SIZE) - z_bias;

46

shadow_s = max(shadow_s, 0.0f) * saturate(dot(-n0, normalize(p0_ws.xyz-
SunPos.xyz)));

float4 shadow4 = exp(-90.0f * shadow_s);

shadow_factor = lerp(lerp(shadow4.x, shadow4.y, fractional.x),
lerp(shadow4.z, shadow4.w, fractional.x),

 fractional.y);
#endif

4.7. Discussion

During final per-pixel lighting calculations the ambient occlusion power k SSAO and

indirect lighting power k ISR coefficients have been defined to manipulate the intensity of the

corresponding factors. For the sake of this dissertation these values have been set to 0.5

resulting in subtle but visible ambient occlusion and indirect lighting contribution.

More intuitive way of 3D view/world space position reconstruction from depth buffer is

to multiply the screen-space vector by the inverse of view/view-projection matrices and

divide by w coordinate (apply reverse transformation). This solution, however, requires more

math operations and turned out to be over than twice slower than the linear eye-space z

method described in section 4.3.

ESM method with PCF technique creates very realistic soft shadows as presented in

Figure 4.5. For high quality distant shadows a technique called cascaded shadow maps (CSM)

[22] can be used which fits properly as an extension to the proposed solution. There is also a

possibility to render ESM+PCF shadows into the separate screen-sized buffer and perform

full screen filtering to get shadows even more smoother.

47

5. Experiments and evaluation

In this chapter we present the practical approach of the ISR algorithm through
experiments on different kinds of virtual scenes. At the very beginning we describe the
schedule of the experiments and also introduce the tools and packages that have been
utilized. Subsequently, we conduct the experiments on different types of virtual scenes and
present the results.

5.1. Tools

This section introduces tools and libraries utilized to examine the ISR algorithm. We

start by describing POV-Ray tool which has been used to generate very realistic model

images. Next section presents 3DSMAX with MentalRay tool which also generates high

quality realistic images applicable in the movie industry. 3DSMAX is also used for managing

and exporting 3D virtual scene into V-Engine tool described in the consecutive section.

Finally, we introduce author's Imalyzer tool used for evaluating generated images and present

brief description of Perl dynamic programming language utilized for conducting the

experiments.

5.1.1. POV-Ray

POV-Ray [60] (The Persistence of Vision Ray-tracer) is a computer graphics application

for creating photo-realistic computer-generated images and animations using ray tracing

techniques. The main renderer reads the scene description stored in human-readable script and

produces very high quality images with realistic with advanced lighting, reflections, shadows

and other effects. The most important features of POV-Ray are:

• easy to use scene description language;

• very high quality output images (up to 48-bit color);

48

• different light types, Phong and specular highlighting for realistic lighting;

• inter-diffuse reflection (radiosity) for realistic global illumination effect;

• photon mapping for reflections, refractions and caustics;

• natural phenomena effects like atmosphere, ground fog and rainbow;

• particle media for clouds, dust, fire or steam modeling.

Figure 5.1: Office by Jaime Vives Piqueres, rendered with POV-Ray, 2004

The most important feature is the ability of accurate radiosity calculations via ray tracing

method. The full feature list, description and tutorials can be found in POV-Ray

documentation page [60].

Note: all POV-Ray renderings in this dissertation were made on the POV-Ray version 3.7 beta

32 .

49

5.1.2. 3DSMax and MentalRay

3D Studio MAX® is a professional modeling, animation and rendering commercial

package developed by Autodesk® Media and Entertainment [8]. 3DSMAX is intended to

produce high quality, photo-realistic images used in the creation of top-selling computer

games and award-winning film and video content. The application has a built-in off-line high

quality rendering plug-ins, such as Mental Ray [51] by Mental Images, or RenderMan [58]

developed by Pixar Animation Studios.

Figure 5.2: A-Wing in the forest rendered with MentalRay

Mental ray is a 3rd party application which produces high quality, photo-realistic

computer images using ray tracing method. The most important future of mental ray is the

ability of high performance parallelized rendering on multi cores and across render farms

50

which significantly improves the computation time. The tool has a capability to simulate any

combination of diffuse, glossy and specular light reflection and transmission. It also provides

support for caustics and physically correct simulation of global illumination utilizing photon

maps.

Mental ray has been employed in the several recent films, including Hulk, Matrix Reloaded,

Matrix Revolutions, or Star Wars Episode II: Attack of the clones.

5.1.3. V-Engine

V-Engine is an object-oriented graphics rendering engine written in C/C++, fully

designed and implemented by the author for the sake of testing and verifying various 2D/3D

graphics algorithms. The rendering architecture is designed to be simple, flexible and easily

applicable via Lua scripts giving the ability to control the whole rendering process from the

user level. Since the engine has a long list of features (see below) and it is well optimized, it

can be used as a basis for making video games or other real-time computer graphics

application.

V-Engine was used to audit the ISR method from the practical point of view. The key

features of V-Engine are as follows:

• neat and robust object-oriented architecture based on easily implementable

interfaces;

• clean and well designed C++ implementation of engine classes;

• Direct3D 9 renderer implemented via easily extensible and flexible platform

independent rendering system (can be easily extended to OpenGL, Direct3D

10/Direct3D 11, or software rendering library support) [1];

• support for multi-threaded rendering tasks via separate render queues;

• dynamic visibility determination through frustum culling, occluders and portals;

51

• powerful compositor system which allows to control every step in the rendering

pipeline via simple and easily configurable LUA [41] scripts;

• example post-processing scripts, like: screen-space ambient occlusion, depth of field,

bloom, tone-mapping, motion-blur, sepia, radial-blur, glass, tiling and ISR;

• highly customizable geometry support via different vertex declarations and geometry

streams (integration with 3DSMax exporter tool);

• support for all modern per-pixel lighting and rendering techniques including bump-

mapping, parametrized Phong lighting, virtual displacement mapping, deferred

shading dynamic lighting, etc.;

• billboarding for 3D-sprite graphics;

• support for sky-boxes, sky-domes, sky-planes and layered clouds for natural

atmospheric effects simulation;

• flexible terrain system based on height maps with level-of-detail support for fast and

efficient large-scale terrain rendering;

• dynamic shadowing using real-time generated exponential shadow maps for smooth

shadows;

• powerful material and shader system with HLSL support allows to manage and

modify materials in real-time without recompiling the code;

• support for different texture formats, like: PNG, DDS, JPEG, BMP and DDS; support

for different texture types: 1D, 2D, volumetric textures and cube maps;

• resource management through virtual file system which allows to load data from

memory, HDD, or ZIP archive files transparently;

• rendering to texture support allows for real-time reflections and static scene captures;

• extensible event system for efficient inter-system communication;

• scripting support via LUA scripts;

• flexible, object-oriented GUI system architecture [64] with basic predefined widgets

and container controls;

52

• built-in POV-Ray scene description language exporter.

5.1.4. Imalyzer

Imalyzer (Image Analyzer) is an author's application for comparing the quality of the

specified image files. The program operates on pixel color values and produces error

calculations between two input images. Imalyzer has also the ability to calculate Pearson

product-moment correlation coefficient which is utilized to verify the quality of the

corresponding image with relation to the model image.

5.1.5. Perl

Perl [89][74] is a high-level, general purpose dynamic programming language which

has been developed by Larry Wall since 1987. The overall structure of Perl is borrowed from

C, which means it is a procedural language with variables, expressions, statements, control

structures and subroutines.

Perl is mostly used for text manipulation and reporting but it also handles wide range of

tasks including system administration, web development, network programming games and

GUI development.

5.2. Experiment course

In this section we describe the complete experiment process applied for the ISR

algorithm evaluation. First we present the main concept along with the experiment pipeline.

Subsequently, we go through the detailed description of each step of the experiment process

and finally we summarize the observations and reveal the results.

53

5.2.1. The idea

The main purpose of the experiment is to compare the quality of real-time rendered

images using both standard direct lighting technique and ISR technique for different types of

virtual scenes. Both images are compared against the model image rendered off-line using

advanced time consuming ray-tracing algorithm. The image that is less different from the

model image (has a higher similarity level) is considered to have higher quality.

We use the following notation throughout the experiment process:

• I DL stands for the image rendered in real-time with standard direct lighting

technique;

• I ISR stands for the image rendered in real-time with ISR algorithm;

• I POV stands for the model image rendered using POV-Ray application.

For evaluation purposes we have prepared a dozen of different virtual scenes

representing diverse environments starting from simple Cornell radiosity box, through simple

objects and indoor rooms, corridors to open space wild-west scenarios with terrain, trees,

vegetation, characters, animals and objects like wagons, boxes, cans, debris, fences, etc. The

variety of virtual scenes has a significant meaning during the experiment since we wanted to

be sure that we have performed the tests on as much general input as possible.

Additionally, we have created an input script file containing the list of camera views for each

scene. Script file can be created via V-Engine simulator manually, or automatically by

drawing random camera view parameters. The main idea is to generate the different scenarios

for the comparisons between direct lighting and ISR techniques.

Collected input scenes along with the script containing the list of camera views go to the V-

Engine application which for each case generates the following:

• snapshot image with standard direct lighting method;

54

• snapshot image with ISR lighting algorithm applied;

• POV-Ray input script with corresponding camera view parameters and 3D scene

information.

The snapshots are being stored in PNG files (bitmap image format with lossless data

compression) for further evaluation. POV-Ray scripts are being passed through the POV-Ray

renderer application to produce model images corresponding to the V-Engine snapshots.

Finally, Imalyzer tool compares the generated images to perform image quality analysis.

Figure 5.3: General experiment pipeline

The figure above demonstrates the general experiment pipeline which will be discussed

more accurately in the following sections.

5.2.2. Test sets

Different types of test scenes have been carefully selected for the ISR algorithm

55

create input
script file

prepare input
virtual scenes

create
snapshots

generate
POV-Ray scripts

render model
images

export test
scenes

perform image
analysis

output the
results

3DSMAX V-Engine POV-Ray Imalyzer

evaluation. We have created several simple scenes, like group of colored primitives, office,

garage scene or Cornell radiosity box which are widely used to determine the accuracy of

rendering software. Additionally, we have randomly selected almost three hundred test cases

from commercial game “Call of Juarez” to verify our algorithm in true, existing project.

Call of Juarez [14] is a FPP Western-themed shooting PC/XBox360 game developed by

Techland [83] and published in 2007 by Ubisoft Entertainment [86]. The game is loosely

based on a number of Western movie hits from sixties and early seventies. Many game

reviewers appreciated its game-play and graphics focused on high level of realism,

breathtaking environments and fantastic natural phenomena effects introducing great Western

atmosphere.

Figure 5.4: Call of Juarez in-game screenshot

56

Variety of different locations and scenarios makes Call of Juarez game a very good ISR

algorithm test case (world of COJ is dynamic, complex and fulfilled with diverse scenarios,

like indoor house interiors, outdoor mountainous terrain covered with complex vegetation,

etc.).

Total input test sets consist of 80 pictures taken on simple scenes (like Cornell radiosity

box, office, garage) and 147 screenshots grabbed from different scenarios of COJ game

(Western themed town, saloon, jail, forest, farm).

5.2.3. Collecting snapshots

V-Engine application gives the ability to load and visualize any 3D virtual scene

prepared in 3DSMAX. The program in its interactive free-camera mode allows to define the

list of camera views by simply moving and rotating the camera around the scene and marking

samples for off-line rendering. After collecting snapshots we can run the program in special

mode which retrieves the camera views and render images utilizing both standard direct

lighting and ISR lighting techniques. The whole process is very similar to taking the same

photograph with different camera settings.

Additionally, each snapshot generation produces POV-Ray readable script for the

reconstruction of exact take using precise ray-tracing method. V-Engine outputs radiosity

settings, camera view parameters, point and directional lights and the scene geometry.

5.2.4. POV-Ray rendering

POV-Ray renderer application takes the V-Engine output script and generates the model

image using accurate ray-tracing techniques for the radiosity calculations. The example script

file looks as follows:

57

Listing 9: Fragment of a POV-Ray script exported by V-Engine

global_settings {
radiosity {
brightness 2.4
pretrace_start 0.08
pretrace_end 0.01
count 250
error_bound 0.25
recursion_limit 2
}
}

light_source {
<2e+006,2e+006,2e+006> rgb 1.3 shadowless parallel point_at <0,0,0>}

camera {
location <1.64971,3.74113,-2.69074>
direction <-0.337043,-0.764329,0.54973>
up <-0.399505,0.644827,0.651609>
right <1.1367,0,0.696916>
look_at <-1.72072,-3.90216,2.80656>
angle 75.1782
}
background { color rgb < 0.0, 0.0, 0.0 > }

object {
// element name: Plane01
mesh2 {
vertex_vectors {
25
<-3,0,-3>, <-3,0,-1.5>, <-3,0,0>, <-3,0,1.5>, <-3,0,3>, <-1.5,0,-3>, <-1.5,0,-1.5>, <-
1.5,0,0>, <-1.5,0,1.5>, <-1.5,0,3>, <0,0,-3>, <0,0,-1.5>, <0,0,0>, <0,0,1.5>, <0,0,3>,
<1.5,0,-3>, <1.5,0,-1.5>, <1.5,0,0>, <1.5,0,1.5>, <1.5,0,3>, <3,0,-3>, <3,0,-1.5>, <3,0,0>,
<3,0,1.5>, <3,0,3>, }
normal_vectors {
25
...
The radiosity settings used for POV-Ray rendering have the following meaning:

radiosity parameter value notes
brightness 2.4 initial brightness factor for the scene

pretrace_start 0.08
controls the radiosity pre-trace gathering step

pretrace_end 0.01

count 250 number of rays that are sent out whenever a new
radiosity value has to be calculated

error_bound 0.25 the fraction of error tolerated; a compromise between
rendering speed and the final image quality

recursion_limit 2
integer value which determines how many recursion

levels are used to calculate diffuse inter-reflection; the
upper limit is 20

Table 1: POV-Ray radiosity configuration block

58

The radiosity parameters have a significant impact on the rendering time and have to be

chosen very carefully. The recursion limit has been set to 2 which means that only ambient

occlusion factor and the 1st bounce of indirect lighting should be calculated (ISR method

during this experiment falls under the same limitations). Count and error bound parameters

strongly affects the rendering time and the level of indirect lighting approximation and have

been chosen experimentally to obtain satisfying results.

All rendering have been performed in 1024x768 pixels resolution with anti-aliasing option

disabled.

5.2.5. Output image analysis

The final stage of the experiment is to compare the real-time rendered snapshots

according to the model image generated by POV-Ray renderer application. Imalyzer takes two

images as an input and outputs calculated mean error as well as the Pearson correlation

coefficient. The tool has also the ability to produce difference images which depict the

negative of the absolute error between corresponding images.

Figure 5.5: Imalyzer input images (a,b) and the output negative difference image (c)

Figure above presents the image generated with direct lighting method (a), the image

generated with ISR method (b) and the corresponding negative of the absolute error (c). In

59

this case we have visualized the negative of the isolated ISR factor.

5.3. Results

This section presents the results obtained with ISR algorithm described in chapter 4.

Our algorithm has been tested in various, mostly game typical, simple and complex scenes

described in section 5.2.2. First we reveal the performance results and then we perform

quality and perception analysis.

5.3.1. Performance

All renderings in this dissertation were performed on Intel 2.33 GHz Core 2 Quad and

ATI/AMD Radeon HD 4870 graphics board. The output screen resolution is 1024x768 pixels

whereas the coarse ISR_4 buffer is 512x384 (4 times smaller). Since our method performs all

computations purely on GPU, the CPU has no impact on real-time rendering performance

(only POV-Ray off-line renderings were performed on CPU).

ISR algorithm works completely in image space which means it does not depend on the scene

complexity therefore it might be used to calculate lighting for simple as well as complex

scenes analogically with the same computational workload. Table 2 shows the timing values

for the experiment render phase; direct lighting and ISR calculations were done on GPU at

real-time framerates (see the average FPS) whereas POV-Ray ray-traced images were

calculated on CPU.

Table 2: Performance results for 227 rendered images

60

1,64 0,00722 138,41463
ISR 2,02 0,00889 112,48761

168070 740,39648 0,00135

total rendering time [s] average frame time [s] average FPS
direct lighting

POV-Ray

ISR rendering time values are slightly different for each image due to the variable scene rendering

view (from 200 to 500k triangles per frame) which is beyond the lighting calculation phase.

Nevertheless, the minimum FPS is over 90 and the average FPS is 112 (as the table 2 shows) which

indicates that ISR meets one of the main requirements – it works in real-time.

The results in table 2 were obtained for 48 samples per pixel in ISR calculations. We have tested the

performance impact for a different number of samples per pixel.

Figure 5.6: Different number of samples per pixel: (a) 24; (b) 48; (c) 80

Figure 5.7: Performance costs for the different number of per-pixel samples

61

48 80 120 168 224 288 360 440 528 624
0

25

50

75

100

125

150

175

200

225

250

Number of samples

FP
S

(a) (b) (c)

Figure 5.7 presents different performance costs for medium complex scene (~20k triangles)

for different number of neighborhood samples used in ISR calculations. We have noticed that

the quality changes are slightly visible for over than 80 samples per pixel - mostly because of

low impact between distant pixels (bigger distance in 2D screen space goes together with

bigger distance in 3D world space). All further experiments are established with number of 80

samples per pixel.

ISR calculation time for each image is constant and can be denoted from the table 2 as:

t ISR=
T ISR−T DL

number of images
=2,02 s−1,64 s

227
=1,674 ms

which does not introduce noticeable performance hit.

The interesting fact is that ISR method works on a single GPU over than 83000 times faster

than ray-tracing method on quad-core CPU.

5.3.2. Quality analysis

As mentioned before, we have tested the quality of ISR rendered images by comparison

to the model image generated with accurate and time-consuming ray-tracing method. Figure

5.8 presents the mean error obtained using both ISR and DL techniques. The experiments

evinced that for all 227 sample images ISR produced smaller error comparing to DL

technique. Figure 5.9 shows the percentage quality gain for each individual image (the gain is

positive in 100% cases). ISR improves the quality in average of =5,88 %

1 /2=7,18% which positively exceeds the initial expectations.

62

Figure 5.8: Mean error for direct lighting and ISR techniques

Figure 5.9: Percentage quality gain for each image sample

63

1 6121 41 81 101
6

11
16 26

31
36 46

51
56 66

71
76 86

91
96 106

111
116

121
126

131
136

141
146

151
156

161
166

171
176

181
186

191
196

201
206

211
216

221
226

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

ISR DL

sample image index

m
ea

n
er

ro
r

1
13

25
37

49
61

73
85

97
5

9 17
21 29

33 41
45 53

57 65
69 77

81 89
93 101

105
109

113
117

121
125

129
133

137
141

145
149

153
157

161
165

169
173

177
181

185
189

193
197

201
205

209
213

217
221

225

0

2

4

6

8

10

12

14

16

sample image index

qu
al

ity
 g

ai
n

[%
]

In our experiments we have also observed that the quality gain is smaller for the simple

scenes (first 80 image samples). The reason for this is the smaller interrelation between

patches on the simple scenes caused by the bigger polygons on the scene. Quality gain for the

simple (in our case up to 25k triangles) is in the rank from 0,21% to 3,34% whereas for the

complex scenes (from 25k to 500k) from 2,51% to 14,69%. Figure 5.13 demonstrates the

images with the biggest (over 12%) improvement in the quality for complex scenes.

We have also examined the Pearson correlation coefficient to compare linear

dependence between DL and ISR techniques. As shown in figure 5.10 there are some cases

when the ISR correlation coefficient is worse than the DL correlation coefficient (the values

below 0). We have demonstrated the best and the worst cases for the correlation coefficient

gain in figures 5.11 and 5.12 respectively. They also show the corresponding images obtained

by POV-Ray during ray-tracing phase. The negative correlation gain cases show that the

indirect lighting bounce has too much impact and should be decreased. After tweaking the

indirect lighting power coefficient kISR (from 0.5 to 0.1) we were able to achieve positive

correlation gain for the specified images.

In overall, without any tweaking, the average Pearson correlation coefficient increased

from =0,8867 to =0,8870 to ISR method advantage.

Since ISR algorithm operates on individual pixels we have also examined the pixel level

efficiency: there were 178 520 064 pixels in 227 images at 1024x768 resolution. 176 824 189

ISR generated pixels were closer to the pixels taken from model images, which means that

99,05% of all pixel values have been improved.

64

Figure 5.10: Percentage quality gain for each image sample

Figure 5.11: Best case (positive) correlation coefficient gain (image 150)

Figure 5.12: Worst case (negative) correlation coefficient (image 190)

65

1 21 41 61 81 101
6

11
16 26

31
36 46

51
56 66

71
76 86

91
96 106

111
116

121
126

131
136

141
146

151
156

161
166

171
176

181
186

191
196

201
206

211
216

221
226

-0,060000

-0,040000

-0,020000

0,000000

0,020000

0,040000

0,060000

sample image index

co
rr

el
at

io
n

co
ef

fic
ie

nt
 g

ai
n

5.3.3. Perception aspect

Apart from the mathematical point of view we can observe perceptual quality

improvements with ISR method which help in better understanding 3D shape of the scene.

Figures 5.13, 5.14 and 5.15 show the difference between flat and uniform surfaces lit with the

DL method (left side) and much more credible surfaces lit with the ISR method (right side).

We have noticed that ISR algorithm brings out more details mostly due to the lighting

transport calculations between adjacent patches. If the local geometry is sufficiently

represented by the nearby pixels it receives more indirect illumination and becomes more

distinct as shown in the figures below. Ambient occlusion term provides better perceiving of

true distances between objects in 3D space which is noticeable especially on the images

representing indoor scenes (figures 5.14 and 5.15).

Figure 5.16 shows color bleeding between objects with different material properties. It

also demonstrate the ISR technique in cooperation with exponential shadow maps technique

described in section 4.6.

5.3.4. Discussion

Since method described in this dissertation works completely in the image space it is

not limited to static objects only. ISR does not perform any off-line pre-calculations and

computes lighting equations each frame from scratch which means it can handle fully

dynamic scenes with object transformation, morphing, skinning, skeletal animation, or any

other mesh geometry deformation.

ISR technique has also been tested on equivalent nVidia GeForce GTX 260 graphics

board and the results were very similar in terms of performance and quality.

66

Figure 5.13: Comparison between direct lighting (left) and ISR (right) techniques for open-space
environment scenes

67

Figure 5.14: Comparison between direct lighting (left) and ISR (right) techniques for indoor scenes
(room)

68

Figure 5.15: Comparison between direct lighting (left) and ISR (right) techniques for indoor scenes
(barn)

69

Figure 5.16: Comparison between direct lighting (left) and ISR (right) techniques for simple scenes
with soft shadows

70

6. Conclusions

This chapter contains the final summary of the dissertation along with the
conclusions. We also present the ideas of possible extensions and future work.

The novel image-space radiosity (ISR) algorithm along with the implementation details

and comprehensive evaluation has been examined. We have shown that ISR algorithm models

light transport more accurately than standard direct lighting techniques at real-time frame

rates. ISR computes the local radiosity taking interrelations between nearby pixels under

consideration which is used to imitate ambient occlusion and global illumination distribution.

Let's have a look at the pros and cons of the proposed solution:

Pros:

• algorithm is independent on the scene complexity; the most vital advantage of ISR

algorithm is that it works the same for the simple scenes with only a few objects (like

the Cornell box) and for the complex dynamic outdoor scenes with millions of visible

polygons. The algorithm operates on screen-space and does not depend on the number

of objects that need to be illuminated.

• algorithm works on visible pixels only; standard forward rendering performs

lighting calculations for every primitives sent to the GPU which can be very

inefficient, especially when the overdraw rate is high. ISR utilizes deferred rendering

and computes each pixel illumination factor only once which is the most efficient way

of lighting calculations;

• proven to be fast and efficient for complex and dynamic scenes (as well indoor as

outdoor scenes); as described in the previous sections the algorithm works fast for

both simple indoor and complex outdoor scenes (does not depend on how the scene is

71

being modeled).

• requires no content generation pipeline changes (done completely in real-time);

unlike the SH-based and lightmap-based lighting models ISR computes the lighting

transport completely in real-time and does not require any pre-calculated data which

means that the content generation pipeline remains unchanged;

• easily implementable in any existing rendering pipeline (especially when using

deferred rendering technique); the algorithm works completely as a post-processing

effect and putting it into the existing rendering pipeline is very straightforward.

Majority of graphics systems and engines perform post-processing phase as a separate

step defined in external script files which means that implementing ISR can be done

without touching the line of code;

• very well scalable into the upcoming hardware and software technology (compute

shaders in Direct X 11); compute shader is being added to the upcoming Direct X 11

API to take advantage of the massive parallel power in today's GPUs; advanced post-

processing techniques like ISR or SSAO can be efficiently enriched and extended in

the upcoming graphics software and hardware;

• more accurate approximation of rendering equation than direct lighting method;

ISR light model computes light emitted and reflected from the nearby geometry

(indirect lighting), not only the direct illumination.

• requires no additional memory, nor CPU cost; The algorithm is being calculated

completely on the GPU. It requires additional buffers (render targets) which can be

reused for other post-processing effects, like motion blur, depth of field, fog, etc

Cons:

• works in screen-space (quality artifacts similar when using SSAO technique); ISR

technique introduces artifacts visible mostly on object silhouette edges (it is hard to

correctly blur out the noise without interfering with depth discontinuities). The

72

bilateral upsampling has been applied to overcome this issue, however it does not

solve to problem completely (there is a noticeable halo effect around the objects).

• view dependency and calculations the light transport between visible pixels only;

in our model only pixels which are visible emits and reflects the indirect illumination

in the scene. It can cause strange behavior, like no indirect lighting in the certain

conditions (i. e. the view direction is parallel to the primitive plane which means there

are very few pixels visible causing inaccurate indirect lighting).

• works locally – only the nearby pixels influence the corresponding one; for the

sake of performance we are limited to use the small number of surrounding samples to

calculate the light transport. To overcome this issue we propose the solution with

variable number of samples based on the corresponding pixel depth (pixels which are

close to the camera needs to be handled more accurately than the far ones). It is also

possible to experiment with different filter kernels when sampling the neighboring

pixels. Additionally, we can extend the sample quantity on the newer graphics

hardware as we noticed very good performance there (~200 FPS).

• calculations must be performed on coarse, diminished buffers; for the sake of

higher performance the lighting transport calculations are being made on the

diminished buffers which needs to be finally upsampled into the native resolution.

Upsampling may cause some artifacts on the silhouette edges (bilateral upsampling

step is performed to overcome this issue). As mentioned before, the newer hardware

handle better post-processing operations in the term of speed and it is possible to

perform ISR calculations on full native resolutions.

We present a few ideas and improvements to overcome the itemized disadvantages:

• depth peeling; depth peeling [84] can be used to extract a number of layers which

representing the front-most pixels that are peeled away after each pass. The main idea

is the use of two depth tests for each pair of layers to determine to current front-most

73

layer and to exclude previously peeled layers. Afterwards, we can calculate lighting

transport via ISR for each layer and combine the results at the final stage which will

bring us more information about the patches emitting and reflecting the light on the

scene. The main drawback of this approach is the fact is requires a pass per layer

which can lead to the performance issues (especially when complex objects are being

rendered);

• wider FOV for better indirect lighting on border pixels; we can also extend the

camera field of view to grab more pixels at the screen border. This approach brings the

more accurate lighting calculations on the screen borders, however, it requires

rendering the scene in higher resolution (some kind of super-sampling [39]) which

affects the performance and consumes more video memory;

• additional cameras; different camera views may be used to handle occluded regions

of the scene. As proposed in [62] different camera positions can be useful for polygons

which are viewed at an acute angle. For the sake of performance, lower resolution

buffers may be sufficient for handling color bleeding from occluded regions.

• increase number of light bounces; the ISR algorithm is not limited to calculate only

the ambient occlusion factor and one bounce of indirect illumination. We can very

easily extend our method by successive iterating the lighting transport calculations

step to obtain multiple bounces of indirect illumination.

To summarize, the final product of this dissertation is an extensively evaluated real-

time radiosity algorithm which can be easily implemented into any 3D real-time computer

graphics application. ISR can be applicable in computer games, flight simulators, movie

industry, virtual building visualizations, CAD systems, GUI systems, medical diagnostics,

multimedia systems, or measurement data visualizations.

74

A. List of abbreviations

AO Ambient Occlusion
BF Bilinear Filtering
BRDF Bidirectional Radiance Distribution Function
BSP Binary space partitioning
CAD Computer Aided Design
CPU Central Processor Unit
CSM Convolution Shadow Maps
DL Direct Lighting
ESM Exponential Shadow Maps
FOV Field of view
FPP First Person Perspective
FPS Frames per second
GI Global Illumination
GPU Graphics Processor Unit
GUI Graphical User Interface
HLSL High-Level Shader Language
ISR Image-space radiosity
MRT Multiple Render Targets
PCF Percentage Closer Filtering
PMCC Pearson product-moment correlation coefficient
PNG Portable Network Graphics
PRM Precomputed radiance maps
PRT Precomputed radiance transfer
PS Pixel Shader
RT Ray tracing
SH Spherical Harmonics
SSAO Screen-space ambient occlusion
UML Unified Modeling Language
VPL Virtual Point Light
VR Virtual Reality
VS Vertex Shader
VSM Variance Shadow Maps

75

B. Notations

Symbols used throughout this dissertation:

M w world matrix

M v view matrix

M p projection matrix

M c combined matrix (compound of world, view and projection matrices)

I POV model image

I ISR ISR image

I DL Image rendered with standard direct lighting technique

D difference image

f q quality function

k a ambient light power factor

La ambient light color

k d diffuse light power factor

Ld diffuse light color

k s specular light power factor

Ls specular light color

saturate x  function which clamps value x into range [0..1]

lum p function which calculates the luminance of pixel p

X population mean

1/2 X Median of variable X

X population standard deviation

ℕ natural number set

ℝ real number set

V  x ,  visibility function from x along direction 

Q radiant energy

76

 radiant flux

E irradiance

M radiant exitance

F ij form factor between patches i and j

Ai Area of patch i

i reflectance of patch i

 Wavelength of light

We also explain UML [27][56] symbols used in UML diagrams:

name : type name and type of attribute (i.e. string, float, 3D vector, or 4x4 matrix)
+Method() public class method
IClassName classes begin with „I” stands for interfaces
VClassName classes begin with „V” stands for class implementations

class aggregation
class inheritance

Table 3: UML symbols and definitions

77

C. Derivation of radiosity equation

The rendering equation is the fundamental transport equation which describes the light

transport in a three-dimensional scene. It is a recursive integral equation which is in practice

very difficult to solve analytically (numerical techniques need to be used). This supplement

reveals the theory behind the radiosity equation derived from rendering equation utilized in

the dissertation entitled “Image-space radiosity lighting method for dynamic and complex

virtual environments”.

The light transport in environments exhibiting general light emission and scattering

introduced by Kajiya [45] is given by:

L0 x ,=Le x ,∫
x

f r x , ' ⇔Li x , ' cos  ' d' (31)

where:

• L0 - total amount of illumination (exitant radiance) at x into direction 
• Le - self-emitted light (self-emitted radiance) at x into direction 
• Li - incoming light (incident radiance) at x from direction 
• f r x , '⇔ - bidirectional reflectance distribution function (BRDF) at x for scattering from a

direction  into direction  ' (or vice versa)
• x - specified location on a surface
•  - outgoing direction at location x
•  ' - incoming direction over the hemisphere around x
•  ' - angle between  ' and surface normal at x
• d  ' - infinitesimal solid angle containing direction  '
• x - hemisphere of directions above x

Radiance is the amount of radiant flux per unit projected area per unit solid angle, measured

in Watt per square meter per steradian:

L= d 2
d dA⊥=

d 2
d dA cos (32)

where:

78

•  - radiant power (flux) measured in Watt
• dA⊥ - unit area projected perpendicular to the direction of normal incident angle

The average radiosity Bi (measured in Watt per square meter) emitted by a patch i in such

an environment is defined by [24] as the following:

Bi=
1
Ai
∫
Si

∫
x

L0x ,cos d  dAX (33)

where:

• Ai - surface area of patch i
• dA x - differential area at a point x
• S i - surface of patch i (set of points)

The rendering equation (31) simplifies in purely diffuse environment (self-emitted radiance

BRDF do not depend on directions  and  ') into the form:

L0 x=Le x ∫
x

f rx  Lix , ' cos ' d ' (34)

Diffuse surfaces reflects light in a uniform way over the entire reflecting hemisphere which

means that BRDF is constant for all directions  . For such a pure Lambertian surfaces we

denote BRDF as:

f r x=
 x 


(35)

where reflectance 0 x1 represents the fraction of incident energy that is reflected at

the surface.

Incident radiance Li x , '  corresponds to the exitant radiance L0  y emitted by the

point y visible from x along the direction  ' , so changing the integration (34) over the

79

hemisphere x into integration over all surfaces S in the scene yielding an integral equation

in which no directions appear:

L0 x=Le x  x∫
S

G x , y  L0 y dA y (36)

where:

•  x - reflectivity at point x
• G x , y - geometric radiosity kernel

The geometric radiosity kernel:

G x , y=
cos x cos y

 r xy
2 visx , y  (37)

which stands for the interrelation between x and y with additional visibility function between

these locations (the vis function returns 1 if the point x “sees” the point y and 0 otherwise).

Interrelation between the radiant exitance B and the radiance L for flux leaving

Lambertian surface is explained in [7] (pp. 26-27) and can be expressed as:

B=L (38)

Multiplication with  both sides of the equation (35) leads to:

B x=B0x  x∫
S

G x , y B  ydA y (39)

where B and B0 stands for radiant exitance and self-emitted radiosity respectively.

Now, the equation (33) simplifies into:

80

Bi=
1
Ai
∫
Si

B xdAX (40)

To solve integral equations like (32), the Galerkin method [21][24] might be used which

yields a continuous operator problem into a discrete form. As explained in [24], we can

project the both sides of (32) onto a set of basis functions and equate the resulting

coefficients. We approximate B x≈B ' x =∑
i

Bi 'ix  with a constant basis function

i x={1, x∈S
0, x∉S for each patch i which drives into the classical radiosity system of

linear equations:

Bi '=B0ii∑
j

F ij B j ' (41)

where F ij stands for the patch-to-patch form factors defined as:

F ij=
1
Ai
∫
Si

∫
S j

G x , ydAy dAx (42)

The above equation must typically be solved using numerical methods (there are no practical

analytic solutions for this equation).

81

D. V-Engine-based simulator

V-Engine development kit is an object-oriented graphics rendering engine written in

C/C++ for real-time computer graphics applications. ISR software extensively uses V-Engine

to provide simulation environment for image-space radiosity algorithm evaluation and testing.

Attached CD-ROM disc contains binaries and full source code of V-Engine utilized during

experiments with ISR algorithm.

The full list with V-Engine features has been included in the dissertation on pages 58-59.

Directory structure

ISR application consists of the following modules:

• Isr/ - main application folder

◦ bin/ - contains binary (executable) files

▪ data/ - contains data files (models, material scripts, shaders, post-processing

scripts, textures)

▪ exp/ - contains ISR experiments result files (final folder contains all result

images)

◦ scripts/ - contains automatic build scripts (cleaning temporary files, batching

POV-Ray scripts, etc.)

◦ SDK/ - contains 3rd party middle-ware libraries utilized by V-Engine

◦ simple_app/ - ISR test application source code

◦ vengine/ - V-Engine library source code

▪ inc – library interface (C++ header files)

▪ src – library implementation (C++ source code)

Run Isr/bin/start.cmd to start ISR test application.

82

Controls

ISR test application loads the default 3D scene (with car and simple primitives) and

gives the possibility to move the camera around the scene arbitrarily:

• W, S, A, D – camera movement (forward, backward, left side, right side)

• moving the mouse – camera rotation (changing yaw and pitch angles)

The default display mode is the ISR lighting mode with ESM shadows enabled. Use the

following keys to change the display mode:

• F2 – default mode (ISR with ESM enabled)

• F3 – ISR only (without any shadows)

• F4 – ISR disabled (direct lighting with ESM shadows)

• F5 – ISR disabled (direct lighting without ESM shadows)

Additional post-processing effects:

• F6 – „bloom” effect

• F7 – „depth-of-field” effect

• F8 – „glass” effect

• F9 – „radial_blur” effect

• F11 – „sepia” effect

• F12 – „tiles” effect

Source code remarks

CD-ROM disc contains full ISR application and V-Engine library source code. The

most vital source code snippets are:

• Isr/simple_app/main.cpp – test application source file; it handles camera controller,

scene management, rendering loop (post-processing effects) defined in Lua script file

83

(Isr/bin/pp.lua);

• Isr/bin/pp.lua – post-processing effects script file; it defines how the single frame

should be rendered for different rendering modes (with ESM shadows

enabled/disabled, etc.); it contains two main procedures:

◦ OnCreate() - called once at startup (creates required resources, like render

targets);

◦ OnRender(tech) – called every frame during the application run (tech argument

stores current rendering technique); when ISR is enabled it calls RenderWithISR

procedure which realizes ISR algorithm presented in the dissertation; shaders for

ISR technique are being stored in Isr/bin/data/pp.fx file;

• Isr/bin/data/pp.fx – GPU shaders library; the most important shaders are:

◦ QuadISR – calculate indirect illumination and store into the temporary buffers

(ISR step, chapter 4.4);

◦ QuadLighting – full-screen calculations with indirect illumination (lighting phase,

chapter 4.5);

◦ QuadDirectLighting – full-screen direct illumination with MRT buffers

utilization

All the most vital source code listings have been extensively commented and described in the

dissertation.

84

UML diagram with the most vital V-Engine components

85

VertexDeclaration : RVertexDeclaration
InstancingData : RVertexBuffer

+CreateLight()
+RemoveLight()
+RemoveAllLights()
+Render()

VLightManager

Name : string
Position : vec3f
Radius : f loat
Paw er : f loat
Color : vec4f

VLight

Name : string
Geometry : IGeometry
Lights : ILightManager
ActiveCamera: ICamera

+OnRender()
+OnUpdate(dt)
+OnEvent()

VScene

MatView : mat4f
MatProjection : mat4f

ZNear : f loat
ZFar : f loat
FOV : f loat
Aspect : f loat

VCamera
MatView : m at4f
MatProjection : m at4f

ZNear : f loat
ZFar : f loat
FOV : f loat
Aspect : f loat

VCamera

ICamera

ILightManager

+AddObject()
+UpdateRenderQueue()

VGeometry

IGeometry

Name : string
WorldMatrix : m at4f

VGeomObject Parent : VGeomObject
MeshElement : IMeshElement
Material : IMaterial

VRenderableMeshElement

IRenderable

+GetRenderOp()
+PrepareForRendering()
+FillInstancingData()

MeshElement contains GPU-driven
data for geometry rendering.

It consists of vertex and index
buffers and def ines rendering

operation requires by the renderer.
.

IMeshElement
array of shaders

+LoadMaterial()
+UnloadAllMaterials()
+ReloadAllMaterials()

VMaterialManager

IMaterialManager

Shader : IShader
ShaderContext : IShaderContext
Array of shader constants
Array of textures

VMaterial

E. Perl test script

POV-Ray executable location
$POV_APP="D:\\Program Files\\POV-Ray for Windows v3.7\\bin\\pvengine.exe";
POV-Ray command line parameters
$POV_PARAMS="-d -w1024 -h768 /exit";
Location of scripts (directory)
$POV_SCRIPTS="exp\\out";
Input script
$ISR_SCRIPT="exp\\isr.script";

Imalizer executable location
$IMALIZER="Imalizer.exe";

$t_gather = 0;
$t_pov = 0;
$t_imalizer = 0;

if (@ARGV < 1)
{
 $t_gather = 1;
 $t_pov = 1;
 $t_imalizer = 1;
}
else
{
 for ($i=0; $i<=$#ARGV; $i++)
 {
 if ($ARGV[$i] =~ /gather/) { $t_gather = 1; }
 if ($ARGV[$i] =~ /pov/) { $t_pov = 1; }
 if ($ARGV[$i] =~ /imalizer/) { $t_imalizer = 1; }
 }
}

print "gather = $t_gather\n";
print "pov = $t_pov\n";
print "imalizer = $t_imalizer\n";

Store start time
sub PerfStart
{
 $time_0 = time;
}

Calculate time duration
sub PerfEnd
{
 $time = time - $time_0;
 print "Done in $time seconds\n\n";
}

Capture ISR images and gather POVRay scripts
sub GatherData
{
 PerfStart();
 system("simple_app.exe script=$ISR_SCRIPT job=1");
 PerfEnd();
}

86

Render POVRay scripts
sub RenderPOV
{
 PerfStart();
 # get scripts from the specified directory
 @scripts=`dir $POV_SCRIPTS*.pov /A:A /B /S`;

 # get number of pov scripts
 $qty = scalar(@scripts);
 print "Found $qty POV-Ray scripts\n";

 # script counter
 $idx = 1;

 # loop through all scripts
 foreach $file (@scripts)
 {
 print "Processing $idx of $qty...\n";
 system("\"$POV_APP\" $file $POV_PARAMS");
 $idx++;
 }

 PerfEnd();
}

Convert POVRay generated BMPs into PNGs and remove BMPs
sub CleanupPOV
{
 PerfStart();

 printf "Converting from BMP->PNG...\n";
 system("bmp2png.exe -E exp\\out*.bmp");

 printf "Removing trash files...\n";
 system("del /Q exp\\out*.bak");

 PerfEnd();
}

Imalizer comparisions
sub ImalizerTest
{
 PerfStart();

 open FILE, ">res.txt";

 # Get image list with names matching isr*01.png
 @pngs=`dir $POV_SCRIPTS\\isr_*_01.png /A:A /B /S`;

 # Image counter
 $f_counter=0;
 # Correlation 0 (mean)
 $mc0=0;
 # Correlation 1 (mean)
 $mc1=0;

 $mm0=0;
 $mm1=0;

 # for each image
 foreach $file1 (@pngs)
 {
 # Get isr*02.png and isr*03.png corresponding files
 $base = $file1;

87

 $file2 = $file1;
 $file3 = $file1;
 $base =~ s/(.*_)(.*)(_01)(\.png.*\n)/\2/i;
 $file2 =~ s/(.*)(_01)(\.png)/\1_02\3/i;
 $file3 =~ s/(.*)(_01)(\.png)/\1_03\3/i;

 # Launch Imalizer test (store results in test0, test1)
 $test0=`$IMALIZER compare $file1 $file3`;
 $test1=`$IMALIZER compare $file2 $file3`;

 # Parse correlation and mean error values
 $c0=$test0; if ($c0 =~ m/(.*)(correlation =)(.*)/) { $c0=$3; }
 $m0=$test0; if ($m0 =~ m/(.*)(mean_error =)(.*)/) { $m0=$3; }

 $c1=$test1; if ($c1 =~ m/(.*)(correlation =)(.*)/) { $c1=$3; }
 $m1=$test1; if ($m1 =~ m/(.*)(mean_error =)(.*)/) { $m1=$3; }

 # Print data

 $result ="$base $c0 $m0\t$c1 $m1";

 if ($c1>$c0)
 { $result .= "\tc:OK"; }
 else
 { $result .= "\tc:failed"; }

 if ($m1<$m0)
 { $result .= "\tm:OK\n";}
 else
 { $result .= "\tm:failed\n"; }

 print $result;
 print FILE $result;

 $mc0 += $c0;
 $mc1 += $c1;
 $mm0 += $m0;
 $mm1 += $m1;
 $f_counter++;
 }

 $mc0 /= $f_counter;
 $mc1 /= $f_counter;
 $mm0 /= $f_counter;
 $mm1 /= $f_counter;

 print "$mc0 vs. $mc1\n";
 print "$mm0 vs. $mm1\n";

 close FILE;

 PerfEnd();
}

#--------------------
Main test procedure
#--------------------
if ($t_gather==1) { GatherData(); }
if ($t_pov == 1) { RenderPOV(); CleanupPOV(); }
if ($t_imalizer == 1) { ImalizerTest(); }

88

F. Glossary

This chapter presents Polish translations of the most important terms used throughout

the dissertation:

albedo odbicie promieniowania przez powierzchnię
ambient lighting oświetlenie otoczenia
ambient occlusion blokowanie światła otoczenia
bilinear filtering filtrowanie dwuliniowe
color bleeding rozpływanie się kolorów
deferred shading cieniowanie odroczone
depth peeling zdzieranie głębokości
depth-of-field effect efekt głębi obrazu
diffuse lighting oświetlenie rozproszone
edge anti-aliasing effect efekt niwelowania aliasingu na krawędziach
emissive light światło emitowane
exponential shadow maps wykładnicze mapy cieni
global illumination oświetlenie globalne
image-space radiosity metoda energetyczna w przestrzeni obrazu
light attenuation function funkcja osłabiania światła
light maps mapy światła
motion blur effect efekt rozmycia w ruchu
octree drzewo ósemkowe
pixel shader program cieniujący piksele
post-processing effect efekt montażowy
radiance współczynnik promienności
radiosity metoda energetyczna
rendering equation równanie renderingu
screen-space ambient occlusion okluzja otaczająca w przestrzeni obrazu
specular lighting oświetlenie zwierciadlane
stencil buffer bufor szablonu / bufor maskujący
surface patches płaty powierzchni
vertex shader program cieniujący wierzchołki

89

Bibliography

[1] ANGEL E., Interactive Computer Graphics: A top-down approach using OpenGL, 3 rd

edition, Addison-Wesley, 2003;

[2] ANNEN T., et all., Exponential Shadow Maps, Proceedings of Graphics Interface, 2008,

available on-line at: http://www.mpi-inf.mpg.de/~tannen/papers/gi_08_esm.pdf

[3] ANNEN T., KAUTZ J., DURAND F., SEIDEL H-P., Spherical harmonics gradients for mid-

range illumination, Eurographics Symphosium on Rendering, 2004;

[4] APEL A., Some techniques for machine rendering of solids, AFIPS conference proceedings

32, pp. 37-45, 1968;

[5] ARVO J., GPU Programming Gems 2, Program of Computer Graphics, Cornell University,

Ithaca, New York, ISBN 0-12-064481-9;

[6] ASHDOWN I., Photometry and Radiometry, Heart Consultant Ltd., October 2002;

[7] ASHDOWN I., Radiosity: A programmer's perspective, Heart Consultants Ltd., 2002;

[8] AUTODESK, 3ds Max, Modelling and Rendering tool, available on-line at

http://www.autodesk.com/3dsmax

[9] BAVOIL L., SAINZ M., Image-space horizon-based ambient occlusion, ShaderX7

Programming Book, 2009;

[10] BERENGUIER L., Real-time Radiosity on GPU, available on-line;

[11] BOULANGER K., Real-time realistic rendering of nature scenes with dynamic lighting,

PhD. thesis, 2008;

[12] BRATEL S., Deferred rendered radiosity method from first person perspective, Master

90

http://www.mpi-inf.mpg.de/~tannen/papers/gi_08_esm.pdf
http://www.autodesk.com/3dsmax

thesis in computer graphics, Goteborg, Sweden, 2007;

[13] BUNNELL M., Dynamic Ambient Occlusion and Indirect Lighting, GPU Gems, 2005;

[14] CALL OF JUAREZ, Call of Juarez western shooting game developed by Techland,

http://www.coj-game.com/, April 2009;

[15] CHEN S., GORDON D., Front-to-back display of BSP trees, IEEE Computer Graphics &

Algorithms, 1991, pp 79-85;

[16] CHRISTENSEN P., BATALI D., An irradiance atlas for global illumination in complex

production scenes, Eurographics Symphosium on Rendering, 2004;

[17] COHEN M., WALLACE J., Radiosity and Realistic Image Synthesis, Academic Press

Professional Inc., 1993, ISBN 0-12-178270-0;

[18] DACHSBACHER C. et all., Implict Visibility and Antiradiance for Interactive Global

Illumination, Conference on Computer Graphics and Applications, 2007;

[19] DACHSBACHER C., STAMMINGER M., Splatting Indirect Illumination, Symphosium on

Interactive 3D Graphics, Redwood City, California, 2006;

[20] DAVIES E., Machine Vision: Theory, Algorithms and Practicalities, Academic Press, 1990,

pp. 42-44;

[21] DELVES L. M. and MOHAMED J. L., Computational methods for integral equations,

Cambridge University Press, 1985;

[22] DIMITROV R., Cascaded Shadow Maps, NVIDIA Corporation Technical Document, August

2007;

[23] DOBASHI Y., YAMAMOTO T., NISHITA T., Radiosity for point-sampled geometry, Computer

Graphics and Applications, 2004;

[24] DUTRE P., BALA K., BEKAERT P., Advanced Global Illumination, 29 th International

91

http://www.coj-game.com/

Conference on Computer Graphics and Interactive Techniques, 21-26 July 2002, San

Antonio, Texas USA;

[25] ELAD M., On the origin of the bilateral filter and ways to improve it, IEEE Transactions on

Image Processing, vol. 11 no. 10, October 2002;

[26] EVANS A., Fast approximations for lighting of Dynamic Scenes, Media Molecule Ltd.,

Siggraph 2006;

[27] FOLDOC, Unified Modeling Language, 2002, available on-line at:

http://foldoc.org/index.cgi?query=UML&action=Search, April 2009;

[28] GARREIN K., Lighting Techniques for Real-time 3D Rendering, Hogeschool, West-

Vlaanderen, 2001-2002;

[29] GLASSNER A., An introduction to Ray-Tracing, Academic Press, 1989;

[30] GONZALEZ R., WOODS R., Digital Image Processing, Addison Wesley Publishing

Company, 1992, p. 191;

[31] GORAL C., TORRANCE K., GREENBERG D., BATTAILE B., Modeling the Interaction of Light

between Diffuse Surfaces, Computer Graphics, Volume 18, Number 3, July 1984;

[32] GRAY K., Microsoft DirectX9 Programmable Graphics Pipeline, Microsoft Press, 2003;

[33] GREEN R., Spherical harmonics lighting: the gritty details, Sony Computer Entertainment,

January 2003, available on-line at: http://www.research.scea.com/gdc2003/spherical-

harmonic-lighting.pdf, April 2009;

[34] GUIBAS L., KNUTH D., SHARIR M., Randomized incremental construction of Delaunay and

Voronoi diagrams, Algorithmica 7, pp. 381-413, 1992;

[35] HANRAHAN P., Monte Carlo path tracing, Computer Graphics: Image Syntesis Techniques,

lecture, 2001;

92

http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://foldoc.org/index.cgi?query=UML&action=Search

[36] HARALICK R., SHAPIRO L., Computer and Robot Vision, Addison Wesley Publishing

Company, 1992, Vol. 1, Chapter 7;

[37] HARGREAVES S., HARRIS M., Deferred shading, Games Developer Conference 2004,

available on-line at: http://www.talula.demon.co.uk/DeferredShading.pdf, April 2009;

[38] HAVRAN V., BITTNER J., HERZOG R., SEIDEL H.-P., Ray Maps for Global Illumination,

Eurographics Symphosium on Rendering, 2005;

[39] High-Resolution Anti-Aliasing, Technical brief: High-resolution anti-aliasing through

multisampling, may 2006;

[40] HOBSON E.W., The theory of spherical harmonics and ellipsoidal harmonics, Chelsea

Pub. Co., 1955;

[41] IERUSALIMSHY R., CELES W., DE FIGUEIREDO L.E., LUA scripting language, available on-

line at http://www.lua.org/, April 2009;

[42] JENSEN W., Global Illumination using Photon Maps, Rendering Techniques'96,

Proceedings of the 7th Eurographics Workshop on Rendering, p. 21-30, 1996;

[43] JENSEN W., Realistic image synthesis using Photon Mapping, A.K. Peters Ltd.,

Massachusetts, 2001;

[44] KAJALIN V., Screen-space Ambient Occlusion, ShaderX7 Programming Book, 2009;

[45] KAJIYA J., The Rendering Equation, Computer Graphics, 20(4): 143-150, August 1986,

ACM Siggraph'86 Conference Proceedings;

[46] KELLER A., Instant Radiosity, International Conference on Computer Graphics and

Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., 1997;

[47] KONTKANEN J., LAINE S., Ambient Occlusion Fields, Symphosium on Interactive 3D

Graphics and Games, ACM Siggraph 2005;

93

http://www.lua.org/
http://www.talula.demon.co.uk/DeferredShading.pdf

[48] LAFORTUNE E., WILLEMS Y., Bi-directional path tracing, Proceedings of

Compugraphics'93, Alvor, Portugal 1993, p. 145-153;

[49] LENGYEL E., Mathematics for 3D Game Programming & Computer Graphics, Charles River

Media, 2003, ISBN 978-1584500377;

[50] McREYNOLDS T., Advanced Graphics Programming Techniques Using OpenGL, Silicon

Graphics, SIGGRAPH'99 Course, 1999;

[51] MENTAL IMAGES, Mental Ray renderer, available on-line at

http://www.mentalimages.com/

[52] MICROSOFT MSDN LIBRARY, ShadowMap Sample, 2009, available on-line at:

http://msdn.microsoft.com/en-us/library/bb147372(VS.85).aspx

[53] MICROSOFT, The Direct X Software Development Kit, DXSDK Documentation, March

2009, available on-line at: http://www.microsoft.com/downloads/details.aspx?

FamilyID=24a541d6-0486-4453-8641-1eee9e21b282&displaylang=en, April 2009;

[54] MOORE D., Basic practice of statistics, 4th edition, WH Freeman Company, pp. 90-114,

August 2006;

[55] NVIDIA DEVELOPER ZONE, Real-time shadow algorithms and techniques, 2008, available

on-line at: http://developer.nvidia.com/object/doc_shadows.html

[56] OMG, UML Specification v1.1, OMG Document ad/97-08-11, available on-line at:

http://www.omg.org/cgi-bin/doc?ad/97-08-11, April 2009;

[57] PARIS S., KORNPROBST P., TUMBLIN J., DURAND F., A gentle introduction to bilateral

filtering and its applications, ACM SIGGRAPH, 2008;

[58] PIXAR ANIMATION STUDIOS, RenderMan, information available on-line at

http://www.pixar.com/, April 2009;

94

http://www.pixar.com/
http://www.pixar.com/
http://www.omg.org/cgi-bin/doc?ad/97-08-11
http://developer.nvidia.com/object/doc_shadows.html
http://www.microsoft.com/downloads/details.aspx?FamilyID=24a541d6-0486-4453-8641-1eee9e21b282&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=24a541d6-0486-4453-8641-1eee9e21b282&displaylang=en
http://msdn.microsoft.com/en-us/library/bb147372(VS.85).aspx
http://www.mentalimages.com/

[59] POLICARPO F., FONSECA F., Deferred shading tutorial, available on-line at:

http://bat710.univ-

lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBGAMES2005.pdf,

April 2005;

[60] POV-Ray, The Persistence Vision of Raytracer, avaliable on-line at:

http://www.povray.org/, April 2009;

[61] RAMPONI G., A rational edge-preserving smoother, Proceedings of the International

Conference on Image Processing, vol. 1, pp. 151-154, Washington D.C., 1995;

[62] RITSCHEL T., GROSCH T., SEIDEL H., Approximating Dynamic Global Illumination in

Image Space, Symphosium on Interactive 3D Graphics, ACM, 2009;

[63] RODGERS J. L., NICEWANDER W. A., Thirteen ways to look at the correlation coefficient,

The American Statistician, 42(1) pp. 59-66, February 1988;

[64] ROHLEDER P., Advanced GUI System for Games, ShaderX7 Programming Book, Course

Technology, 2009;

[65] ROHLEDER P., Fast and efficient real-time water rendering using advanced GPU

programming techniques, ICYR 2006, Zielona Góra;

[66] ROHLEDER P., JAMROZIK M., Sunlight with volumetric light rays, ShaderX6 Programming

Book, Course Technology, 2007;

[67] ROHLEDER P., Real-time ambient occlusion for dynamic and complex scenes, ISAT 2008,

Szklarska Poręba, 2008;

[68] ROHLEDER P., Wykładnicze Mapy Cieni, Software Developer's Journal, 02.2009;

[69] SALVI M., A conceptually simpler way to derive exponential shadow maps, June the 12th,

2008, available on-line at:

95

http://www.povray.org/
http://www.povray.org/
http://bat710.univ-lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBGAMES2005.pdf
http://bat710.univ-lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBGAMES2005.pdf

http://pixelstoomany.wordpress.com/category/shadows/exponential-shadow-maps/

[70] SALVI M., Rendering Filtered Shadows with Exponential Shadow Maps, ShaderX6, Course

Technology, 2008

[71] SARANSAARI H., LAINE S., KONTKANEN J., LEHTINEN J., AILA T., Incremental Instant

Radiosity, ShaderX6 Advanced Rendering Techniques, Course Technology, 2007;

[72] SEGOVIA B. et all., Bidirectional Instant Radiosity, Eurographics Symposium on Rendering

2006;

[73] SHANMUGAM P., ARIKAN O., Hardware Accelerated Ambient Occlusion Techniques on

GPUs, Symphosium on Interactive 3D Graphics, Proceesings of the 2007 Symphosium on

Interactive 3D Graphics and Games, 2007;

[74] SHEPPARD D., Beginner's Introduction to PERL, available on-line at:

http://www.perl.com/pub/a/2000/10/begperl1.html, October 2000;

[75] SHIRLEY P., MORLEY K., Realistic Ray-Tracing, 2nd edition, A.K. Peters, 2001;

[76] SLOAN P., GROVINDARAJU N., NOWROUZEZAHRAI D., SNYDER J., Image-based proxy

accumulation for real-time soft global illumination, Proceedings ot the 15th Pacific

Conference on Computer Graphics and Applications, 2007;

[77] SLOAN P., KAUTZ J., SNYDER J., Precomputed Radiance Transfer for Real-Time Rendering

in dynamic, Low-Frequency Lighting Environments, ACM Transactions on Graphics, ACM

Press, 2002;

[78] SOLER C. et al., Hierarchical Screen-Space Indirect Illumination for Video Games, INRIA,

Rapport de recherche, December 2009;

[79] SZABO M., Hardware generated shadows, CESCG'2004, April 2004;

[80] SZESCI L., SZIRMAY-KALOS L., SBERT M., Interactive Global Illumination with

96

http://www.perl.com/pub/a/2000/10/begperl1.html
http://pixelstoomany.wordpress.com/category/shadows/exponential-shadow-maps/

Precomputed Radiance Maps, ShaderX6 Advanced Rendering Techniques, Course

Technology, 2007;

[81] TABELLION E., LAMORLETTE A., An approximate global illumination system for computer

generated films, ACM Transactions on Computer Graphics 23, pp. 469-476, 2004;

[82] TATARCHUK N. at all, Advanced Real-Time Rendering in 3D Graphics and Games,

SIGGRAPH 2006, August the 1st;

[83] TECHLAND SP. Z O.O., Electronic entertainment and software developer, publisher and

distributor, http://www.techland.pl, April 2009;

[84] THIBIEROZ N., Robust Order-Independent Transparency via Reverse Depth Peeling in

Direct X 10, ShaderX6 Programming Book, 2007;

[85] TOMASI C., MANDUCHI R., Bilateral filtering for gray and color images, 6th International

conference on Computer Vision, pp. 839-846, Bombay, India, 1998;

[86] UBISOFT, Ubisoft Entertainment - French computer and video game publisher and

developer, http://www.ubi.com/, April 2009;

[87] VALIENT M,. Deferred rendering in Killzone 2, Guerrilla, Develop Conference, Brighton,

July 2007;

[88] WALD I., Real-time Raytracing and Interactive Global Illumination, PhD. Thesis, Saarland

University, 2004;

[89] WALL L., CHRISTIANSEN T., ORWANT J., Programming Perl, 3rd edition, O'Reilly, July

2000;

[90] WANG R., ZHU J., HUMPHREYS G., Precomputed Radiance Transfer for Real-Time Indirect

Lighting using A Spectral Mesh Basis, Eurographics Symphosium on Rendering, 2007;

[91] WATERS Z., Photon mapping, tutorial available on-line at:

97

http://www.ubi.com/
http://www.techland.pl/

http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/Ph

o tonMapping.html

[92] WINTER A., An investigation into real-time 3D polygon rendering using BSP trees, 1999,

available on-line at: http://www-compsci.swan.ac.uk/~csandrew/papers/disser.pdf

[93] ZHOU T., CHEN J., PULLEN M., Accurate Depth of Field Simulation in Real-Time, Computer

Graphics Forum, Volume 26 (2007), 1 pp. 15-23;

98

http://www-compsci.swan.ac.uk/~csandrew/papers/disser.pdf
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

	Table of contents
	1. Introduction
	1.1. Overview
	1.2. Radiosity overview
	1.3. Outline

	2. Background and related work
	2.1. Introduction to lighting
	2.2. Indirect lighting
	2.2.1. Ray-tracing
	2.2.2. Radiosity

	2.3. Rendering equation
	2.4. Path tracing
	2.5. Photon mapping
	2.6. Ambient occlusion
	2.7. Deferred rendering and MRT
	2.8. Related work
	2.9. Problem formulation

	3. Terminology and models
	3.1. Coordinate system
	3.2. Model of 3D virtual scene
	3.2.1. Geometry
	3.2.2. Lights

	3.3. Pixels and images
	3.3.1. Pearson product-moment correlation

	3.4. Quality function

	4. Image-space radiosity algorithm
	4.1. Overview
	4.2. Rendering pipeline
	4.3. Reconstructing world position (linear eye-space z method)
	4.4. ISR step
	4.5. Lighting phase
	4.6. Shadowing
	4.7. Discussion

	5. Experiments and evaluation
	5.1. Tools
	5.1.1. POV-Ray
	5.1.2. 3DSMax and MentalRay
	5.1.3. V-Engine
	5.1.4. Imalyzer
	5.1.5. Perl

	5.2. Experiment course
	5.2.1. The idea
	5.2.2. Test sets
	5.2.3. Collecting snapshots
	5.2.4. POV-Ray rendering
	5.2.5. Output image analysis

	5.3. Results
	5.3.1. Performance
	5.3.2. Quality analysis
	5.3.3. Perception aspect
	5.3.4. Discussion

	6. Conclusions
	A. List of abbreviations
	B. Notations
	C. Derivation of radiosity equation
	D. V-Engine-based simulator
	E. Perl test script
	F. Glossary
	Bibliography

