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Abstract

The main goal of current real-time graphics applications (like computer games,  or flight 

simulators)  is  to  imitate  natural  phenomena  to  provide  realistic  and  natural-looking  virtual 

environments. Many lighting techniques such as soft shadows, high-dynamic range effects, surreal 

lighting or post-processing effects  have been developed over  the last  few years to  enhance the 

quality  of  rendered  image.  One of  the  method which  greatly  improves  the  level  of  realism in 

computer graphics applications is global illumination. 

This  dissertation  demonstrates  very  neat  and  efficient  method  for  calculating  global 

illumination for dynamic and complex scenes in real-time. The proposed solution utilizes image 

space to compute inter-reflections between different quanta of virtual scene in very fast and robust 

way.  New  algorithm,  called  ISR (Image-Space  Radiosity)  has  been  introduced  which  takes 

advantage of graphics hardware acceleration to provide realistic lighting computations in real-time 

at very reasonable frame rates. ISR is independent from scene complexity and very easily pluggable 

into any existing rendering pipeline. Compared to previous lighting techniques, ISR is faster, more 

accurate and very well scalable.

Apart  from the  implementation  details  of  the  new algorithm along  with  the  theoretical 

background and explanation,  this  work contains quality and performance thorough analysis  and 

evaluation for different cases, like closed and open-spaced virtual environments. 
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Streszczenie

Głównym celem dzisiejszych  graficznych  aplikacji  komputerowych  czasu  rzeczywistego 

(takich  jak  gry  komputerowe,  czy  symulatory  lotu)  jest  dokładne  naśladowanie  rzeczywistych 

zjawisk w celu uzyskania fotorealistycznych wizualizacji scen wirtualnych. Wiele technik obliczeń 

oświetlenia, takich jak miękkie cienie, surrealne oświetlenie, czy efekty montażowe mających na 

celu poprawienie jakości generowanego obrazu zostało zaprezentowanych w ostatnich latach. Jedną 

z metod, która istotnie zwiększa poziom realizmu w aplikacjach graficznych czasu rzeczywistego 

jest oświetlenie globalne.

Niniejsza rozprawa przedstawia nowy i efektywny sposób liczenia oświetlenia globalnego 

dla dynamicznych i złożonych scen wirtualnych w czasie rzeczywistym. Proponowane rozwiązanie 

wykorzystuje  przestrzeń  obrazu  do  obliczeń  oddziaływań  oświetlenia  pomiędzy  różnymi 

fragmentami  sceny  wirtualnej.  Pokazano  nowy  algorytm,  nazwany  ISR  (ang.  Image-Space 

Radiosity),  który wykorzystując możliwości nowoczesnych kart graficznych służy do obliczania 

realistycznego oświetlenia przy bardzo dobrej wydajności. W porównaniu do istniejących technik, 

ISR jest szybszy, bardziej dokładny i odpowiedni dla różnego rodzaju danych.

Oprócz  szczegółowej  teoretycznej  analizy  algorytmu  wraz  z  dokładnym  opisem 

implementacji, niniejsza rozprawa zawiera dokładną analizę i ocenę zaprezentowanego algorytmu 

dla różnych przypadków, tj. zamknięte i otwarte przestrzenie wirtualne.
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1. Introduction
This  chapter  outlines  the  content  of  this  dissertation  and introduces  the  real-time  

global illumination problem.

1.1. Overview

Modern graphics hardware give the possibility to simulate open space environments in a 

very realistic way. Plenty of different approaches of imitating natural environmental effects 

like: sunlight, water or clouds have been developed during the last decades. One of the most 

essential phenomena in real-time computer graphics is lighting effect.

Figure 1.1: Sunlight with volumetric light rays in “Call of Juarez” game

Many lighting techniques such as soft shadows, high-dynamic range effects, surreal 
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lighting or post-processing effects have been developed to enhance the quality of rendered 

image. One of the method which greatly improves the level of realism in computer graphics 

applications is a global illumination algorithm called radiosity. 

This dissertation demonstrates very neat and efficient method for calculating global 

illumination for  dynamic and complex scenes  in  real-time.  The proposed solution utilizes 

image space to compute inter-reflections between different quanta of virtual scene in very fast 

and robust  way.  New algorithm, called  ISR (Image-Space Radiosity)  has  been introduced 

which  takes  advantage  of  graphics  hardware  acceleration  to  provide  realistic  lighting 

computations  in  real-time  at  very reasonable  frame rates.  ISR is  independent  from scene 

complexity  and  very  easily  pluggable  into  any existing  rendering  pipeline.  Compared  to 

previous lighting techniques, ISR is faster, more accurate and very well scalable.

The  presented  technique  is  based  on  deferred  shading  algorithm  which  utilizes 

multiple render targets technique to generate specified per-pixel information through vertex 

and  pixel  shader  GPU  programs.  Obtained  data  is  being  used  to  compute  image-space 

ambient occlusion and simple approximation of global illumination.

Apart from the implementation details of the new algorithm along with the theoretical 

background and explanation, this work contains quality and performance thorough analysis 

and evaluation for different cases, like closed and open-spaced virtual environments. 

1.2. Radiosity overview

Two major techniques have been extensively studied and developed for modeling the 

illumination process, ray tracing and radiosity. Ray tracing examines light rays traveling from 

the camera to the light sources which is computationally expensive. The behavior of light rays 

going through the virtual world, which can be absorbed, reflected or refracted by the objects 

on the scene, is modeled by the simple law of optics. More recent and innovative way for 

lighting calculations is the radiosity method. 

Radiosity is a global illumination algorithm used in 3D computer graphics rendering to 
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determine the illumination factor on a scene. The radiosity term is derived from the theory of 

thermal radiation which relies on computing the amount of light energy transferred among 

surfaces  by tracking  the  energy flow of  light  interacting  with  different  materials.  Unlike 

standard  shading  models  which  compute  only  direct  illumination  (surfaces  influenced 

straightforwardly by the light source), the radiosity method is also taking into account light 

reflected from the nearby surfaces on the scene (which is called the indirect illumination).

Figure 1.2: Comparison between direct lighting and radiosity (indirect lighting) methods 

The images generated using radiosity technique (or generally, using indirect lighting) 

appear  more  photo-realistic,  however,  are  computationally  more  expensive  comparing  to 

standard direct lighting methods and much more difficult to obtain in real-time time. In this 

dissertation we emphasize on the approximation of radiosity technique for real-time computer 

graphics  software.  We  prove  that  computationally  expensive  illumination  model  can  be 

efficiently  simplified  and  applicable  in  real-time  to  provide  higher  level  of  realism  in 

computer generated images. 
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Figure 1.3: Alchemists Laboratory by Jaime Vives Piqueres, rendered with POV-Ray, 2001

1.3. Outline
This dissertation is composed of six chapters. At the beginning we introduce the real-

time radiosity problem very briefly. Chapter 2 contains some background information about 

radiosity as well  as related work in the area of global illumination in computer graphics. 

Subsequently, in chapter 3 we covered detailed description of lighting models in real-time 

computer  graphics  applications.  We  also  introduced  the  problem  of  real-time  radiosity. 

Chapter  4  elaborates  the  novel  algorithm,  called  Image-Space  Radiosity  (ISR)  which  is 

followed by the  experiments  and  evaluation  placed in  chapter  5.  Finally,  the  dissertation 

concludes with a short summary and the list of possible future work ideas in chapter 6. 

4



2. Background and related work
This  chapter  introduces  the  basic  terms  and  previous  work  related  to  lighting  

techniques in  real-time computer  graphics.  It  explains the differences  between direct  and  
indirect lighting and shows the advantages of using radiosity method.

2.1. Introduction to lighting

Apart from the accurate graphical representation of objects on virtual scene, the lighting 

effects are the most important in the manner of photorealism. Computer graphics lighting 

refers  to  the  simulation  of  light  in  computer  graphics  based  applications.  The  term 

illumination determines the amount of light reaching a surface and is being used in shading 

process which calculates the color and intensity of light reflected toward the viewer for each 

pixel  representing the surface.  The color  value depends on the various  properties of light 

source (like position or color) as well as the reflective characteristics of the surface itself. 

Basically,  lighting effects  are  described with models that consider the interaction of 

electromagnetic  waves  with object  surfaces  involving the principles  of  physical  laws that 

describe  surface  light  intensities.  Many  basic  models  use  empirical  simplification  of 

photometric calculations to minimize required computation time. More accurate models, such 

as the radiosity algorithms which represent the indirect illumination models,  determine light 

intensity by taking into account the propagation of radiant energy between the object surfaces 

on  the  scene.  Although  indirect  lighting  algorithms  provide  more  photo-realistic 

representation of virtual scenes, they are often to computationally complex and can not be 

utilized in real-time computer graphics applications.

In the following section we take a look into basic illumination models which represent 

direct  lighting;  afterwards,  we  discuss  more  accurate  and  simultaneously  more  time-

consuming indirect  lighting algorithms. Subsequently,  we introduce the ambient occlusion 

term and radiosity approach to real-time computer graphics rendering. The chapter ends with 

the description of related work in closing with conclusion and problem formulation.
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2.2. Indirect lighting

2.2.1. Ray-tracing

Ray tracing  [29][75][4] represents  the  technique  that  is  capable  of  produce  digital 

images at very high level of photorealism. It utilizes tracing the path of light through pixels in 

an image plane to evaluate corresponding pixel color value. The algorithm generates better 

quality  images  comparing  to  standard  rasterisation  rendering  methods,  but  at  a  greater 

computational cost which makes the ray-tracing suitable for non real-time computer graphics 

utilization, like movie industry. 

Figure 2.1: Ray-tracing algorithm overview

The idea behind ray tracing is that physically correct images are composed of light rays 

fired up from the light source and bounced in a scene before hitting the virtual camera. This 

intuitive approach provides a simple and powerful rendering technique for obtaining global 

transmission  and reflection  effects.  Ray tracing  algorithm is  also  supports  visible  surface 
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detection, shadowing effects, transparency or multiple light source illumination. 

There  are  many  extensions  to  the  basic  ray  tracing  algorithm which  provide  very 

sophisticated and highly photo-realistic images generation. RT, for example, works very well 

with  shiny  objects  rendering  (as  presented  in  the  figure  below),  however  it  requires 

considerable computation time to generate, therefore inappropriate for real-time requirements.

 

Figure 2.2: Glasses by Gilles Tran, rendered with POV-Ray, 2006

Pseudo-code for basic ray-tracing algorithm looks as follows:
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Listing 1: Ray-tracing algorithm pseudo-code
for every pixel on the screen
{

create 3D ray from view position passing through this pixel
find the nearest intersection point of the ray with scene geometry

if (intersection not found)
fill the pixel with background color

else
{

for each light fire a ray from that point to see if it is in the 
shadow

if surface is reflective – generate recursive reflection ray
if surface is transparent – generate recursive refraction ray
fill this pixel with the result of shading computation function

}
}

At the very beginning the algorithm generates a ray path passing through the center of 

each pixel position on the screen.  For each pixel ray it tests each surface in the scene to 

determine if it is intersected by the specified ray. If the surface is intersected, we calculate the 

distance from the camera to the intersected point – the closest intersection point identifies the 

visible surface from the given pixel. Subsequently, we produce the reflection (for reflective 

surfaces) and refraction (for transparent surfaces) rays which are called the secondary rays 

and we repeat the above procedure for each of them. The recursive ray tracing algorithm 

terminates when the depth reaches the maximum (user defined) level, or if the ray hits the 

light source.

The pixel color value which corresponds to the amount of illumination it receives is 

determined by accumulating the intensity contributions from the ray tracing tree. If no surface 

is intersected by the current pixel ray, the pixel is assigned the intensity of the background 

color. If the ray from the corresponding surface point to the light source collides with solid 

object then the pixel is in shadow and the light does not contribute to its shade.

The great advantage of RT over other rendering methods is its simplicity and legibility. 

Effects like shadows, reflection, refraction, scattering or ambient occlusion are a natural result 
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of ray tracing algorithms as opposed to scan-line rendering algorithms. Another advantage is 

that the calculations for each ray can be done separately which means that the algorithm can 

be easily parallelized.

The  most  serious  disadvantage  of  RT  is  the  performance  due  to  the  heavy 

computational  cost.  To perform calculations  in  the  reasonable  time the  scene  information 

needs to be stored in a space-partitioning data structure, like oct-tree, kd-tree or BSP-tree. 

Despite  of  pre-computed  scene  information  the  performance  is  far  from  real-time, 

furthermore, the problem with virtual worlds changing dynamically arises.

2.2.2. Radiosity

Radiosity method considers the radiant energy interactions between all surface in the 

scene by calculation the differential amount of radiant energy (dQ) leaving at each surface 

point and summing the energy contribution over all  surfaces.  The radiosity term refers to 

radiant exitance, which is the power emitted from the surface. For better understanding of 

what the term radiosity means we look at the basic radiometric quantities explained accurately 

in [7].

The  light  can  be  expressed  as  a  radiant  energy  (Q) which  is  the  energy  of 

electromagnetic waves.  Radiant energy derives from the integration of radiant flux (radiant 

power) over time and is measured in Joules. Radiant flux is the total power of electromagnetic 

radiation which can be expressed as:

=dQ
dt (1)

and is measured in Watts.

The radiant flux per unit area at a point on the surface is called  radiant flux density. The 

radiant flux density is referred to as irradiance when the flux is arriving at the surface from 

any direction,  and  radiant  exitance when the  flux  is  leaving in  any direction  above the 
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surface. 

Irradiance is expressed in Watts per square meter as:

E=d 
dA (2)

where  Φ is the radiant flux arriving at the point and dA is the differential area surrounding the 

point, whereas radiant exitance is defined similar to irradiance as:

M=d 
dA (3)

where Φ is the radiant flux leaving at the point and dA is the differential area surrounding the 

point.

Figure 2.3: Irradiance and radiant exitance at surface point

Radiance is the amount of radiant flux contained in the ray of light arriving at or leaving the 

point on a surface in the given direction. Radiance is measured in Watts per square meter per 

steradian and is defined in the following way:

L= d 2
d dA cos

(4)
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where  is radiant flux, dA is the differential area surrounding the point and d 

is the differential solid angle of the elemental cone and  is the angle between the ray and 

the surface normal.

One of the most vital quantity in radiosity calculations is the  form factor [31] which 

related th proportion of energy transmitted which can be transferred to another object. Given 

two arbitrary oriented patches dE i emitting some quantity of flux i and dE j receiving 

a portion of emitted flux ij we denote the dimensionless form factor:

F ij=
ij

i
(5)

After  expanding  the  above  equation  (in  accordance  with  [7])  the  form  factor  from  a 

differential area dE i to another differential area dE j is given by:

dF dEi−dE j
=

cosi cos j dA j

r 2 (6)

where i and  j are  angles  between  a  line  connecting dE i and dE j and  their 

respective surface normals n i and n j and dA j is the differential area of dE j
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Figure 2.4: Interrelation between two arbitrary patches
(patch dE j receiving flux ij from patch dE i )

Thus,  the  form factor  from the  finite  area  patch E i to  another  finite  area  patch E j is 

defined as:

F ij=
1
Ai
∫
Ai

∫
A j

cosi cos j

 r2 dAi dA j (7)

Having  the  radiant  exitance  and  the  form factor  defined  we  can  formulate  the  radiosity 

equation such as:

M i=M 0ii∑
j=1

n

M j F ij (8)

where M 0i and i stand for initial exitance and the reflectance of patch E i respectively.

Radiosity method has some limitations comparing to ray-tracing techniques. First of all, 

the radiosity theory assumes that  all  surfaces  are  ideal  diffuse reflectors  and for specular 

surfaces and transparent materials the combination with other lighting techniques is required. 
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Another  limitation  is  the  geometry  surface  representation.  Ray  tracing  can  use  implicit 

equations  to  define curved surfaces,  whereas the radiosity model  operates  on 3D patches 

which  can  be modeled  by a  typically  nonuniform polygon meshes.  This  is  not  a  serious 

limitation  since  every  surface  can  be  approximated  by a  polygon  mesh  with  the  desired 

accuracy. 

2.3. Rendering equation

A primary challenge  in  realistic  rendering  is  trying  to  solve  the  rendering  equation 

simultaneously introduced into computer graphics by David Immel and James Kajiya in 1986. 

The  rendering  equation  [45] is  an  integral  equation  which  denotes  the  total  amount  of 

illumination at specified position as a sum of emitted and reflected radiance under a geometric 

optics approximation:

L0 x ,=Le x ,∫
x

f r x , ' ⇔Li x , ' cos  ' d' (9)

where:

• L0 - total amount of illumination (exitant radiance) at x into direction 
• Le - self-emitted light (self-emitted radiance) at x into direction 
• Li - incoming light (incident radiance) at x from direction 
• f r x , '⇔ - bidirectional reflectance distribution function (BRDF) at x for scattering from a 

direction  into direction  ' (or vice versa)
• x - specified location on a surface
•  - outgoing direction at location x
•  ' - incoming direction over the hemisphere around x
•  ' - angle between  ' and surface normal at x
• d  ' - infinitesimal solid angle containing direction  '
• x - hemisphere of directions above x
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Figure 2.5: A single sphere (S, R) which occludes surface at point x

The  reflected  light  itself  is  the  sum of  incoming  light  from all  possible  directions 

multiplied by the surface reflection coefficient (BRDF) and the attenuation of the inward light 

due to the incident angle. The BRDF function characterizes the reflectance of a surface at 

specified  point  x  and  is  defined  as  a  ratio  of  an  outgoing  radiance  over  the  incoming 

irradiance.

The rendering equation (also known as the light transport equation) derives from the physics 

and the law of conservation of energy and describes the equilibrium distribution of radiance 

over the given environment.

2.4. Path tracing

In the 1980s, James Kajiya presented a method capable of fully solving the rendering 

equation which is called path tracing [48][35]. Path tracing is a probabilistic point sampling 

technique which extends the original ray tracing algorithm by tracing a bunch of ray paths 

from the  camera  back  to  the  lights  where  the  light  contribution  along  the  path  is  being 

evaluated. Although the proposed technique is very accurate and it allows to simulate nearly 

all effects of the light transport, it is inefficient due to the very large number of rays that need 
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to be traced to avoid visible artifacts in the form of noise emerged in point sampling process.

Pseudo code for path tracing is shown below:

Listing 2: Path tracing algorithm pseudo-code
Color TracePath(Ray r, int depth)
{

if (depth == Maxepth)
return Color::Black;  /// Maximum depth reached

Surface s = r.FindNearestIntersectedSurface();
if (s == NULL)

return Color::Black;  /// Ray hits nothing

Material m = Surface.GetMaterial();
Ray r2;

r2.Origin = r.GetIntersectionPoint();
r2.Direction = 

PickRandomDirectionOverHemisphere(r.GetIntersectionNormal());
float cosa = dot(r2.Direction, r.GetIntersectionNormal());

Color reflected = TracePath(r2, depth+1);
float BRDF = m.Reflectance/PI;
return m.Emmitance + BRDF * cosa * reflected;

}

In path tracing a new ray is being randomly generated (within the hemisphere of an 

intersected  point)  and traced further,  whilst  traditional  ray tracing  samples  lights  directly 

when there is a hit with diffuse surface. That means the path may hit many diffuse surfaces 

before interacting with a light (unlike in RT).

It is possible to trace rays in the opposite direction – from light source to the observer 

point. This method is called photon tracing and is use to simulate realistic photon behavior in 

closed environment. Photon tracing is fairly simple to implement using simple ray tracer and 

also gives the global illumination and radiosity solution for free, but the computation time is 

very big and inappropriate for real-time computer graphics.
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2.5. Photon mapping

Henrik Jensen has developed a two-pass global illumination algorithm called photon 

mapping  [43][42][91] as an alternative to pure Monte-Carlo ray-tracing techniques.  In the 

first  pass rays from the light sources and the camera are traced independently until  some 

specified criterion is met. Subsequently, the results are being merged in the second step to 

produce the radiance value, which is used in realistic simulation of light interaction between 

objects. 

Photon mapping decomposes the lighting calculations  from the scene geometry by 

representing the solution in the spatial data structure called photon map [38] which allows to 

calculate  the  rendering  equation  terms  separately.  This  makes  the  photon  mapping  very 

flexible and expandable for accounting the specified media effects, like sub-surface scattering 

caustic effects, or diffuse inter-reflection. 

Figure 2.6: A crystal ball with caustic (rendered via photon mapping)

The first pass of photon mapping algorithm creates the photon maps by spreading the overall  

power of light over photons leaving the light sources. If the specified photon hits the surface it is either  
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reflected, refracted or absorbed and the probability is calculated from the surface's material properties  

(Monte Carlo method called Russian roulette is used to choose one of the mentioned actions). We 

continue this step keeping up to date with photon maps until the photon is fully absorbed. Once the 

photon  maps  have  been  populated,  the  stored  information  is  being  used  in  the  second pass  (the  

rendering pass)  to obtain the reflected radiance at surfaces and in participating media by gathering n 

nearest photons taken from the photon map (using the nearest neighbor search function). For the sake 

of  efficiency,  the  rendering  equation  is  being  decomposed  into  separate  factors,  like  direct 

illumination, indirect illumination, specular reflection and caustics:

L=LdirectL specularLcausticsLindirect (10)

Direct lighting factor can be accurately estimated by tracing a ray from the intersection points to each  

light source.  Specular reflections can be also calculated using ray tracing procedures. The contribution 

of caustics is  being denoted from caustics photon maps directly.  Finally,  the indirect lighting part  

comes from the reflected radiance calculated from global photon map. 

2.6. Ambient occlusion

Ambient occlusion  [47][73] refers to crude approximation of global  illumination.  In 

general,  ambient  occlusion  in  a  specified  point  in  3D space  is  the  amount  of  occlusion 

received due to surrounding occluding objects. This amount of occlusion at point x with a 

surface normal n is given by the following equation:

AO x ,n= 1
∫

V x , n⋅d  (11)

where V  x ,  represents the visibility function from x along direction  (returns 1 if 

occluded and 0 if not) over the hemisphere Ω.

There are many existing ambient  occlusion algorithms since this  technique greatly 
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improves the level of realism in real-time computer graphics industry. In [47] a method called 

Ambient Occlusion Fields has been introduced which pre-computes a field in a surrounding 

space that encodes  the occlusion caused by the object.  This technique provides very nice 

results in image quality, however  it is dependent of the scene complexity and not suitable for 

large  and  complex  scenes,  like  outdoor  environments.  [73]demonstrates  image  space 

approach for high-frequency ambient occlusion which is similar to the method described in 

this  chapter but they do not consider bilateral  filtering nor upsampling.  Additionally their 

method includes distant-occluder approach for low frequency ambient occlusion which is also 

dependent on scene complexity. The idea of bilateral upsampling is borrowed from [76] where 

real-time soft global illumination technique is being explained. 

Figure 2.7: Ambient occlusion in old room scene

In this work the amount of ambient occlusion at location x is being approximated by 

calculating spherical  cap delimited by the sphere <S,R> on the unit  hemisphere at  x and 
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relative position of the occluding sphere <S,R> to x (more detailed description can be found 

in [73]):

AO S , R , x ,n=C S , R , x⋅maxn⋅Sx ,0 (12)

The surface area of the spherical cap (Fig 1) can be expressed as:

C S , R , x =2⋅⋅h⋅1=1−1− R
∣Sx∣

2

(13)

R
S

x
r = 1

h

Figure 2.8: A single sphere (S, R) which occludes surface at point x

Final equation for calculating ambient occlusion at location x is given by:

AO S , R , x ,n=[1−1− R
∣Sx∣

2]⋅maxn⋅Sx ,0 (14)
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2.7. Deferred rendering and MRT

Deferred rendering [37] idea was primarily introduced by Michael Deering et all. in the 

paper  entitled  The  triangle  processor  and  normal  vector  shader:  a  VLSI  system for  high 

performance graphics. The term deferred shading [59][87] describes the technique which uses 

intermediate buffers (called g-buffer) storage with screen-space, per pixel information such as 

diffuse color, normal vector or depth value. A g-buffer is a collection of screen-sized render 

targets (MRT), which can be generated in a single pass with the modern graphics hardware 

(significantly reducing the rendering  load)  .  The  g-buffer  is  used then as  an  input  to  the 

shading algorithm (for example a lighting equation) without the necessity of browsing the 

original geometry (all information required for the calculations at this stage, like position of 

the pixel in 3D world space, can be extracted from the g-buffer). In this way the algorithm 

operates  only  on  visible  pixels  which  greatly  reduces  the  computation  complexity  and 

memory bandwidth. 

The main advantages of the deferred shading approach are the simplification of the 

rendering pipeline, ease of managing complex shader resources and calculations, and finally 

simple and robust management of complex lighting resources (like dynamic lighting). The 

technique is used with great success in modern post-processing rendering effects, like: screen-

space ambient occlusion, depth of field [93], motion blur and anti-aliasing. The key drawback 

of  this  technique  is  inability  to  handle  transparent  objects  on  the  scene  properly.  Order-

independent transparency can be achieved by using depth-peeling technique [84], but at the 

cost of performance due to additional drawing batches and g-buffer size.

2.8. Related work

Global illumination is a very extensive area of research, especially in the last few years. 

Radiosity and ray-tracing based methods are often used for off-line film production rendering 

[81]. Real-time computer graphics usually utilizes vast approximation of global illumination 
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techniques, like ambient occlusion. [47] describes a real-time technique for calculating inter-

object ambient occlusion by pre-computing an approximation of the occlusion caused by each 

object in the surrounding space. This information stored in cube map textures is used at run-

time for evaluation the shadow cast on the receiving objects. Despite of good results  this 

method  suffers  from large  pre-computation  step.  It  also  utilizes  big  number  of  textures 

(cubemap per each mesh) which is not suitable for complex scenes. Finally, this technique 

does not handle deformable objects (due to pre-computation step) and is limited to rigid body 

motion.

[73] describes real-time AO approximation as a multi-pass algorithm that  consists  of two 

independent and parallel detailed and distant AO methods. First (detailed) technique utilizes 

image space to approximate AO due to the nearby occluders caused by high surface details, 

whereas the second approach uses approximated version of the occluder geometry. The high-

frequency AO method requires no pre-computation step and is very easily pluggable into any 

existing rendering pipeline, however it  requires a huge amount of surrounding samples to 

achieve satisfying results. This dissertation extends among other things the idea from  [73] 

using  reformulated  equation  for  calculation  the  amount  of  occlusion  due  to  the  spherical 

occluder. Image-space ambient occlusion (SSAO) technique has also been extensively studied 

in [44] and [9].

[13] approximates  AO and simple  GI  by treating  polygon meshes  as  a  set  of  disc-based 

surface elements which can emit, transmit, or reflect light and can occlude each other. The 

method works on a per-vertex level and requires huge pre-computation step which eliminates 

fully  dynamic  scenes  handling.  Additionally,  the  method  requires  high-tessellated  scene 

geometry to provide good-looking, acceptable results.

[19] proposes to capture the scene geometry causing indirect illumination by an extended 

shadowmap and to distribute secondary light sources on directly lit surfaces. Rendering of the 

secondary  lights  contribution  extends  their  previous  work  and  is  being  performed  in  a 
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deferred shading process which makes rendering time independent from the scene complexity. 

The approximated indirect  lighting does barely exhibit  coarse artifacts,  however  does not 

produce soft shadows. Additionally, the algorithm operates on final display resolution which 

suffers from performance issues.

[46] utilizes shadow maps and the accumulation buffer to approximate the indirect lighting 

over a set of photons traced stochastically from the light source. The algorithm uses the quasi-

random walk based on the method of quasi-Monte Carlo integration to generate virtual point 

lights  which  simulates  indirect  lighting.  Instant  radiosity  suffers  from far  from real-time 

performance and variance problems due to inadequate VPL sampling like other Monte Carlo 

methods. [72] extends instant radiosity method by introducing a bidirectional sampler to find 

relevant virtual point lights for a given point of view in a fast and efficient way. It also utilizes  

deferred  shading  approach  to  optimize  the  influence  of  many  point  lights,  however  the 

algorithm  still  remains  inappropriate  for  interactive  rendering  and  not  for  real-time 

applications. 

Another  work  which  derives  from instant  radiosity  is  presented  in  [71] where  Delaunay 

triangulation-based algorithms  [34] is used for maintaining the VPLs efficiently.  Proposed 

method is capable of rendering single bounce of indirect illumination from static geometry to 

static  and  dynamic  geometry  in  real-time.  It  also  lacks  indirect  shadows  caused  by  the 

dynamic  objects  and  did  not  solve  the  problem of  VPLs  visual  importance  for  complex 

scenes. 

[18] reformulates the rendering equation to use implicit  visibility achieved by introducing 

new quantity called anti-radiance. Anti-radiance refers to the idea of negative light which is 

propagated  along  with  the  radiance  and  is  stored  in  directional  elements  in  the  scene. 

Presented  approach  has  some  limitations  which  are  increased  memory  footprint  for  the 

directional data structures and excessive subdivision for dynamic scenes. Although described 

technique is able to compute indirect illumination much faster than traditional methods based 
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on rendering  equation  it  is  still  to  slow for  real-time  computer  graphics  applications  like 

complex 3D FPP games.

Precomputed  radiance  transfer  (PRT)  [77][90] offers  precomputing  complex  lighting 

interactions which are being used during real-time scene rendering. PRT can be utilized to 

determine  diffuse  lighting  of  the  scene  in  dynamically changing lighting  environment  by 

computing the illumination of a point as a linear combination of incident irradiance. Spherical 

harmonics [33][40][3] is the efficient way to encode the light transportation function in PRT 

method. 

The similar technique named precomputed radiance maps (PRM)  [80] obtains the indirect 

illumination  caused  by  multiple  scatterings  of  the  light  from partial  light  paths  that  are 

precomputed and stored in the preprocessing phase. Both PRT and PRM methods can handle 

dynamic light sources and give very respectable results, but work in static environment only 

and suffer from large precomputation step.

[10] presents the real-time radiosity method which does not use PRT or any pre-computed 

stuff. For the performance reasons it calculates the radiosity equation for each 16 samples per 

frame and then applies blurring to eliminate noise effect. The technique works similar to light 

maps which maps every mesh in the scene onto unique texture updated dynamically every 

frame. In conclusion, presented technique consumes a lot of video memory (single texture per 

mesh)  and  is  quite  slow  which  is  not  suitable  for  complex  scenes,  like  open  space 

environments. 

Finally,  [78] describes  hierarchical  indirect  lighting  computations  in  screen  space.  The 

algorithm is compatible with deferred rendering pipeline and is very fast (it consumes less 

than 10 ms per frame on GPU for typical settings). Presented technique is very similar to the  

ISR algorithm examined in this dissertation ([78] has emerged at the final stage of writing this 

thesis).

23



2.9. Problem formulation

Global illumination, which  simulates global interaction of light with objects in a 3D 

scene, is a complex problem. Number of different approaches in real-time global illumination 

techniques have been developed and evaluated over the recent years. Majority of them can 

handle  very  simple  scenes  only  and  are  not  suitable  for  complex  and  dynamic  worlds 

appearing  in  cutting-edge  computer  games  and  virtual  reality  simulators.  Many  of  them 

suffers  from  huge  precalculation  step  which  strongly  affects  the  application's  content 

generation pipeline and requires additional resources like CPU power or memory capacity.  

Our main goal is to develop and implement efficient method of calculating real-time 

radiosity  algorithm that  overcome  the  above  issues  and  can  be  easily  applicable  in  any 

computer graphics-based application. It is expected to be independent from scene complexity 

and flexible to handle both dynamic and static scenes equally. Additionally, it should produce 

real-time images with higher quality comparing to the images illuminated with standard direct 

lighting techniques. 

We have given two images IA and IB which refer to the images rendered in real-time 

using  standard  direct  lighting  and  rendered  off-line  using  accurate  global  illumination 

techniques. We claim that it is possible to render image IX in real-time which approximates 

global illumination in real-time producing image quality closer to the model IB.

Above all, the solution should meet the following requirements:

• speed: the algorithm needs to be as fast as possible (suitable for real-time computer 

graphics-based applications, like computer games or flight simulators);

• complexity: the algorithm should be independent from scene complexity and it should 

work efficient for simple as well as complex virtual environments;
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• dynamics: algorithm should be able to handle static as well as dynamic virtual scenes. 

Any pre-rendering or pre-calculating steps are prohibited;

• quality:  algorithm should produce high-quality-lighting images with visible indirect 

lighting factor;

• accessibility;  it  is  expected  that  new algorithm works  completely in  real-time and 

requires  no  content  generation  pipeline  changes.  It  should  also  be  easily 

implementable in any existing rendering pipeline;

• user-friendliness: the algorithm should avoid non-intuitive coefficients/variables and 

should be easily to configure and manipulate by artists to obtain satisfying results;
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3. Terminology and models

This chapter introduces the model and conventions used throughout the dissertation.  
We also present mathematical problem formulation along with specification details.

3.1. Coordinate system

A Cartesian coordinate system is characterized by three mutually perpendicular axes: x, 

y and z. This dissertation uses left-handed Cartesian coordinate system with positive x-axis 

pointed to the right, positive y-axis pointed up and positive z-axis directed away from the 

viewer. The point v(x, y, z) in 3D space can be expressed as:

v=i⋅xj⋅yk⋅z (15)

where i, j and k are unit vectors parallel to the three perpendicular axes. 

3.2. Model of 3D virtual scene

3D virtual scene (virtual space) describes the computer-simulated environment which is 

modeled by triple:

S=E ,L ,c

where:

• E represents a collection of virtual entities  e; an entity determines an instance of a 

geometric mesh g positioned and oriented in virtual space;

• L corresponds to a set of point light sources l;

• c describes virtual camera orientation in virtual space; c is represented by a pair of view (Mv) 
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and projection (Mp) matrices which determine the virtual observer position in virtual space, 

viewing direction and field of view;

3.2.1. Geometry

Each object in  3D virtual  scene is  represented by a geometric  mesh build from 3D 

triangles spread along the vertex array. Model of a single mesh contains:

g= gv , gn , guv , gdiff , g i , g mat   

where:

• gv is the array of vertices (R3);
• gn is the array of vertex normals (R3);
• guv is the array of mapping coordinates (R2);
• gdiff is the array of diffuse color values (per each vertex);
• gi is the list of indexes which form the triangles;
• gmat is the mesh material identifier;

We define vertex normal  as  a  resultant  vector  of  a  sum of  the adjacent  triangles  normal 

vectors. Vertices of a mesh are positioned relative to the mesh origin (mesh pivot) which we 

call model space.

3.2.2. Lights

Lights are considered to be spherical point light sources described as:

l=l pos , l r , l pow , l c , f atten

where:
• lpos is the position of light;
• lr is the light radius;
• lpow is the light power multiplier;
• lc is the color emitted by the light;
• fatten is the attenuation function of distance.
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The attenuation function for the light l any point P in 3D virtual scene is defined as follows:

f atten l , P=saturate 1−
∣l pos−P∣

l r


2

 (16)

3.3. Pixels and images

We define  pixel as a picture element which is the smallest piece of information in a 

digital image. In this work pixel is considered as a 3-component vector composed from red, 

green and blue components:

P=[r ,g ,b]

The luminance [53] of a pixel P is expressed as:

lumP =0.27 P r0.67 Pg0.06 Pb (17)

Pixel are arranged in a 2-dimensional grid,  called image (or pixmap) which refers to the 

spatially mapped array of pixels. Image is characterized by its dimension and represents data 

structure which is used to store digital images labeled as I label

The difference between image I1 and I2 is defined as a difference image D:

∀ x∈ℕ , xw ; y∈ℕ , yh D12x , y =∣I 1 x , y− I 2x , y∣ (18)

where Ii(x, y) refers to the pixel at location x, y in the image Ii..
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We also define an error factor computed from difference image D which is the mean value of 

all pixels components:

D=
1

3wh∑x=0

w

∑
y=0

h

Dx , y rDx , y gD x , y b (19)

3.3.1. Pearson product-moment correlation

Pearson product-moment correlation coefficient (PMCC) [63][54] measures the strength 

of  linear  dependence  (correlation)  between  two  given  variables.  PMCC is  equivalent  to 

dividing the sample covariance between two variables by the product of their sample standard 

deviations.

For the finite population the PMCC is defined as follows:

 X , Y =1
n∑i=1

n  X i−X

X Y i−Y

Y  (20)

where:

X i−X

 X
, X and X

stand for standard score, population mean and population standard deviation respectively.

3.4. Quality function

In section 2.9. we have formulated the statement about the image quality better to the 

other one. Let's say we have two images I1 and I2 and the model image I0 each representing the 

same  scene  with  the  view.  The  mathematical  meaning  of  the  quality  statement  can  be 

expressed by the quality function f q I 0, I 1, I 2 :
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D01=∣I 0− I 1∣ - difference image between I0 and I1;

D02=∣I 0− I 2∣ - difference image between I0 and I2.

f q I 0, I 1, I 2={−1,
0,
1,

if 0102

if 01=02

if 0102

(21)

Quality function f q returns -1 when I2 is closer to I0, 1 when I1 is closer to I0 and 0 when the 

error factors for both I1 and I2 are equal.
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4. Image-space radiosity algorithm
In this chapter we describe the novel image-space radiosity (ISR) algorithm along  

with the implementation details. We also present additional effects like image-space ambient  
occlusion  and shadowing through exponential  shadow mapping technique  to  improve  the  
quality of final rendered image.

4.1. Overview

This section reveals the idea of a novel image-space radiosity (ISR) algorithm. First we 

describe the general rendering pipeline including G-buffer configuration and ISR algorithm 

idea in step-by-step pseudo-code. In the forthcoming sections we present fast and efficient 

method for the world position reconstruction from the depth buffer which is extremely vital 

for ISR algorithm. Afterwards, we explain the ambient occlusion and color bleeding steps 

along with the implementation details. This part is the core of the ISR method and is covered 

very  attentively.  Subsequently,  we  present  exponential  shadow  map  implementation  in 

deferred rendering which can be easy plugged-in into ISR rendering pipeline as an additional 

step to improve the level of realism in real-time computer generated images. We finish this 

chapter with a short conclusion and future ideas regarding ISR algorithm.

4.2. Rendering pipeline

ISR algorithm operates on every single frame and does not require any pre-computed 

data, nor additional content pipeline changes. It works on the fly and is suitable for simulation 

both simple/static and complex/dynamic virtual environments.

We start by introducing the MRT G-buffer configuration utilized during the geometry 

rendering pass at  the very beginning of the frame generation cycle.  In general,  we use 4 

surfaces during virtual scene rendering pass (as shown in Figure 4.1):
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• hardware  depth/stencil  surface  (DS)  which  is  used  simply  for  visible  surface 

determination during geometry rendering phase; stencil  buffer is  used to mark out 

background pixels;

• albedo color surface (CLR) containing unlit rendered geometry with basic material 

properties (textures, diffuse color); alpha channel of this surface holds the radiation 

mask used during radiosity calculations;

• normal  surface  (NRM)  which  stores  world  space  normalized  per-pixel  geometry 

normal vectors; each normal component is packed into the range from 0 to 255 (8 bits 

per component) and can be easily decompressed using the formula:

cunpacked=
2c packed

255
−1 (22)

• additional  depth  buffer  (DPT)  containing  32-bit  floating  point  linear  eye-space  z 

coordinate for fast 3D view/world space position reconstruction (described accurately 

in section 4.3. ).

Figure 4.1: MRT G-buffer configuration

After  the  G-buffer  is  ready  we  perform  the  clear  operation  which  is  followed  by 

rendering scene geometry with specified technique. The geometry rendering pass traverses the 
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scene for the visible objects and renders them into the G-buffer filling the appropriate color 

and  depth-stencil  video  surfaces.  This  step  depends  on  the  scene  complexity  and  is 

responsible for visible surface determination (i.e. frustum culling) to perform the rendering 

pass as efficient as possible. The visibility problem is one of the major issues in the field of 

3D computer graphics and is beyond the scope of this dissertation [15][92].

At this  point we have color,  normal and depth buffer ready for the later use in the post-

processing  step.  Subsequently,  we  reduce  the  sampling  rate  for  the  sake  of  performance 

during ISR/SSAO calculations by downsampling CLR, NRM and DPT surfaces into four 

times smaller coarse buffers (CLR_4, NRM_4, DPT_4) by averaging four adjacent samples in 

each buffer.

The next phase is to calculate ISR/SSAO surface with scene radiosity and ambient occlusion 

information. It is the most significant step of the algorithm and is examined penetratingly in 

section 4.4. Once the coarse ISR_4 buffer has been determined we perform blurring in both 

horizontal and vertical directions to get smooth representation of indirect lighting as shown in 

Fig 4.2. Filtering is done by convolving the image with a Gaussian function [20][30][36].

The  final  step  is  per-pixel  lighting  calculations  which  produce  the  ultimate  view  of  the 

illuminated scene. During this phase, both direct and indirect lighting information (taken from 

the previous step) are being utilized to generate image with photo-realistic illumination (see 

section 4.5. for detailed description).
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Listing 3: Image-space radiosity (ISR) algorithm pseudo-code
RenderFrameWithISR()
{

/// Setup render targets
SetupMRTBuffers(CLR, NRM, DPT);

/// Clear G-buffer
Clear(color, depth, stencil);

/// Render scene (geometry) with selected technique
RenderLevel(technique = “std”);

/// Downsample G-buffer into 4x coarse buffers
CLR_4 = DownsampleBuffer(CLR);
NRM_4 = DownsampleBuffer(NRM);
DPT_4 = DownsampleBuffer(DPT);

/// Perform ISR/SSAO calculations on coarse buffers
ISR_4 = RenderISR(CLR_4, NRM_4, DPT_4);
/// Blur coarse result buffer
ISR_4_tmp = BlurHorizontal(ISR_4);
ISR_4 = BlurVertical(ISR_4_tmp);

/// Final lighting composition + bilateral upsampling ISR/SSAO
LGT = Lighting(CLR, NRM, DPT, ISR_4, DPT_4);
/// Show final buffer (copy into back-buffer)
Present(LGT);

}
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Figure 4.2: ISR rendering pipeline 
(a) render G-buffer in MRT pass; (b) downsample into 4 times smaller buffer; 

(c) ISR and SSAO generation pass; (d) filtering ISR and SSAO buffers with Gaussian blur; 
(e) final composition with direct and indirect lighting components
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4.3. Reconstructing world position (linear eye-space z method)

During screen-space ambient occlusion or screen-space color bleeding calculation there 

is a necessity to retrieve world space coordinates of the adjacent pixels. In other words, we 

need to reconstruct a specified number (i.e. 24) of world space coordinates per each screen 

pixel.  That  means  we  need  to  perform  the  calculations  as  fast  as  possible  to  avoid 

performance issues. 

Figure 4.3: Viewing camera frustum

The  idea  is  to  calculate  specific  frustum far  plane  orientation  vectors f o , f u , f v  

which multiplied by the normalized linear z coefficient will result in the expecting view or 

world space 3D position.

At first, we need to store linear eye-space z value instead of post-perspective z coordinate 

during MRT rendering. We normalize this value by dividing it by the frustum far coefficient. 
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The HLSL shader code looks as follows: 

Listing 4: Render depth buffer in MRT pass
/// Vertex shader code
float4 pos_in_world = mul(input.Position, WorldMatrix);
float4 pos_in_view = mul(pos_in_world, ViewMatrix);
output.Depth.x = pos_in_view.z * Frustum.w; // (equivalent to: 
pos_in_view.z / Frustum.z)

/// Pixel shader code
output.Depth = float4(input.Depth.x, 0, 0, 1);

To summarize the depth buffer creation, we store the linear z from camera space divided 

by the far frustum plane value zf instead of the post-perspective z from projection space.

Afterwards, in order to get the 3D view/world space position from depth buffer we need to 

denote the camera far plane point according to the specified screen coordinates. In order to 

achieve this we need to calculate three vectors f o , f u , f v as shown in figure 4.3.

For the view space we simply need to calculate the upper-left corner of camera frustum in 

view space: 

f x=z f tan 
2


f y=aspect⋅ f x

f z=z f

f w=
1
z f

(23)

where z f is the camera far plane,  is the vertical field of view and aspect means the 

screen resolution width to height aspect. We also keep
1
z f

 in fw coordinate to avoid division 

operation in the vertex shader.
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Having the upper-left corner of camera frustum we can deduce any point in frustum using

f o , f u , f v vectors (see figure 4.3):

v x , y = f o x f u y f v (24)

therefore 3D view space position has the following form:

v x , y = f ox f u y f v=− f x , f y , f z x 2 f x ,0,0 y 0,−2 f y , 0=x f x ,− y f y , f z

For 3D world space position reconstruction we need to transform f o , f u , f v vectors into 

world space by multiplying them by inverse view matrix M v
−1 .

At this point we have everything we need to reconstruct 3D world/view position form depth 

buffer in a very efficient way.

Pixel shader code using our alternative version is much more simpler now:

Listing 5: 3D view/world position reconstruction from screen space
/// p.xy [0..1, 0..1], p.z - sampled linear eye-space z
float3 ScreenSpaceToCS(float3 p)
{

float2 h = p.xy * 2 - 1;
return float3(Frustum.xy * h.xy, Frustum.z*p.z);

}

/// p.xy [0..1, 0..1], p.z - sampled linear eye-space z
float3 ScreenSpaceToWS(float3 p)
{

return CameraPos.xyz + (FrustumO.xyz + FrustumU.xyz*p.x + 
FrustumV.xyz*p.y) * p.z;

} 
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4.4. ISR step

Calculations  for  the  ambient  occlusion  and  radiosity  factors  in  ISR  method  are  being 

performed completely in screen space. The algorithm takes three input buffers:

• coarse color buffer (CLR_4);

• coarse normal buffer (NRM_4);

• coarse depth buffer (DPT_4);

and produces one output buffer (ISR_4) with illuminated pixels which approximate global 

illumination. The result buffer is being utilized in the further lighting phase. 

ISR denotes indirect lighting bounce as well as ambient occlusion factor in the following way:

for every pixel corresponding to 3D world position P with normal n, the direct radiance is 

being  calculated  from  fixed  N  neighborhood  samples  mapped  over  the  surrounding 

hemisphere,  each  covering  the  solid  angle  of
2
N using  the  radiosity  equation  in  the 

following form :

LP X =P
2
N

F PX L X (25)

where LP X  is  the  radiance  at  point  P coming  from  point  X, P is  the  reflectance 

sampled from alpha  channel  of  CLR_4, N is  the  number of  samples, F PX is  the form 

factor between points P and X and finally LX is the initial radiance at point X sampled from 

RGB channels of CLR_4. Equation (25) calculates color bleeding from point X into point P 

and represents derived form of radiosity equation (8). 
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Figure 4.4: Pixels as patches in 3D space

As shown in figure 4.4, each pixel on the screen corresponds to the surface patch in 3D space 

with normal vector and associated area based on the camera space z component sampled from 

the depth buffer. This statement facilitates calculation form factors between adjacent pixels 

which is fundamental in determining the radiance value.

Having pixel P and the neighborhood samples A,B,C,D transformed into world space we can 

calculate the form factor from equation (6) straightforwardly.

We also denote SSAO at point P by determining the amount of occlusion by treating each 

neighborhood sample as a spherical occluder to point P. We utilize the equation (14) in the 

following form:

SSAOP  X =2
N 1−1− r

∣PX∣
2⋅max n⋅PX ,0 (26)

where SSAOP  X  is the amount of occlusion at point P caused by occluder at X, r is the 

occluder radius based on the distance in camera space sampled from the depth buffer and n

is the normal at point P sampled from the normal buffer. 

Both radiance and ambient  occlusion components  are  being accumulated per pixel  in  the 
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output ISR_4 result buffer.

Listing 6: Per-pixel ISR step algorithm pseudo-code
for each pixel (input TexCoord0)
{

n0 = decode(sample normal from NRM_4 at TexCoord0);
z0 = sample z from DPT_4 at TexCoord0;
p0_ws = ScreenSpaceToWS(TexCoord0, z0);

ao = 0;
gi = (0,0,0);

for (z=0; z<num_samples; z++)
for (x=0; x<num_samples; x++)
{

tx1 = calculate offset for SSAO sample
tx2 = calculate offset for ISR sample
n1 = decode(sample normal from NRM4 at tx1);
n2 = decode(sample normal from NRM4 at tx2);
z1 = sample z from DPT_4 at tx1;
z2 = sample z from DPT_4 at tx2;
c1 = sample color from CLR_4 at tx1;
c2 = sample color from CLR_4 at tx2;
p1_ws = ScreenSpaceToWS(tx1, z1);
p2_ws = ScreenSpaceToWS(tx2, z2);

/// Calculate ISR factor from equation (25)
gi += CalculateIsrFactor(p0_ws, p2_ws, n0, n2, z0, z2, c2);

/// Calculate SSAO factor from equation (26)
ao += CalculateSsaoFactor(p0_ws, p1_ws, n0, z0, z1);

 }

return float4(gi.xyz, ao);
}

4.5. Lighting phase

After filling the buffer with ambient occlusion and indirect lighting factors we can go 

through the ultimate per pixel lighting calculations. The most important part of the lighting 

phase is the upsampling from coarse ISR_4 buffer into the native resolution before the final 

lighting calculations for the corresponding pixel. The most intuitive bilinear filtering during 
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upsampling  causing  discontinuities  in  the  receiver  geometry  visible  across  the  object 

silhouettes.  To  address  this  issue  we  have  changed  the  interpolation  kernel  and  handles 

upsampling with a variant of bilateral filtering [85][25][57][61]. For each target pixel we take 

four samples from the coarse ISR_4 buffer and interpolate them through weights based on 

their  difference  with  the  depth  of  the  corresponding  pixel.  This  approach  leads  to  the 

contribution  of  source  samples  that  are  similar  to  the  target  pixel  and  greatly  reduces 

discontinuities between distant pixels.

Given the target pixel p at specified location and corresponding 2×2 block of coarse 

source samples indexed by i=1,2,3,4 we denote the interpolation weights by:

w i '=w i
b wi

z (27)

where the individual weight factors are defined as following:

w i
b={1− x1− y  , x 1− y  , 1−x  y , xy }

w i
z= 1

∣z p−z i∣

w i
b corresponds to the standard bilinear weights determined by the 2D position (x, y) of the 

target  relative  to  the  source  samples  whereas w i
z denotes  the  dimensionless  bilateral 

upsampling weights based on the difference with the depth of the source samples and target 

pixel.

Final weight factors used for interpolation are being normalized using the formula:

w i=
wi '

∑
j=1

4

w j '
(28)
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As mentioned in  [76] it is possible that all four unnormalized weights w i ' are nearly zero 

which means no coarse sample sufficiently matches the target pixel. To address this issue we 

could perform an additional pass with an accurate shading calculations utilizing the entire list 

of contributing proxies. This problem however arises at very few pixels along silhouettes and 

has been neglected throughout this dissertation since no visual artifacts has been perceived.

Once the ISR information has been leveraged, we can compute the final pixel illumination 

applying the formula as follows:

L final= C0 k dl saturate LSSAO1−k SSAO  L ISR k ISR (29)

where:

• C0 is the color sampled from CLR color buffer at the corresponding pixel location;

• k dl is the direct lighting coefficient;

• LSSAO is the weighted ambient occlusion factor;

• k SSAO is the ambient occlusion power (from 0 to 1);

• L ISR is the weighted indirect lighting factor (calculated from equation 25)

• k ISR is the indirect lighting power (from 0 to 1).

By changing the k SSAO and k ISR we can change the contribution of ambient occlusion and 

indirect lighting factors. These factors have been balanced experimentally to get the most 

convincing results.

Pseudo-code  below  represents  the  shader  which  calculates  per-pixel  lighting  including 

ambient occlusion and indirect lighting components:

43



Listing 7: Per-pixel lighting pseudo-code
for each pixel (input TexCoord0)
{

n0 = decode(sample normal from NRM at TexCoord0);
z0 = sample z from DPT at TexCoord0;
c0 = sample color from CLR at TexCoord0;
p0_ws = ScreenSpaceToWS(TexCoord0, z0);

isr = (0,0,0);
ao = 0;

float4 bilinear_weights = CalculateBilinearWeights();
float4 bilateral_weights = CalculateBilateralWeights();
float4 weights = bilinear_weights * bilateral_weights;

coarse_isr = get 2x2 block of ISR_4 source samples;
isr = accumulate coarse_isr samples using weights factor;

k_dl = calculate direct lighting using n0;

if (shadowing enabled)
{

sf = CalculateShadowingFactor();
k_dl = k_dl * sf;

}

return c0.xyz * k_dl * saturate(ao+1-k_ssao) + k_isr*isr.xyz;
}

The above listing modifies the direct lighting factor when shadowing calculations are 

being enabled (see the next section for more details).

4.6. Shadowing

Improved shadowing algorithm based on exponential shadow maps [68][69][2][70] has 

been implemented to increase visual quality of rendered images. ESM derives from shadow 

mapping  technique  [52][55][79] and  denotes  the  shadowing  factor  by  evaluating  the 

continuous exponential function of the distance between shadow caster and shadow receiver:

f e r , o=e−cr−o  (30)
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where c is a constant coefficient which modifies the difference between the shadow map pixel 

value and the depth value in the light space (r-o).  This approach alleviates the difference 

between shadowed and lit  regions  resulting  in  sort  of  soft  shadowing effect  which  gives 

significantly higher quality shadows. The c coefficient can be used to control the level of 

softness on the border of the shadowed regions.

Comparing to standard shadow mapping technique,  ESM introduces shadow map filtering 

step:

• render shadow map (depth map) from the light point of view;

• filter (blur) the shadow map (i.e. using Gaussian blur technique);

• render the scene and determine the shadowed regions taking advantage of exponential 

function fe.

Figure 4.5: Shadowed regions quality differences
starting the left side: a) standard shadow mapping technique; b) PCF technique; c) ESM technique
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The  shadow map  generation  process  remains  the  same as  for  the  standard  shadow 

mapping algorithm. The next  step is  to blur  the shadow map using floating point  format 

temporary  texture.  The  results  presented  in  Figure  4.5 are  achieved  by logarithmic  blur 

utilization explained in [68].

The filtered shadow map is used during deferred rendering full screen quad lighting 

phase. Each pixel is transformed from screen space into the world space and then into the ligh 

space to determine the shadow factor through the equation 30. Additionally, percentage cloder 

filtering (PCF) technique has been applied to reduce aliasing and roughness artifacts on the 

shadowed  region  border.  The  HLSL  code  below  introduces  ESM+PCF  algorithm 

implementation details:

Listing 8: ESM shadowing with PCF in deferred rendering pass
float4 ls = mul(float4(p0_ws.xyz, 1.0f), LightViewProjMatrix);
ls.xy = float2(0.5f, 0.5f) + 0.5f *  ls.xy;
ls.y = 1.0f - ls.y;

#if SHADOWS_ESM == 0
float eps = 0.005f; 
shadow_factor = (tex2D(SamTexShadowMap, ls.xy) + eps < ls.z) ? 0.0f: 

1.0f;
#else
    

/// Calculate bilateral weights
float2 SM_SIZE = float2(512 ,512);
float2 unnormalized = ls.xy * SM_SIZE;
float2 fractional = frac(unnormalized); 
unnormalized = floor(unnormalized);

float z_bias = 0.0f;
float zw = ls.z;

    
float4 shadow_s;

shadow_s.x = zw - tex2D( SamTexShadowMap, (unnormalized.xy + 
float2(0,0))/SM_SIZE ) - z_bias;  

shadow_s.y = zw - tex2D( SamTexShadowMap, (unnormalized.xy + 
float2(1,0))/SM_SIZE ) - z_bias;  

shadow_s.z = zw - tex2D( SamTexShadowMap, (unnormalized.xy + 
float2(0,1))/SM_SIZE ) - z_bias;  

shadow_s.w = zw - tex2D( SamTexShadowMap, (unnormalized.xy + 
float2(1,1))/SM_SIZE ) - z_bias;  
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shadow_s = max(shadow_s, 0.0f) * saturate(dot(-n0, normalize(p0_ws.xyz-
SunPos.xyz)));

float4 shadow4 = exp(-90.0f * shadow_s);

shadow_factor = lerp(lerp( shadow4.x, shadow4.y, fractional.x ),
lerp( shadow4.z, shadow4.w, fractional.x ),

                  fractional.y );
#endif

4.7. Discussion

During final  per-pixel  lighting  calculations  the ambient  occlusion  power k SSAO and 

indirect lighting power k ISR coefficients have been defined to manipulate the intensity of the 

corresponding factors.  For  the sake of  this  dissertation  these values  have been set  to  0.5 

resulting in subtle but visible ambient occlusion and indirect lighting contribution. 

More intuitive way of 3D view/world space position reconstruction from depth buffer is 

to  multiply  the  screen-space  vector  by  the  inverse  of  view/view-projection  matrices  and 

divide by w coordinate (apply reverse transformation). This solution, however, requires more 

math operations  and turned out  to  be over  than twice slower than the linear  eye-space z 

method described in section 4.3. 

ESM method with PCF technique creates very realistic soft shadows as presented in 

Figure 4.5. For high quality distant shadows a technique called cascaded shadow maps (CSM) 

[22] can be used which fits properly as an extension to the proposed solution. There is also a 

possibility to render ESM+PCF shadows into the separate screen-sized buffer and perform 

full screen filtering to get shadows even more smoother.
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5. Experiments and evaluation

In  this  chapter  we  present  the  practical  approach  of  the  ISR  algorithm  through  
experiments  on  different  kinds  of  virtual  scenes.  At  the  very  beginning  we  describe  the  
schedule  of  the  experiments  and  also  introduce  the  tools  and  packages  that  have  been  
utilized. Subsequently, we conduct the experiments on different types of virtual scenes and  
present the results.

5.1. Tools

This section introduces tools and libraries utilized to examine the ISR algorithm. We 

start  by  describing  POV-Ray tool  which  has  been  used  to  generate  very  realistic  model 

images.  Next  section  presents  3DSMAX with  MentalRay tool  which  also  generates  high 

quality realistic images applicable in the movie industry. 3DSMAX is also used for managing 

and  exporting  3D virtual  scene  into  V-Engine  tool  described  in  the  consecutive  section. 

Finally, we introduce author's Imalyzer tool used for evaluating generated images and present 

brief  description  of  Perl  dynamic  programming  language  utilized  for  conducting  the 

experiments.

5.1.1. POV-Ray

POV-Ray [60] (The Persistence of Vision Ray-tracer) is a computer graphics application 

for  creating  photo-realistic  computer-generated  images  and  animations  using  ray  tracing 

techniques. The main renderer reads the scene description stored in human-readable script and 

produces very high quality images with realistic with advanced lighting, reflections, shadows 

and other effects. The most important features of POV-Ray are:

• easy to use scene description language;

• very high quality output images (up to 48-bit color);

48



• different light types, Phong and specular highlighting for realistic lighting;

• inter-diffuse reflection (radiosity) for realistic global illumination effect;

• photon mapping for reflections, refractions and caustics;

• natural phenomena effects like atmosphere, ground fog and rainbow;

• particle media for clouds, dust, fire or steam modeling.

Figure 5.1: Office by Jaime Vives Piqueres, rendered with POV-Ray, 2004

The most important feature is the ability of accurate radiosity calculations via ray tracing 

method.  The  full  feature  list,  description  and  tutorials  can  be  found  in  POV-Ray 

documentation page [60]. 

Note: all POV-Ray renderings in this dissertation were made on the POV-Ray version 3.7 beta 

32 .
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5.1.2. 3DSMax and MentalRay

3D Studio MAX® is  a  professional  modeling,  animation and rendering commercial 

package developed by Autodesk® Media and Entertainment  [8].  3DSMAX is intended to 

produce  high  quality,  photo-realistic  images  used  in  the  creation  of  top-selling  computer 

games and award-winning film and video content. The application has a built-in off-line high 

quality rendering plug-ins, such as Mental Ray [51] by Mental Images, or RenderMan [58] 

developed by Pixar Animation Studios.

Figure 5.2: A-Wing in the forest rendered with MentalRay

Mental  ray  is  a  3rd party  application  which  produces  high  quality,  photo-realistic 

computer images using ray tracing method. The most important future of mental ray is the 

ability of high performance parallelized rendering on multi cores and across render farms 
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which significantly improves the computation time. The tool has a capability to simulate any 

combination of diffuse, glossy and specular light reflection and transmission. It also provides 

support for caustics and physically correct simulation of global illumination utilizing photon 

maps.

Mental ray has been employed in the several recent films, including Hulk, Matrix Reloaded, 

Matrix Revolutions, or Star Wars Episode II: Attack of the clones.

5.1.3. V-Engine

V-Engine  is  an  object-oriented  graphics  rendering  engine  written  in  C/C++,  fully 

designed and implemented by the author for the sake of testing and verifying various 2D/3D 

graphics algorithms. The rendering architecture is designed to be simple, flexible and easily 

applicable via Lua scripts giving the ability to control the whole rendering process from the 

user level. Since the engine has a long list of features (see below) and it is well optimized, it 

can  be  used  as  a  basis  for  making  video  games  or  other  real-time  computer  graphics 

application.

V-Engine was used to audit the ISR method from the practical point of view. The key 

features of V-Engine are as follows:

• neat  and  robust  object-oriented  architecture  based  on  easily  implementable  

interfaces;

• clean and well designed C++ implementation of engine classes;

• Direct3D  9  renderer  implemented  via  easily  extensible  and  flexible  platform 

independent  rendering  system  (can  be  easily  extended  to  OpenGL,  Direct3D  

10/Direct3D 11, or software rendering library support) [1];

• support for multi-threaded rendering tasks via separate render queues;

• dynamic visibility determination through frustum culling, occluders and portals;
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• powerful  compositor  system  which  allows  to  control  every  step  in  the  rendering  

pipeline via simple and easily configurable LUA [41] scripts;

• example post-processing scripts, like: screen-space ambient occlusion, depth of field,  

bloom, tone-mapping, motion-blur, sepia, radial-blur, glass, tiling and ISR;

• highly customizable geometry support via different vertex declarations and geometry  

streams (integration with 3DSMax exporter tool);

• support for all modern per-pixel lighting and rendering techniques including bump-

mapping,  parametrized  Phong  lighting,  virtual  displacement  mapping,  deferred  

shading dynamic lighting, etc.;

• billboarding for 3D-sprite graphics;

• support  for  sky-boxes,  sky-domes,  sky-planes  and  layered  clouds  for  natural  

atmospheric effects simulation;

• flexible terrain system based on height maps with level-of-detail support for fast and  

efficient large-scale terrain rendering;

• dynamic shadowing using real-time generated exponential shadow maps for smooth  

shadows;

• powerful  material  and  shader  system  with  HLSL support  allows  to  manage  and  

modify materials in real-time without recompiling the code;

• support for different texture formats, like: PNG, DDS, JPEG, BMP and DDS; support  

for different texture types: 1D, 2D, volumetric textures and cube maps;

• resource  management  through  virtual  file  system which  allows  to  load  data  from  

memory, HDD, or ZIP archive files transparently;

• rendering to texture support allows for real-time reflections and static scene captures;

• extensible event system for efficient inter-system communication;

• scripting support via LUA scripts;

• flexible, object-oriented GUI system architecture  [64] with basic predefined widgets  

and container controls;
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• built-in POV-Ray scene description language exporter.

5.1.4. Imalyzer

Imalyzer (Image Analyzer) is an author's application for comparing the quality of the 

specified  image  files.  The  program  operates  on  pixel  color  values  and  produces  error 

calculations between two input  images.  Imalyzer  has also the ability to calculate  Pearson 

product-moment  correlation  coefficient  which  is  utilized  to  verify  the  quality  of  the 

corresponding image with relation to the model image.

5.1.5. Perl

Perl  [89][74] is a high-level, general purpose dynamic programming language which 

has been developed by Larry Wall since 1987. The overall structure of Perl is borrowed from 

C, which means it is a procedural language with variables, expressions, statements, control 

structures and subroutines.

Perl is mostly used for text manipulation and reporting but it also handles wide range of  

tasks including system administration, web development, network programming games and 

GUI development.

5.2. Experiment course

In  this  section  we  describe  the  complete  experiment  process  applied  for  the  ISR 

algorithm evaluation. First we present the main concept along with the experiment pipeline. 

Subsequently, we go through the detailed description of each step of the experiment process 

and finally we summarize the observations and reveal the results.
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5.2.1. The idea

The main purpose of the experiment is to compare the quality of real-time rendered 

images using both standard direct lighting technique and ISR technique for different types of 

virtual scenes. Both images are compared against the model image rendered off-line using 

advanced time consuming ray-tracing algorithm. The image that is  less different from the 

model image (has a higher similarity level) is considered to have higher quality.

We use the following notation throughout the experiment process:

• I DL stands  for  the  image  rendered  in  real-time  with  standard  direct  lighting 

technique;

• I ISR stands for the image rendered in real-time with ISR algorithm;

• I POV stands for the model image rendered using POV-Ray application.

For  evaluation  purposes  we  have  prepared  a  dozen  of  different  virtual  scenes 

representing diverse environments starting from simple Cornell radiosity box, through simple 

objects  and indoor rooms, corridors to open space wild-west scenarios with terrain,  trees, 

vegetation, characters, animals and objects like wagons, boxes, cans, debris, fences, etc. The 

variety of virtual scenes has a significant meaning during the experiment since we wanted to 

be sure that we have performed the tests on as much general input as possible. 

Additionally, we have created an input script file containing the list of camera views for each 

scene.  Script  file  can  be  created  via  V-Engine  simulator  manually,  or  automatically  by 

drawing random camera view parameters. The main idea is to generate the different scenarios 

for the comparisons between direct lighting and ISR techniques. 

Collected input scenes along with the script containing the list of camera views go to the V-

Engine application which for each case generates the following:

• snapshot image with standard direct lighting method;
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• snapshot image with ISR lighting algorithm applied;

• POV-Ray  input  script  with  corresponding  camera  view  parameters  and  3D  scene 

information.

The  snapshots  are  being  stored  in  PNG  files  (bitmap  image  format  with  lossless  data 

compression) for further evaluation. POV-Ray scripts are being passed through the POV-Ray 

renderer  application  to  produce  model  images  corresponding  to  the  V-Engine  snapshots. 

Finally, Imalyzer tool compares the generated images to perform image quality analysis.

Figure 5.3: General experiment pipeline

The figure above demonstrates the general experiment pipeline which will be discussed 

more accurately in the following sections.

5.2.2. Test sets

Different  types  of  test  scenes  have  been  carefully  selected  for  the  ISR  algorithm 
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evaluation. We have created several simple scenes, like group of colored primitives, office, 

garage scene or Cornell radiosity box which are widely used to determine the accuracy of 

rendering software. Additionally, we have randomly selected almost three hundred test cases 

from commercial game “Call of Juarez” to verify our algorithm in true, existing project.

Call of Juarez [14] is a FPP Western-themed shooting PC/XBox360 game developed by 

Techland  [83] and published in 2007 by Ubisoft Entertainment  [86].  The game is loosely 

based  on a  number  of  Western  movie  hits  from sixties  and  early  seventies.  Many game 

reviewers  appreciated  its  game-play  and  graphics  focused  on  high  level  of  realism, 

breathtaking environments and fantastic natural phenomena effects introducing great Western 

atmosphere.

Figure 5.4: Call of Juarez in-game screenshot 
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Variety of different locations and scenarios makes Call of Juarez game a very good ISR 

algorithm test case (world of COJ is dynamic, complex and fulfilled with diverse scenarios, 

like indoor house interiors, outdoor mountainous terrain covered with complex vegetation, 

etc.). 

Total input test sets consist of 80 pictures taken on simple scenes (like Cornell radiosity 

box,  office,  garage)  and  147  screenshots  grabbed  from different  scenarios  of  COJ  game 

(Western themed town, saloon, jail, forest, farm).

5.2.3. Collecting snapshots

V-Engine  application  gives  the  ability  to  load  and  visualize  any  3D  virtual  scene 

prepared in 3DSMAX. The program in its interactive free-camera mode allows to define the 

list of camera views by simply moving and rotating the camera around the scene and marking 

samples for off-line rendering. After collecting snapshots we can run the program in special 

mode which  retrieves  the  camera  views  and render  images  utilizing  both  standard  direct 

lighting and ISR lighting techniques. The whole process is very similar to taking the same 

photograph with different camera settings.

Additionally,  each  snapshot  generation  produces  POV-Ray  readable  script  for  the 

reconstruction  of  exact  take  using  precise  ray-tracing  method.  V-Engine  outputs  radiosity 

settings, camera view parameters, point and directional lights and the scene geometry.

5.2.4. POV-Ray rendering

POV-Ray renderer application takes the V-Engine output script and generates the model 

image using accurate ray-tracing techniques for the radiosity calculations. The example script 

file looks as follows:
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Listing 9: Fragment of a POV-Ray script exported by V-Engine

global_settings {
radiosity {
brightness 2.4
pretrace_start 0.08
pretrace_end 0.01
count 250
error_bound 0.25
recursion_limit 2
}
}

light_source {
<2e+006,2e+006,2e+006> rgb 1.3 shadowless parallel point_at <0,0,0>}

camera {
location <1.64971,3.74113,-2.69074>
direction <-0.337043,-0.764329,0.54973>
up <-0.399505,0.644827,0.651609>
right <1.1367,0,0.696916>
look_at <-1.72072,-3.90216,2.80656>
angle 75.1782
}
background { color rgb < 0.0, 0.0, 0.0 > } 

object {
// element name: Plane01
mesh2 {
vertex_vectors {
25
<-3,0,-3>,  <-3,0,-1.5>,  <-3,0,0>,  <-3,0,1.5>,  <-3,0,3>,  <-1.5,0,-3>,  <-1.5,0,-1.5>,  <-
1.5,0,0>,  <-1.5,0,1.5>,  <-1.5,0,3>,  <0,0,-3>,  <0,0,-1.5>,  <0,0,0>,  <0,0,1.5>,  <0,0,3>, 
<1.5,0,-3>, <1.5,0,-1.5>, <1.5,0,0>, <1.5,0,1.5>, <1.5,0,3>, <3,0,-3>, <3,0,-1.5>, <3,0,0>, 
<3,0,1.5>, <3,0,3>, }
normal_vectors {
25
...
The radiosity settings used for POV-Ray rendering have the following meaning:

radiosity parameter value notes
brightness 2.4 initial brightness factor for the scene

pretrace_start 0.08
controls the radiosity pre-trace gathering step

pretrace_end 0.01

count 250 number of rays that are sent out whenever a new 
radiosity value has to be calculated

error_bound 0.25 the fraction of error tolerated; a compromise between 
rendering speed and the final image quality 

recursion_limit 2
integer value which determines how many recursion 

levels are used to calculate diffuse inter-reflection; the 
upper limit is 20 

Table 1: POV-Ray radiosity configuration block 
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The radiosity parameters  have a  significant  impact  on the rendering time and have to  be 

chosen very carefully. The recursion limit has been set to 2 which means that only ambient 

occlusion factor and the 1st bounce of indirect  lighting should be calculated (ISR method 

during this experiment falls under the same limitations).  Count and  error bound parameters 

strongly affects the rendering time and the level of indirect lighting approximation and have 

been chosen experimentally to obtain satisfying results. 

All rendering have been performed in 1024x768 pixels resolution with anti-aliasing option 

disabled.

5.2.5. Output image analysis

The  final  stage  of  the  experiment  is  to  compare  the  real-time  rendered  snapshots 

according to the model image generated by POV-Ray renderer application. Imalyzer takes two 

images  as  an input  and outputs  calculated  mean error  as  well  as  the  Pearson correlation 

coefficient.  The  tool  has  also  the  ability  to  produce  difference  images  which  depict  the 

negative of the absolute error between corresponding images.

Figure 5.5: Imalyzer input images (a,b) and the output negative difference image (c)

Figure  above  presents  the  image  generated  with  direct  lighting  method  (a),  the  image 

generated with ISR method (b) and the corresponding negative of the absolute error (c). In 
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this case we have visualized the negative of the isolated ISR factor.

5.3. Results

This section presents the results obtained with ISR algorithm described in chapter  4.  

Our algorithm has been tested in various, mostly game typical, simple and complex scenes 

described  in  section  5.2.2.  First  we  reveal  the  performance  results  and  then  we perform 

quality and perception analysis.

5.3.1. Performance 

All renderings in this dissertation were performed on Intel 2.33 GHz Core 2 Quad and 

ATI/AMD Radeon HD 4870 graphics board. The output screen resolution is 1024x768 pixels 

whereas the coarse ISR_4 buffer is 512x384 (4 times smaller). Since our method performs all 

computations purely on GPU, the CPU has no impact on real-time rendering performance 

(only POV-Ray off-line renderings were performed on CPU).

ISR algorithm works completely in image space which means it does not depend on the scene 

complexity therefore it might be used to calculate lighting for simple as well  as complex 

scenes analogically with the same computational workload. Table 2 shows the timing values 

for the experiment render phase; direct lighting and ISR calculations were done on GPU at 

real-time  framerates  (see  the  average  FPS)  whereas  POV-Ray  ray-traced  images  were 

calculated on CPU.

Table 2: Performance results for 227 rendered images
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ISR 2,02 0,00889 112,48761

168070 740,39648 0,00135

total rendering time [s] average frame time [s] average FPS
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POV-Ray



ISR rendering time values are slightly different for each  image due to the variable scene rendering 

view  (from  200  to  500k  triangles  per  frame)  which  is  beyond  the  lighting  calculation  phase. 

Nevertheless, the minimum FPS is over 90 and the average FPS  is 112 (as the table 2 shows) which 

indicates that ISR meets one of the main requirements – it works in real-time. 

The results in table 2 were obtained for 48 samples per pixel in ISR calculations. We have tested the 

performance impact for a different number of samples per pixel.

Figure 5.6: Different number of samples per pixel: (a) 24; (b) 48; (c) 80

Figure 5.7: Performance costs for the different number of per-pixel samples
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Figure  5.7 presents different performance costs for medium complex scene (~20k triangles) 

for different number of neighborhood samples used in ISR calculations. We have noticed that 

the quality changes are slightly visible for over than 80 samples per pixel - mostly because of 

low impact between distant pixels (bigger distance in 2D screen space goes together with 

bigger distance in 3D world space). All further experiments are established with number of 80 

samples per pixel.

ISR calculation time for each image is constant and can be denoted from the table 2 as:

t ISR=
T ISR−T DL

number of images
=2,02 s−1,64 s

227
=1,674 ms

which does not introduce noticeable performance hit. 

The interesting fact is that ISR method works on a single GPU over than 83000 times faster 

than ray-tracing method on quad-core CPU.

5.3.2. Quality analysis

As mentioned before, we have tested the quality of ISR rendered images by comparison 

to the model image generated with accurate and time-consuming ray-tracing method. Figure 

5.8 presents the mean error obtained using both ISR and DL techniques. The experiments 

evinced  that  for  all  227  sample  images  ISR  produced  smaller  error  comparing  to  DL 

technique. Figure 5.9 shows the percentage quality gain for each individual image (the gain is 

positive  in  100%  cases).  ISR  improves  the  quality  in  average  of =5,88 %

1 /2=7,18% which positively exceeds the initial expectations. 
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Figure 5.8: Mean error for direct lighting and ISR techniques

Figure 5.9: Percentage quality gain for each image sample
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In our experiments we have also observed that the quality gain is smaller for the simple 

scenes  (first  80  image  samples).  The  reason  for  this  is  the  smaller  interrelation  between 

patches on the simple scenes caused by the bigger polygons on the scene. Quality gain for the 

simple (in our case up to 25k triangles) is in the rank from 0,21% to 3,34% whereas for the  

complex scenes (from 25k to 500k) from 2,51% to 14,69%. Figure  5.13 demonstrates the 

images with the biggest (over 12%) improvement in the quality for complex scenes.

We  have  also  examined  the  Pearson  correlation  coefficient  to  compare  linear 

dependence between DL and ISR techniques. As shown in figure 5.10 there are some cases 

when the ISR correlation coefficient is worse than the DL correlation coefficient (the values 

below 0). We have demonstrated the best and the worst cases for the correlation coefficient 

gain in figures 5.11 and 5.12 respectively. They also show the corresponding images obtained 

by POV-Ray during  ray-tracing  phase.  The negative  correlation  gain  cases  show that  the 

indirect lighting bounce has too much impact and should be decreased. After tweaking the 

indirect lighting power coefficient kISR (from 0.5 to 0.1) we were able to achieve positive 

correlation gain for the specified images.

In overall, without any tweaking, the average Pearson correlation coefficient increased 

from =0,8867 to =0,8870 to ISR method advantage.

Since ISR algorithm operates on individual pixels we have also examined the pixel level 

efficiency: there were 178 520 064 pixels in 227 images at 1024x768 resolution. 176 824 189 

ISR generated pixels were closer to the pixels taken from model images, which means that 

99,05% of all pixel values have been improved.
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Figure 5.10: Percentage quality gain for each image sample

Figure 5.11: Best case (positive) correlation coefficient gain (image 150)

Figure 5.12: Worst case (negative) correlation coefficient (image 190)
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5.3.3. Perception aspect

Apart  from  the  mathematical  point  of  view  we  can  observe  perceptual  quality 

improvements with ISR method which help in better understanding 3D shape of the scene. 

Figures 5.13, 5.14 and 5.15 show the difference between flat and uniform surfaces lit with the 

DL method (left side) and much more credible surfaces lit with the ISR method (right side). 

We  have  noticed  that  ISR  algorithm brings  out  more  details  mostly  due  to  the  lighting 

transport  calculations  between  adjacent  patches.  If  the  local  geometry  is  sufficiently 

represented by the nearby pixels it receives more indirect illumination and becomes more 

distinct as shown in the figures below. Ambient occlusion term provides better perceiving of 

true distances  between objects  in  3D space which  is  noticeable  especially on the  images 

representing indoor scenes (figures 5.14 and 5.15).

Figure 5.16 shows color bleeding between objects with different material properties. It 

also demonstrate the ISR technique in cooperation with exponential shadow maps technique 

described in section 4.6.   

5.3.4. Discussion

Since method described in this dissertation works completely in the image space it is 

not  limited to  static  objects  only.  ISR does  not  perform any off-line pre-calculations  and 

computes  lighting  equations  each  frame  from  scratch  which  means  it  can  handle  fully 

dynamic scenes with object transformation, morphing, skinning, skeletal animation, or any 

other mesh geometry deformation.

ISR technique has also been tested on equivalent nVidia GeForce GTX 260 graphics 

board and the results were very similar in terms of performance and quality. 
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Figure 5.13: Comparison between direct lighting (left) and ISR (right) techniques for open-space 
environment scenes
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Figure 5.14: Comparison between direct lighting (left) and ISR (right) techniques for indoor scenes 
(room)
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Figure 5.15: Comparison between direct lighting (left) and ISR (right) techniques for indoor scenes 
(barn)

69



Figure 5.16: Comparison between direct lighting (left) and ISR (right) techniques for simple scenes 
with soft shadows
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6. Conclusions

This  chapter  contains  the  final  summary  of  the  dissertation  along  with  the  
conclusions. We also present the ideas of possible extensions and future work.

The novel image-space radiosity (ISR) algorithm along with the implementation details 

and comprehensive evaluation has been examined. We have shown that ISR algorithm models 

light  transport  more accurately than standard direct lighting techniques  at  real-time frame 

rates.  ISR computes  the  local  radiosity  taking interrelations  between nearby pixels  under 

consideration which is used to imitate ambient occlusion and global illumination  distribution.

Let's have a look at the pros and cons of the proposed solution:

Pros:

• algorithm is independent on the scene complexity; the most vital advantage of ISR 

algorithm is that it works the same for the simple scenes with only a few objects (like 

the Cornell box) and for the complex dynamic outdoor scenes with millions of visible 

polygons. The algorithm operates on screen-space and does not depend on the number 

of objects that need to be illuminated. 

• algorithm  works  on  visible  pixels  only; standard  forward  rendering  performs 

lighting  calculations  for  every  primitives  sent  to  the  GPU  which  can  be  very 

inefficient, especially when the overdraw rate is high. ISR utilizes deferred rendering 

and computes each pixel illumination factor only once which is the most efficient way 

of lighting calculations;

• proven to be fast and efficient for complex and dynamic scenes (as well indoor as 

outdoor scenes); as described in the previous sections the algorithm works fast for 

both simple indoor and complex outdoor scenes (does not depend on how the scene is 
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being modeled). 

• requires no content generation pipeline changes (done completely in real-time); 

unlike the SH-based and lightmap-based lighting models ISR computes the lighting 

transport completely in real-time and does not require any pre-calculated data which 

means that the content generation pipeline remains unchanged;

• easily implementable in any existing rendering pipeline (especially when using 

deferred rendering technique); the algorithm works completely as a post-processing 

effect  and  putting  it  into  the  existing  rendering  pipeline  is  very  straightforward. 

Majority of graphics systems and engines perform post-processing phase as a separate 

step defined in external script files which means that implementing ISR can be done 

without touching the line of code;

• very well scalable into the upcoming hardware and software technology (compute 

shaders in Direct X 11); compute shader is being added to the upcoming Direct X 11 

API to take advantage of the massive parallel power in today's GPUs; advanced post-

processing techniques like ISR or SSAO can be efficiently enriched and extended in 

the upcoming graphics software and hardware;

• more accurate approximation of rendering equation than direct lighting method; 

ISR  light  model  computes  light  emitted  and  reflected  from the  nearby  geometry 

(indirect lighting), not only the direct illumination. 

• requires no additional memory, nor CPU cost; The algorithm is being calculated 

completely on the GPU. It requires additional buffers (render targets) which can be 

reused for other post-processing effects, like motion blur, depth of field, fog, etc

Cons:

• works in screen-space (quality artifacts similar when using SSAO technique); ISR 

technique introduces artifacts visible mostly on object silhouette edges (it is hard to 

correctly  blur  out  the  noise  without  interfering  with  depth  discontinuities).  The 
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bilateral  upsampling has been applied to overcome this  issue,  however it  does not 

solve to problem completely (there is a noticeable halo effect around the objects).

• view dependency and calculations the light transport between visible pixels only; 

in our model only pixels which are visible emits and reflects the indirect illumination 

in the scene.  It  can cause strange behavior,  like no indirect lighting in the certain 

conditions (i. e. the view direction is parallel to the primitive plane which means there 

are very few pixels visible causing inaccurate indirect lighting). 

• works locally – only the nearby pixels influence the corresponding one; for the 

sake of performance we are limited to use the small number of surrounding samples to 

calculate  the  light  transport.  To overcome this  issue we propose the  solution with 

variable number of samples based on the corresponding pixel depth (pixels which are 

close to the camera needs to be handled more accurately than the far ones). It is also 

possible to experiment with different filter  kernels when sampling the neighboring 

pixels.  Additionally,  we  can  extend  the  sample  quantity  on  the  newer  graphics 

hardware as we noticed very good performance there (~200 FPS).

• calculations must  be performed on coarse,  diminished buffers; for the sake of 

higher  performance  the  lighting  transport  calculations  are  being  made  on  the 

diminished buffers which needs to be finally upsampled into the native resolution. 

Upsampling may cause some artifacts on the silhouette edges (bilateral upsampling 

step is performed to overcome this issue). As mentioned before, the newer hardware 

handle better  post-processing operations in  the term of speed and it  is  possible  to 

perform ISR calculations on full native resolutions.

We present a few ideas and improvements to overcome the itemized disadvantages:

• depth peeling; depth peeling  [84] can be used to extract a number of layers which 

representing the front-most pixels that are peeled away after each pass. The main idea 

is the use of two depth tests for each pair of layers to determine to current front-most 
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layer and to exclude previously peeled layers.  Afterwards, we can calculate lighting 

transport via ISR for each layer and combine the results at the final stage which will 

bring us more information about the patches emitting and reflecting the light on the 

scene. The main drawback of this approach is the fact is requires a pass per layer 

which can lead to the performance issues (especially when complex objects are being 

rendered);

• wider FOV for better indirect lighting on border pixels; we can also extend the 

camera field of view to grab more pixels at the screen border. This approach brings the 

more  accurate  lighting  calculations  on  the  screen  borders,  however,  it  requires 

rendering the scene in higher resolution (some kind of super-sampling  [39]) which 

affects the performance and consumes more video memory;

• additional cameras; different camera views may be used to handle occluded regions 

of the scene. As proposed in [62] different camera positions can be useful for polygons 

which are viewed at an acute angle. For the sake of performance, lower resolution 

buffers may be sufficient for handling color bleeding from occluded regions.

• increase number of light bounces; the ISR algorithm is not limited to calculate only 

the ambient occlusion factor and one bounce of indirect illumination. We can very 

easily extend our method by successive iterating the lighting transport  calculations 

step to obtain multiple bounces of indirect illumination. 

To summarize, the final product of this dissertation is an extensively evaluated real-

time radiosity algorithm which can be easily implemented into any 3D real-time computer 

graphics  application.  ISR can  be  applicable  in  computer  games,  flight  simulators,  movie 

industry,  virtual  building visualizations,  CAD systems,  GUI systems,  medical  diagnostics, 

multimedia systems, or measurement data visualizations.
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A. List of abbreviations

AO Ambient Occlusion
BF Bilinear Filtering
BRDF Bidirectional Radiance Distribution Function
BSP Binary space partitioning
CAD Computer Aided Design
CPU Central Processor Unit
CSM Convolution Shadow Maps
DL Direct Lighting
ESM Exponential Shadow Maps
FOV Field of view
FPP First Person Perspective
FPS Frames per second
GI Global Illumination
GPU Graphics Processor Unit
GUI Graphical User Interface
HLSL High-Level Shader Language
ISR Image-space radiosity
MRT Multiple Render Targets
PCF Percentage Closer Filtering
PMCC Pearson product-moment correlation coefficient
PNG Portable Network Graphics
PRM Precomputed radiance maps
PRT Precomputed radiance transfer
PS Pixel Shader
RT Ray tracing
SH Spherical Harmonics
SSAO Screen-space ambient occlusion
UML Unified Modeling Language
VPL Virtual Point Light
VR Virtual Reality
VS Vertex Shader
VSM Variance Shadow Maps
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B. Notations

Symbols used throughout this dissertation:

M w world matrix

M v view matrix

M p projection matrix

M c combined matrix (compound of world, view and projection matrices)

I POV model image

I ISR ISR image

I DL Image rendered with standard direct lighting technique

D difference image

f q quality function

k a ambient light power factor

La ambient light color

k d diffuse light power factor

Ld diffuse light color

k s specular light power factor

Ls specular light color

saturate x  function which clamps value x into range [0..1]

lum p function which calculates the luminance of pixel p

X population mean

1/2 X Median of variable X

X population standard deviation

ℕ natural number set

ℝ real number set

V  x ,  visibility function from x along direction 

Q radiant energy
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 radiant flux

E irradiance

M radiant exitance

F ij form factor between patches i and j

Ai Area of patch i

i reflectance of patch i

 Wavelength of light

We also explain UML [27][56] symbols used in UML diagrams:

name : type name and type of attribute (i.e. string, float, 3D vector, or 4x4 matrix)
+Method() public class method
IClassName classes begin with „I” stands for interfaces
VClassName classes begin with „V” stands for class implementations

class aggregation
class inheritance

Table 3: UML symbols and definitions
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C. Derivation of radiosity equation

The rendering equation is the fundamental transport equation which describes the light 

transport in a three-dimensional scene. It is a recursive integral equation which is in practice 

very difficult to solve analytically (numerical techniques need to be used). This supplement 

reveals the theory behind the radiosity equation derived from rendering equation utilized in 

the dissertation entitled “Image-space radiosity lighting method for dynamic and complex  

virtual environments”.

The light transport in environments exhibiting general light emission and scattering 

introduced by Kajiya [45] is given by:

L0 x ,=Le x ,∫
x

f r x , ' ⇔Li x , ' cos  ' d' (31)

where:

• L0 - total amount of illumination (exitant radiance) at x into direction 
• Le - self-emitted light (self-emitted radiance) at x into direction 
• Li - incoming light (incident radiance) at x from direction 
• f r x , '⇔ - bidirectional reflectance distribution function (BRDF) at x for scattering from a 

direction  into direction  ' (or vice versa)
• x - specified location on a surface
•  - outgoing direction at location x
•  ' - incoming direction over the hemisphere around x
•  ' - angle between  ' and surface normal at x
• d  ' - infinitesimal solid angle containing direction  '
• x - hemisphere of directions above x

Radiance is the amount of radiant flux per unit projected area per unit solid angle, measured 

in Watt per square meter per steradian:

L= d 2
d dA⊥=

d 2
d dA cos (32)

where:
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•  - radiant power (flux) measured in Watt
• dA⊥ - unit area projected perpendicular to the direction of normal incident angle

The average radiosity Bi (measured in Watt per square meter) emitted by a patch i in such 

an environment is defined by [24] as the following:

Bi=
1
Ai
∫
Si

∫
x

L0x ,cos d  dAX (33)

where:

• Ai - surface area of patch i
• dA x - differential area at a point x
• S i - surface of patch i (set of points)

The rendering equation (31) simplifies in purely diffuse environment (self-emitted radiance 

BRDF do not depend on directions  and  ' ) into the form:

L0 x=Le x ∫
x

f rx  Lix , ' cos ' d ' (34)

Diffuse surfaces reflects light in a uniform way over the entire reflecting hemisphere which 

means that BRDF is constant for all directions  . For such a pure Lambertian surfaces we 

denote BRDF as:

f r x=
 x 


(35)

where reflectance 0 x1 represents the fraction of incident energy that is reflected at 

the surface. 

Incident  radiance Li x , '  corresponds  to  the  exitant  radiance  L0  y emitted  by the 

point y visible from x along the direction  ' , so changing the integration (34) over the 
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hemisphere x into integration over all surfaces S in the scene yielding an integral equation 

in which no directions appear:

L0 x=Le x  x∫
S

G x , y  L0 y dA y (36)

where:

•  x - reflectivity at point x
• G x , y - geometric radiosity kernel

The geometric radiosity kernel:

 

G x , y=
cos x cos y

 r xy
2 visx , y  (37)

which stands for the interrelation between x and y with additional visibility function between 

these locations (the vis function returns 1 if the point x “sees” the point y and 0 otherwise).

Interrelation  between  the  radiant  exitance B and  the  radiance L for  flux  leaving 

Lambertian surface is explained in [7] (pp. 26-27) and can be expressed as:

B=L (38)

Multiplication with  both sides of the equation (35) leads to:

B x=B0x  x∫
S

G x , y B  ydA y (39)

where B and B0 stands for radiant exitance and self-emitted radiosity respectively.

Now, the equation (33) simplifies into:
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Bi=
1
Ai
∫
Si

B xdAX (40)

To solve integral equations like (32),  the Galerkin method  [21][24] might be used which 

yields  a  continuous  operator  problem into  a  discrete  form.  As  explained in  [24],  we can 

project  the  both  sides  of  (32)  onto  a  set  of  basis  functions  and  equate  the  resulting 

coefficients.  We  approximate B x≈B ' x =∑
i

Bi 'ix  with  a  constant  basis  function

i x={1, x∈S
0, x∉S for  each  patch  i which  drives  into  the  classical  radiosity  system of 

linear equations:

Bi '=B0ii∑
j

F ij B j ' (41)

where F ij stands for the patch-to-patch form factors defined as:

F ij=
1
Ai
∫
Si

∫
S j

G x , ydAy dAx (42)

The above equation must typically be solved using numerical methods (there are no practical 

analytic solutions for this equation).
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D. V-Engine-based simulator

V-Engine development kit  is  an object-oriented graphics rendering engine written in 

C/C++ for real-time computer graphics applications. ISR software extensively uses V-Engine 

to provide simulation environment for image-space radiosity algorithm evaluation and testing. 

Attached CD-ROM disc contains binaries and full source code of V-Engine utilized during 

experiments with ISR algorithm.

The full list with V-Engine features has been included in the dissertation on pages 58-59. 

Directory structure

ISR application consists of the following modules:

• Isr/ - main application folder

◦ bin/ - contains binary (executable) files

▪ data/ - contains data files (models, material scripts, shaders, post-processing 

scripts, textures)

▪ exp/ -  contains ISR experiments result  files (final folder contains all  result 

images)

◦ scripts/ -  contains  automatic  build  scripts  (cleaning  temporary  files,  batching 

POV-Ray scripts, etc.)

◦ SDK/ - contains 3rd party middle-ware libraries utilized by V-Engine

◦ simple_app/ - ISR test application source code

◦ vengine/ - V-Engine library source code

▪ inc – library interface (C++ header files)

▪ src – library implementation (C++ source code)

Run Isr/bin/start.cmd to start ISR test application.
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Controls

ISR test application loads the default 3D scene (with car and simple primitives) and 

gives the possibility to move the camera around the scene arbitrarily:

• W, S, A, D  – camera movement (forward, backward, left side, right side)

• moving the mouse – camera rotation (changing yaw and pitch angles)

The default display mode is the ISR lighting mode with ESM shadows enabled. Use the 

following keys to change the display mode:

• F2 – default mode (ISR with ESM enabled)

• F3 – ISR only (without any shadows)

• F4 – ISR disabled (direct lighting with ESM shadows)

• F5 – ISR disabled (direct lighting without ESM shadows)

Additional post-processing effects:

• F6 – „bloom” effect

• F7 – „depth-of-field” effect

• F8 – „glass” effect

• F9 – „radial_blur” effect

• F11 – „sepia” effect

• F12 – „tiles” effect

Source code remarks

CD-ROM disc contains  full  ISR application and V-Engine library source code.  The 

most vital source code snippets are:

• Isr/simple_app/main.cpp – test application source file; it handles camera controller, 

scene management, rendering loop (post-processing effects) defined in Lua script file 
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(Isr/bin/pp.lua);

• Isr/bin/pp.lua – post-processing effects script file; it  defines how the single frame 

should  be  rendered  for  different  rendering  modes  (with  ESM  shadows 

enabled/disabled, etc.); it contains two main procedures:

◦ OnCreate() -  called  once  at  startup  (creates  required  resources,  like  render 

targets);

◦ OnRender(tech) – called every frame during the application run (tech argument 

stores current rendering technique); when ISR is enabled it calls RenderWithISR 

procedure which realizes ISR algorithm presented in the dissertation; shaders for 

ISR technique are being stored in Isr/bin/data/pp.fx file;

• Isr/bin/data/pp.fx – GPU shaders library; the most important shaders are:

◦ QuadISR – calculate indirect illumination and store into the temporary buffers 

(ISR step, chapter 4.4);

◦ QuadLighting – full-screen calculations with indirect illumination (lighting phase, 

chapter 4.5);

◦ QuadDirectLighting –  full-screen  direct  illumination  with  MRT  buffers 

utilization

All the most vital source code listings have been extensively commented and described in the 

dissertation. 

84



UML diagram with the most vital V-Engine components
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VertexDeclaration : RVertexDeclaration
InstancingData : RVertexBuffer

+CreateLight()
+RemoveLight()
+RemoveAllLights()
+Render()

VLightManager

Name : string
Position : vec3f
Radius : f loat
Paw er : f loat
Color : vec4f

VLight

Name : string
Geometry : IGeometry
Lights : ILightManager
ActiveCamera: ICamera

+OnRender()
+OnUpdate(dt)
+OnEvent()

VScene

MatView  : mat4f
MatProjection : mat4f

ZNear : f loat
ZFar : f loat
FOV : f loat
Aspect : f loat

VCamera
MatView  : m at4f
MatProjection : m at4f

ZNear : f loat
ZFar : f loat
FOV : f loat
Aspect : f loat

VCamera

ICamera

ILightManager

+AddObject()
+UpdateRenderQueue()

VGeometry

IGeometry

Name : string
WorldMatrix : m at4f

VGeomObject Parent : VGeomObject
MeshElement : IMeshElement
Material : IMaterial

VRenderableMeshElement

IRenderable

+GetRenderOp()
+PrepareForRendering()
+FillInstancingData()

MeshElement contains GPU-driven 
data for geometry rendering.

It consists of  vertex and index
buffers and def ines rendering

operation requires by the renderer.
.

IMeshElement
array of shaders

+LoadMaterial()
+UnloadAllMaterials()
+ReloadAllMaterials()

VMaterialManager

IMaterialManager

Shader : IShader
ShaderContext : IShaderContext
Array of shader constants
Array of textures

VMaterial



E. Perl test script

# POV-Ray executable location
$POV_APP="D:\\Program Files\\POV-Ray for Windows v3.7\\bin\\pvengine.exe";
# POV-Ray command line parameters
$POV_PARAMS="-d -w1024 -h768 /exit";
# Location of scripts (directory)
$POV_SCRIPTS="exp\\out";
# Input script
$ISR_SCRIPT="exp\\isr.script";

# Imalizer executable location
$IMALIZER="Imalizer.exe";

$t_gather = 0;
$t_pov = 0;
$t_imalizer = 0;

if (@ARGV < 1)
{
  $t_gather = 1;
  $t_pov = 1;
  $t_imalizer = 1;
}
else
{
  for ($i=0; $i<=$#ARGV; $i++)
  {
    if ($ARGV[$i] =~ /gather/) { $t_gather = 1; }
    if ($ARGV[$i] =~ /pov/) { $t_pov = 1; }
    if ($ARGV[$i] =~ /imalizer/) { $t_imalizer = 1; }
  }
}

print "gather = $t_gather\n";
print "pov = $t_pov\n";
print "imalizer = $t_imalizer\n";

# Store start time
sub PerfStart
{
  $time_0 = time;
}

# Calculate time duration
sub PerfEnd
{
  $time = time - $time_0;
  print "Done in $time seconds\n\n";
}

# Capture ISR images and gather POVRay scripts
sub GatherData
{
  PerfStart();
  system("simple_app.exe script=$ISR_SCRIPT job=1");
  PerfEnd();
}
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# Render POVRay scripts
sub RenderPOV
{
  PerfStart();
  # get scripts from the specified directory
  @scripts=`dir $POV_SCRIPTS\\*.pov /A:A /B /S`;

  # get number of pov scripts
  $qty = scalar(@scripts);
  print "Found $qty POV-Ray scripts\n";

  # script counter
  $idx = 1;

  # loop through all scripts
  foreach $file (@scripts)
  {
     print "Processing $idx of $qty...\n";
     system("\"$POV_APP\" $file $POV_PARAMS");
     $idx++;
  }
  
  PerfEnd();
}

# Convert POVRay generated BMPs into PNGs and remove BMPs
sub CleanupPOV
{
  PerfStart();
  
  printf "Converting from BMP->PNG...\n";
  system("bmp2png.exe -E exp\\out\\*.bmp");
  
  printf "Removing trash files...\n";
  system("del /Q exp\\out\\*.bak");
  
  PerfEnd();
}

# Imalizer comparisions
sub ImalizerTest
{
  PerfStart();
  
  open FILE, ">res.txt";
  
  # Get image list with names matching isr*01.png
  @pngs=`dir $POV_SCRIPTS\\isr_*_01.png /A:A /B /S`;

  # Image counter
  $f_counter=0;
  # Correlation 0 (mean)
  $mc0=0;
  # Correlation 1 (mean)
  $mc1=0;

  $mm0=0;
  $mm1=0;

  # for each image
  foreach $file1 (@pngs)
  {
    # Get isr*02.png and isr*03.png corresponding files
    $base = $file1;
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    $file2 = $file1;
    $file3 = $file1;
    $base =~ s/(.*_)(.*)(_01)(\.png.*\n)/\2/i;
    $file2 =~ s/(.*)(_01)(\.png)/\1_02\3/i;
    $file3 =~ s/(.*)(_01)(\.png)/\1_03\3/i;
    
    # Launch Imalizer test (store results in test0, test1)
    $test0=`$IMALIZER compare $file1 $file3`;
    $test1=`$IMALIZER compare $file2 $file3`;

    # Parse correlation and mean error values
    $c0=$test0; if ($c0 =~ m/(.*)(correlation = )(.*)/) { $c0=$3; }
    $m0=$test0; if ($m0 =~ m/(.*)(mean_error = )(.*)/) { $m0=$3; }

    $c1=$test1; if ($c1 =~ m/(.*)(correlation = )(.*)/) { $c1=$3; }
    $m1=$test1; if ($m1 =~ m/(.*)(mean_error = )(.*)/) { $m1=$3; }

    # Print data
    
    $result ="$base $c0 $m0\t$c1 $m1";
    
    if ($c1>$c0)
    { $result .= "\tc:OK"; }
    else
    { $result .= "\tc:failed"; }

    if ($m1<$m0)
    { $result .= "\tm:OK\n";}
    else
    { $result .= "\tm:failed\n"; }

    print $result;
    print FILE $result;

    $mc0 += $c0;
    $mc1 += $c1;
    $mm0 += $m0;
    $mm1 += $m1;
    $f_counter++;
  }
  
  $mc0 /= $f_counter;
  $mc1 /= $f_counter;
  $mm0 /= $f_counter;
  $mm1 /= $f_counter;

  print "$mc0 vs. $mc1\n";
  print "$mm0 vs. $mm1\n";

  close FILE;
 
  PerfEnd();
}

#--------------------
# Main test procedure
#--------------------
if ($t_gather==1) { GatherData(); }
if ($t_pov == 1) { RenderPOV(); CleanupPOV(); }
if ($t_imalizer == 1) { ImalizerTest(); }
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F. Glossary

This chapter presents Polish translations of the most important terms used throughout 

the dissertation:

albedo odbicie promieniowania przez powierzchnię
ambient lighting oświetlenie otoczenia
ambient occlusion blokowanie światła otoczenia
bilinear filtering filtrowanie dwuliniowe
color bleeding rozpływanie się kolorów
deferred shading cieniowanie odroczone
depth peeling zdzieranie głębokości
depth-of-field effect efekt głębi obrazu
diffuse lighting oświetlenie rozproszone
edge anti-aliasing effect efekt niwelowania aliasingu na krawędziach
emissive light światło emitowane
exponential shadow maps wykładnicze mapy cieni
global illumination oświetlenie globalne
image-space radiosity metoda energetyczna w przestrzeni obrazu
light attenuation function funkcja osłabiania światła
light maps mapy światła
motion blur effect efekt rozmycia w ruchu
octree drzewo ósemkowe
pixel shader program cieniujący piksele
post-processing effect efekt montażowy
radiance współczynnik promienności
radiosity metoda energetyczna
rendering equation równanie renderingu
screen-space ambient occlusion okluzja otaczająca w przestrzeni obrazu
specular lighting oświetlenie zwierciadlane
stencil buffer bufor szablonu / bufor maskujący
surface patches płaty powierzchni
vertex shader program cieniujący wierzchołki
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