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Application of Wigner transform 
for characterization of aberrated laser beams*
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The slit scan method was implemented for registration of intensity profiles along the caustics of
a laser beam. The inverse Radon transform of spatially normalized intensity profiles enables direct
computation of Wigner transform of real laser beam. The Rayleigh range, divergence angle, beam
quality factor, global degree of coherence can be determined in such a simple way. A procedure
enabling derivation of the shape of aberrated wavefornt and spherical aberration content was
elaborated. This method was applied for investigation of the aberrated laser beams generated by
cw and pulsed diode pumped lasers.
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1. Introduction

Quantitative characterization of spatial structure of a laser beam has been of vital
interest to opticians and laser physicists since the advent of lasers. Because of inherent
uncertainty of parameters of such a type of light source caused by its spatial and
temporal fluctuations as well as the state of coherence and polarization, it has been an
attractive subject of intensive theoretical research as well as measurement and
experimental works. The well established simplest parameter describing the spatial
properties of laser radiation, i.e., the beam propagation factor M2 introduced by
SIEGMAN [1], was accepted by ISO [2] as a measure of beam quality. The measurements
of M2 parameter can lead to some ambiguities, especially for untypical, asymmetric
beams, moreover it can be easily shown that quite different light beams can have the
same value of M2 parameter. Thus, additional parameters describing the state of
coherence and wavefront aberrations should be defined.

To completely describe the properties of partially coherent light, the formalism of
mutual coherence function or cross-spectral density function can be applied [3]. The
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alternative approach (however, basically connected with the previous ones via Fourier
transform) is known as a Wigner distribution method (WDM), see [4–8]. The main
advantage of WDM is the simultaneous access to intensity and phase distributions in
the far field (defined over u-angular frequency space) and in the near field (defined
over x-spatial coordinate space). Moreover, there exist at least two, well-established
experimental procedures [6, 7] enabling direct access to Wigner distribution (WD)
from experimental data. In the first one, Sagnac interferometer with inversion of field
by means of Dove’s prism is applied [6], Wigner signal being the autocorrelation of
incidence electric field is collected on a wide area detector for the given x-spatial and
u-angular positions of input mirror. In the second method, a typical set-up for
measurements of intensity distributions in the caustics can be applied. Basically, both
methods require the measurements of intensity distributions in 2D space for 1D
geometry of incident beam and 4D for 2D geometry. It was shown by EPPICH and
RENG [7] that the Wigner distribution can be found as the inverse Radon transform of
intensity distribution in the caustics. Knowing Wigner distribution of a laser beam, the
beam quality parameter M2, the spatial coherence degree K2 and the coherence length
can be calculated [9, 10]. The WDM can also be applied to derive deterministic
wavefront aberrations of a laser beam [8, 11, 12].

The goal of this work is to implement the Wigner transform for characterization
of aberrated beams generated by diode pumped lasers. The main properties of Wigner
transform and method of wavefront retrieval are described in Sec. 2. In Section 3, the
experimental set-up for intensity measurements in caustics, based on the slit scan
method is presented. The procedure of WDM was tested on several beams generated
by cw and Q-switched diode pumped lasers operating at 1064-nm and 1340-nm
wavelengths.

2. Theory

2.1. Properties of the Wigner transform

For simplicity, our analysis will be limited to 1D geometry. The Wigner distribution
(WD) function F(x, u) for partially coherent beam is defined as follows:

(1)

where Γ (x, s) is the mutual coherence function defined in the following way:

(2)

 is the statistical averaging over time or ensemble, E(x) – the amplitude of electric
field at point x, s – the correlation spatial variable (x1 = x + s/2, x2 = x – s/2), u – the
angular frequency, k = 2π/λ is the wavenumber and λ is the wavelength. A very useful
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property of WD is the simple transformation rule in the first order systems described
by ABCD matrix:

(3)

Thus, to completely describe propagation of partially coherent beam it is necessary
and sufficiently to know the WD in one, arbitrarily chosen, incidence plane. The
projections of WD on x and u subspaces give the intensities in near and far fields,
respectively:

(4)

The global coherence degree K2 can be defined as follows:

(5)

where P is the beam power given by  The parameter

M2 can be defined in WDM as a product of beam radii in near and far fields [1]:

(6)

where  is the n-th moment of intensity distribution.

2.1.1. Properties of Gauss–Schell model beam

For Gauss–Schell model (GSM) of partially coherent beam the mutual coherence
function is given as follows:

(7)

where WGS is the radius of beam, ρGS is the coherence radius of beam. The parameters
M2 and K2 for GSM beam are given as follows:
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The GSM beam is an “eigen”-function in transformation in the first order systems.
The propagation law of GSM beam in free space is given by:

(9)

where W0, GS and ρ0, GS are the beam and coherence radii in waist plane, respectively,
ZR, GS is the Rayleigh range given by:

(10)

where θGS is the divergence half angle of GSM beam  The
WD function for GSM beam is given as:

(11)

For fully coherent GSM beam, i.e.,  we have the formulae describing
the properties of a Gaussian beam in terms of WDM. The GSM beam minimizes the
product of beam quality M2 and coherence degree parameter K2:

(12)

2.1.2. Wavefront analysis in WDM

For real laser beams the following “laser beam optics principle” can be formulated [8]:

(13)

The laser source having for the given M2 the lowest value of the coherence
parameter K2 is the most “randomly” ordered and it has the smoothest profiles. In such
a case, the radiation is close to GSM beam and no deterministic phase deviations occur.
On the other hand, when the M2K2 product is high, this means that some level of
deterministic amplitude or phase modulation exists, which can be basically removed.
Thus, from basic as well as practical points of view, it is important to determine the
deterministic wavefront aberration content for the given laser beam. The methods of
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wavefront measurements can be divided, with respect to the principle, into two groups:
interferometric and direct methods. The one of the well established representatives of
the latter group, Hartmann–Shack method (see, e.g., [13]) gives the simultaneous
determination of phase and amplitude distribution for a single shot beam. The WDM
offers an alternative way to wavefront analysis [8, 11, 12]. The basic principles of this
approach, valid for 1D geometry of an incident beam are presented below. The
transversal Poynting vector component St(x) for the given WD is defined as follows:

(14)

The ray aberration, i.e., the angle of ray with respect to the propagation axis
U(x) ≅ sin(U(x)) can be found as a ratio of the Poynting vector St(x) to intensity in the
near field Inf(x) as follows:

(15)

Knowing the ray aberration vector U(x) we can calculate (see, e.g., [14]) small
angle approximation of the wavefront aberration φaber(x) as follows:

(16)

The feasibility of this approach was examined for a laser beam with a priori known
aberration by NEUBERT et al. [11, 12].

2.2. Eppich’s method of Wigner transform measurements

Firstly, we have to note that the analysis presented below is valid for 1D geometry
(i.e., axially symmetric beam), however, the generalization to 2D geometry is
straightforward [8]. The main concept of Eppich’s method consists in application of
the properties of Fourier and Radon transforms. He has shown [7] that the WD is the
inverse Radon transform of specifically transformed 1D intensity distributions
collected for several zk locations in the caustics of a laser beam. The main idea of the
procedure is presented in Fig. 1. In the first step, the 1D intensity profiles as functions
of x-coordinate are measured for several zk locations along the propagation axis in the
vicinity of caustics. The effective parameters of the beam, i.e., Rayleigh range, waist
location and the M2 parameter are calculated according to ISO procedure [2]. For the
set of intensity plots, the transformation to Gouy’s space is realized as follows:

(17)
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where ZR is the Rayleigh range, z0 is the waist location, w0 is the beam radius in the
waist plane. It can be shown that the k-th normalized intensity plot corresponds to
the WD radial section in direction inclined at an angle αk to the x-axis (see Fig. 1).
Thus, we have direct access to the values of WD data points defined in cylindrical
system of coordinates. The return to the Cartesian system of coordinates (x, u) is
performed by means of the inverse Radon transform. Because of numerical
implementation of inverse Radon transform algorithm, the intensity data rows in a
normalized Gouy’s space have to be equidistant with respect to Gouy’s angles αk.
Thus, the appropriate values of zk locations should be chosen in the process of intensity
registrations, or the additional interpolation in Gouy’s space has to be done. Let us
note that we have no access to intensity in the far field (z/ZR → ∞ or α → 90°) without
transformation through additional lens. It was found in experimental practice that to
ensure the sufficient accuracy in WD calculations, the number of zk sections should
be greater than 20, and the range of Gouy’s angles should be at least 135° corresponding
to the range of ±3ZR in the distance along caustics.

3. Experiment

3.1. Laboratory set-up for WDM 

The laboratory set-up is described in detail in paper [15]. Some brief information is
given below. To ensure a satisfactory accuracy and reasonable size of laboratory
set-up, the laser beam under examination was focused to the 0.2–0.5 mm width
applying thin, ideal lens of long focal length (typically, f = 300–500 mm). The beam
widths which we have to measure ranged from 0.2 up to 3 mm, the length of z-scan
was of a few dozens cm. We have decided to apply a slit scan method to measure the
1D intensity plots, assuming axial symmetry of the beam examined. The slit with
a variable width (10–20 µm) attached to large area detector was moved across the beam
by means of a step motor with 2.5 µm resolution. The digitized signal with 12-bit
resolution was sent via 841-Optel controller to PC computer. The knife edge definition
of a beam width with 10% clip level was applied to find the effective parameters of

Fig. 1. Idea of Wigner transform derivation from intensity in caustics measurements.
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convergent laser beam [2]. The typical values of Rayleigh ranges were of a few
dozens mm. The numerical procedure of WDM for experimental (as well as
theoretical) series of 1D intensity data vectors was implemented in MATLAB v.5.3.

3.2. Measurements of laser beams 

The main task of WDM set-up was to examine parameters of the beams generated by
diode pumped lasers. We have tested it at 1064-nm and 1340-nm wavelengths for cw
and pulsed regimes of operation. Two examples of the near diffraction limited but
aberrated laser beams are shown in Figs. 2, 3. The left contour map corresponds to 2D
intensity distributions in caustics as functions of horizontal x-axis and vertical z-axis.
The middle picture presents the same beam after normalization and transformation to
Gouy’s space: x – horizontal axis, α – Gouy’s angle vertical axis, the right-hand picture

a b

c

Fig. 2. Intensity plot I(x:zk) in the caustics of laser beam, M2 = 1.16 (a). Normalized intensity plot I(x, αk)
of laser beam in figure a (b). Wigner distribution F(x, u) of I(x:zk); inverse Radon transform of I(x, αk) (c).

Fig. 3. Intensity plots I(x:zk) in the caustics of laser beam, M2 = 1.52 (a). Normalized intensity plot I(x, αk)
of laser beam in figure a (b). Wigner distribution F(x, u) of I(x:zk); inverse Radon transform of I(x, αk) (c).

a b

c
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presents the Wigner distribution of this beam (vertical axis corresponds to u-axis,
horizontal to x-axis). The laser beam (M2 = 1.16, w0 = 0.105 mm, ZR = 28.2 mm)
generated by Nd:YVO4 laser in V-type cavity at pump power Pp = 6.2 W is presented
in Fig. 2a–c. A different laser beam (M2 = 1.52, w0 = 0.082 mm, ZR = 13.9 mm),
generated by the same laser at 18-W pump power is presented in Fig. 3a–c. The
corresponding plots of intensity and wavefront aberration are given in Fig. 4a, b. As
a result of negative or negligible values of the calculated near field intensity, the values
of ray and wavefornt aberrations can be undetermined at certain points in the wings
of a beam. A reliable method of a wavefront aberration derivation in WDM requires
higher accuracy in measurements and improvement in inverse Radon transform
algorithm.

4. Conclusions

The presented method and experimental set-up enable qualitative and quantitative
characterization of aberrated laser beams. It was tested successfully on several beams
generated by diode pumped lasers. The shape of Wigner distribution can give some
intuitive information on the deviation of the beam examined apart from Gauss–Schell

Fig. 4. Near field intensity (solid line), wavefront aberration (dashed line) vs. x, for the same beam as in:
Fig. 2 (a) and in Fig. 3 (b).

a

b
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model. The wavefront analysis can lead to some ambiguities and requires further
investigation. The WDM can offer an additional valuable tool for characterization of
laser beams.
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