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Pressure induced microbends have been created in a 50 µm graded index multimode optical fibre
with spatial periodicity Λ = 4.5 mm, embedded in the sample of araldite. If high pressure is applied
directly to optical fibre having microbends, it may break, and if pressure is applied to embedded
fibre in a solid structure without microbends, the sensitivity is lower. In this paper, a combination
of the embedded sensor and microbend sensor is presented. It has the advantage of sensing high
pressure on a structure with the sensitivity of a microbend sensor without breaking the optical
fibre. It measures pressure up to 1.6 MPa with reproducibility within ± 5% of the measurand.
The average sensitivity of the sensor is 5.3/MPa on an arbitrary scale.
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1. Introduction

In recent years, investigations have been made concerning pressure sensors and health
monitoring of structures [1–6]. In this area, there has been a need to develop a sensor
to be used as a time monitoring device under cyclic loading conditions which may
be employed for detection of dangerous strain levels in the structure and failure of
materials as well. The concept of using optical fibres to sense the mechanical response
of structure to the load applied has been implemented in the so called form of smart
skins [7, 8]. An optical fibre embedded in a composite structure deforms together with
the composite structure and modulates the light passing through the optical fibre when
a physical parameter is changed in the surrounding environment. Work has been
reported in the field of microbending sensors [9–12] and embedded sensors [13–18].
In this paper, a combination and advancement of both are put forward. Pressure induced
periodic microbends have been created in the sample of epoxy matrix having optical
fibre embedded in it [19–22]. In the present embedded microbend sensor, pressure
is applied to the fibre through the intervening medium of epoxy matrix by making
the fibre an integral part of the structure. Although a small portion of pressure
applied to the sample is transmitted to the fibre, the deformation produced and hence
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the modulation incurred at the output is a measure of the total pressure applied to the
sensing element. If we apply the total pressure directly to the fibre with microbending
periodicity, the fibre may break. Thus, using a fibre embedded in the araldite matrix,
we are able to sense high pressure without damaging the optical fibre.

2. Principle of sensor operation 

Microbending is carried out by spatial variation in the layout of an optical fibre. This
induces couplings between the modes of the fibre. Some of the couplings involve
radiative modes. When a periodic microbend is induced along the fibre axis, light power
is coupled between modes with propagation constants βp and βq satisfying [23–28]

Here, Λ is the spatial frequency of microbends.
Power transfer will take place from the p-th to q-th mode. If the q-th mode

happens to be a radiation mode, this transfer of power will result in a net transmission
loss of the guided modes. Thus microbending produces loss. A microbending loss
phenomenon is shown schematically in Fig. 1. On application of pressure the losses
are enhanced. Hence, by monitoring the decrease in guided optical power across the
core as a function of the amount of microbending induced on the fibre the pressure
sensor may be fabricated. 

Transmitted near field (TNF) technique is an index profile measurement technique
of high spatial resolution. This technique essentially involves scanning measurement
of intensity at the output end of a short length of multimode fibre [29, 30]. To get
a core index profile there must not be any sharp bends along the length of the fibre.
However, in the present sensor application, regular periodic microbends have been
created in a small length of the fibre embedded in the sample and with variation in
the pressure applied to the sample the strength of the scanned signal at the fibre end
proportional to the output intensity has been measured. 

3. Experimental details

Samples of araldite with 30% hardener and 10% aniline have been prepared with 50 µm
graded index multimode optical fibre embedded in it. Ramp structure with spatial
periodicity Λ = 4.5 mm has been created in the fibre during preparation, with the fibre
inside the sample touching the ramps.

Experimental arrangement is shown in Fig. 2. Light is launched in the 50 µm
parabolic index optical fibre by means of an incoherent source of light, a tungsten
halogen lamp, through a 10× microscope objective. A magnified image of the fibre
output end is projected onto the plane of an apertured photodetector driven by a stepper
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motor so as to scan the image along its diameter. The detector output, connected to
a XY-recorder directly yields the near field intensity distribution as a near field
profile. Here, the measurement of the intensity of the scanned signal has been done in
terms of the peak value of the signal in arbitrary units. Pressure is applied to the sample
by a hydraulic pressing machine and the output intensity is recorded as a function of
pressure. 

The experiment has been performed under laboratory conditions wherein the
temperature has been maintained constant at 25 °C within ± 0.5 °C variation. It has
been observed that loading and unloading does not yield any significant temperature
change. Hence, the modulation in the output profile is only due to the change in
pressure on the sample.

Fig. 2. Experimental arrangement (THL – tungsten halogen lamp, MO – microscope objective, PD –
photodetector).
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Fig. 1. Principle of microbending induced attenuation in an optical fibre.
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4. Results and discussion

Figure 3 (curve a) depicts a curve plotted on the arbitrary scale, for the intensity of
the scanned output with an increase in pressure. The measurement of intensity here
refers to the maximum value in the shape of the output profile and refers to a point
measurement. With pressure increasing there is certainly more and more coupling
observed between the cladding modes and higher order core modes. There will be
power loss and the available power will decrease at the output end with increasing
pressure, i.e., the intensity of scanned profile should decrease with an increase
in pressure. From the graph depicted in Fig. 3 (curve a), one can see that there is
a consistent decrease in the intensity with pressure. The decrease in intensity initially
for pressure up to 0.2 MPa is very high, i.e., there is a fall of 40–45% in intensity for
a pressure change of 0.2 MPa only. Subsequently, the decrease in intensity follows
a gradually declining trend. However, it has not been possible to go beyond a pressure
of 1.6 MPa, since beyond this pressure the fibre gets broken. Figure 3, curve b shows

Fig. 3. Variation of output intensity with pressure increasing (a), pressure decreasing (b).

Fig. 4. Variation of output intensity with pressure (intermediate cycle).
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the case of the intensity of the scanned output measured on the same arbitrary scale
when the pressure is decreased. Here we find less hysteresis in the higher pressure
region, but in the region of 0.2 to 0.4 MPa of pressure, the hysterisis is high.
The average hysteresis in initial cyclic operations is found to be nearly 13%. Many
such cycles have been repeated to see the effect of cyclic operations. After a couple
of cyclic operations the average hysteresis settles down to 5%. The experiment has
been repeated over a period of time in order to check the effect of aging. The results
have been found to be reproducible. Figure 4 shows pressure versus output intensity
on an arbitrary scale for one such intermediate cycle after 72 hours. Here, too, we
notice initially a large decrease in the intensity, then a gradually decreasing trend. Thus
Figs. 3 and 4 show a regular change in the value of output intensity with increasing
pressure. Sensitivity in the present scheme of things has been defined as the slope of
the curve between the output intensity and the pressure. The slope has been calculated
for different ranges of pressure and then the average has been taken to calculate
the average sensitivity.

The spot-size of the scanned output profile has also been measured with an increase
in pressure. Here, the spot-size is defined as the width of the output profile where
the intensity of the profile falls down to half the maximum value. It has been found
that the spot-size changes from 2.4 to 1.8 (on an arbitrary scale), when the pressure is
increased from 0 to 0.2 MPa. The spot-size does not change on the application of
additional pressure. The shape of the spot-size also does not change. Hence, it was not
possible to calibrate pressure in terms of spot-size. The TNF profile for the pressure
of 0.2 MPa is shown in Fig. 5.

Power launched in the optical fibre is shared by the core and cladding. With
pressure increasing, the coupling takes place between the cladding modes and
higher order core modes. However, the lower order modes are tightly concentrated in
the core region with little penetration into the cladding region. In an optical fibre
the effect of pressure is mainly confined to the plastic jacket and the cladding. There
is little deformation of the silica core. Hence, if pressure is increased, the nature of
the fundamental and other lower order modes changes very little and the spot-size does
not change appreciably. 

Fig. 5. TNF profile for a pressure of 0.2 MPa.
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5. Conclusions

The monitoring of the structure would be possible by in-situ incorporation of the fibre
at the time of making the structure itself. A regular decrease in the output intensity of
light with pressure increasing in the embedded structure shows that the intensity
modulated fibre optic pressure sensor described here can be used to continuously
monitor the pressure up to 1.6 MPa under high pressure cyclic operation. It can be used
to find out optimum/maximum pressure that the structure can withstand. Breakage
of optical fibre in the course of increasing pressure to dangerous levels makes it
an indicator of excess pressure in the structures. Upon breakage the output suddenly
drops drastically and in the case of the araldite sample, light glows at the point
where it has occurred. As the sample is semi-transparent, a precise spot of breakage
in the fibre can be pointed out. The results found here show reproducibility. This sensor
is robust, cost effective and reliable for measuring high pressure. It can be used to
detect structural defects and for finding out maximum load that a structure can
withstand. The average sensitivity of the sensor has been found to be 5.3/MPa,
the reproducibility within ± 5% of the measurand and the maximum pressure measured
is 1.6 MPa.
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