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The general characteristics of serially coupled multiple ring resonator (SMRR) filters are
analyzed. In this case, the ring resonators of the SMRR have identical perimeters and the coupling
coefficients distribution provides passband characteristics with steeper roll-off, flatter top and
greater stopband rejection than a single ring resonator. In addition, we have also designed and
simulated a nonsymmetric Vernier type of SMRR filters for improving a wide free spectral range
(FSR) with different ring radii. To expand the FSR of the SMRR, Vernier filters are determined
by the least common multiple of the FSR of individual ring resonators. The improvement in
suppression of interstitial resonances is also investigated. A novel derivation of the optical transfer
functions in Z-domain of SMRR filters is expressed employing a graphical approach to ring
resonators with unequal perimeters that can be represented in signal flow graph diagrams.
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1. Introduction
Selective bandpass filters based on ring resonators are a key component in
modern dense wavelength division multiplexing (DWDM) systems applications for
the implementation of fundamental functions. The functions, such as channel add-drop,
channel selection, demultiplexing and multichannel filtering are formed. Some of
these functions apply to a single channel of the system, whereas others apply to a subset
of channels. The required characteristics of those functions are high stopband rejection
in order to guarantee a low cross-talk between channels, a flat-top filter response, and
low insertion loss [1].

Since the single ring resonator (SRR) filter is insufficiently discriminating for
many important applications in DWDM systems, the SMRR filters are required to
achieve passbands with a shaper roll off, flatter top and higher out-off band rejection
around a resonance than SRR filters described in [2, 3]. The characteristics as above-
-mentioned are necessary to enlarge the tolerance of wavelength error of signals and
the packing efficiency of wavelength channels.
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However, the SRR filter has a simple Lorentzian response. When channels are
closely spaced, a Lorentzian response may not provide an adequate roll-off to minimize
a cross talk between channels. Also, Lorentzian responses have a sharp peak while
filter applications usually require a flat top. Therefore, the tailoring of filter response
shape is required to improve the performance of ring resonator filters.

In addition, DWDM system also requires an optical channel filter whose high
selectivity (namely, the ability to separate two adjacent channels) has a wide free
spectral range (FSR) to accommodate large channel counts. To expand the FSR, this
can be realized by using two ways as follows: one employs a ring resonator constructed
using a smaller ring waveguide. The conventional SRR has a disadvantage in that it
cannot increase the FSR well enough. Since FSR is proportional to the inverse of ring
radius, the ring radius should be reduced in order to increase the FSR. However,
bending loss of the ring waveguide increases rapidly with decreasing ring radius for
FSR expansion. This is a serious problem to use optical ring resonators as tunable
filters. Therefore, to avoid prohibitively large losses, either the circumference of ring
resonator must be kept sufficiently large or the refractive index contrast must be high
to moderate radiation loss [4]. There is, however, the other way of increasing the FSR
without decreasing a ring radius. The Vernier operation, which SMRR of slightly
different rings radii, is employed. This consists in expanding the FSR without
reducing the ring radius but adding another ring waveguide in order to construct ring
waveguide with a different FSR. Investigations on these types of filters have been
reported in [5–7].

Optical filter design is typically approached with electromagnetic field equations
where the fields are solved in the frequency or time domain. These techniques are
required to characterize the ring resonator performances and directional couplers.
However, they can become cumbersome and non-intuitive for filter design. Therefore,
a different analytical method of signal processing, including the scattering matrix
method [8, 9], namely, the transfer matrix/chain matrix algebraic method [8, 10, 11]
has been developed for determining optical filter transfer functions in Z-domain,
considering optical circuit to be linear and time invariant. The other approach to
analyze the complex photonic circuit and fast calculation of optical transfer functions
is a graphical approach. It is also called the signal flow graph (SFG) method proposed
by MASON [12]. This method has been originally used in electrical circuits, yet has not
been widely employed in the analysis of optical circuits. Altogether, this is a novel
attempt to obtain the optical transfer functions of SMRR filters by using a graphical
approach in the analytical derivation that can be represented in SFG diagrams, thus
allowing us to apply Mason’s rule to produce the equivalent photonics circuits.

2. Photonic transfer functions of ring resonators

Consider the architectures of ring-resonator add/drop filters as illustrated in Figs. 1–3,
which are constructed by 2×2 optical couplers. The 2×2 optical directional coupler can
be represented in a signal flow graph diagram according to [8]. By taking into account
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the coupling factors κi of the i-th coupler (i = 1, 2, ..., N ) and the insertion loss γ  for
each coupler, the light pass through the throughput path we can express as ci =
= [(1 – γ )(1 – κ i)]

1/2 and in contrast, the light pass through the cross path is expressed
by –jsi = –j[(1 – γ )κ i)]

1/2. As to the transmission of light along the ring resonator
(the close pass), we can represent it as ξ = xz–1, where x = exp(–αL /2) is the one round-
-trip losses coefficient, and the z–1 is the Z-transform parameter, which is defined as

(1)

where β = kneff is the propagation constant, k = 2π /λ is the vacuum wave number, neff
is the effective refractive index of the waveguide, and the circumference of the ring is
L = 2πR, here R is the radius of the ring. When all rings of MRR have the same
circumference the device is called a uniform MRR optical filters, and the FSR of
the device is determined by

(2)

where ng = neff + fo(dneff /d f )fo is the group refractive index of the ring, neff is
the effective refractive index and fo is the design (center) frequency [8]. The optical
resonators resonate at a high order mode. At the fo, the perimeter of the ring is
an integer number of guide wavelengths, and this integer Mr is the order number of
the mode and fo = Mr FSR.

There are basically three essential parameters describing the behavior of a MRR
filter response: i ) the –3 dB bandwidth or the full-width at half-maximum (FWHM),
ii) the on–off ratio, and iii ) the shape factor. For a lossless fiber ring resonator,
the –3 dB bandwidth depends mainly on the coupling coefficients and the optical
round-trip length.

The on–off ratio for the throughput and drop port, which is the ratio of the on-
-resonance intensity to the off-resonance intensity, is given by:

(3)

The box-like shape of the filter response for the throughput and drop port can be
described by a shape factor [7] which is defined as:

(4)

The ideal response shape is a rectangular filter function with the shape factor of
unity. High performance MRR add/drop filters can be realized using double and triple
ring resonators with the specific transmission characteristic (steep roll-off, flat top and
high on–off ratio >20 dB) simulated in this paper.

z 1– jβL–( )exp=

FSR c
ng L

---------------=

on–off  ratio
Tmax(throughput port)

Tmin(drop port)
----------------------------------------------=

shape factor 1 dB bandwidth–
10 dB bandwidth–

--------------------------------------------------=



178 C. CHAICHUAY, P.P. YUPAPIN, P. SAEUNG

2.1. Mason’s rule for optical circuits
A forward path is a connected sequence of directed links going from one node to
another (along the link directions), encountering no node more than once. A loop is
a forward path that begins and ends on the same node. The loop gain or path gain
is the product of all the links along that loop or path, respectively. Two loops or paths
are said to be non-touching, if they share no nodes in common. The Mason’s rule states
that the transfer function or input–output transmittance relationship from node E1(z)
to node En (z) in a signal flow graph is given by

(5)

where H  is the network function relating an input and an output port, Ti is the gain
of the i-th forward path from an input to an output port, and n is the total number of
forward paths from an input to an output. The signal flow graph determinant is given as

(6)

where Ti is the transmittance gain of the i-th loop. In each of the product summations,
the products of non-touching loops are only included. The term “non-touching” refers
to the loops that have no node in common, i.e., the separated loops. The minus sign is
for a sum of products of an odd number of loop gains, and the plus sign is for that of
an even number of loop gains. The symbol Δi in (5) is the determinant Δ after all
loops which touch the Ti path at any node have been eliminated. It is noted here that
the optical transmittance in our paper is also used in the same graphical representation.

2.2. Transfer functions of a single ring resonator add/drop filter
The optical transfer functions of ring resonator filters at the throughput port and drop
port for an input port E1 can be obtained by using the Mason’s rule. First we present
the transfer function of SRR filter followed by corresponding results on double and
triple ring resonator filters in Sections 2.3 and 2.4, respectively. SFG for the SRR
add/drop filter is shown in Fig. 1b, in which the input node is E1(z) while E3(z) and
E8(z) are considered as the throughput node and drop node, respectively.

2.2.1. The transfer function 

There is one individual loop gain of the SFG which is denoted as

(7)

The forward path transmittances from node 1 to node 3 for the throughput port
and its determinant which corresponds to the non-touching loop can be denoted as

(8)

H 1
Δ

-------- Ti Δi
i 1=

n

∑=

Δ 1 Ti
i
∑ Ti Tj

i j,
∑+– Ti Tj Tk

i j k, ,
∑– …+=

E3 z( )

E1 z( )
--------------------

L1
1 c1c2 ξ=

T1 t
1 c2 s1

2ξ–=

Δ1 1=
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(9)

From (6), the determinant of the SFG from the Mason’s rule is given by

(10)

By substituting (8)–(10) into (5), the transfer function for the throughput port in
Fig. 1b can thus be expressed as

(11)

2.2.2. The transfer function 

There is only one forward path transmittance from node 1 to 8 for the drop port and
this forward path also touches the loop  given by (7); therefore we have

T2 t
1 c1=

Δ2 1 L1
1– 1 c1c2ξ–= =

Δ 1 L1
1– 1 c1c2ξ–= =

E3 z( )
E1 z( )

------------------ Ht
1 c1 c2ξ–

1 c1c2ξ–
----------------------------= =

E8 z( )

E1 z( )
--------------------

L1
1

Fig. 2. The architecture of SDRR add/drop filter: a – waveguide layout, b – Z-transform diagram (SFG).

a b

Fig. 1. The architecture of SRR add/drop filter: a – waveguide layout, b – Z-transform diagram (SFG).

ba
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(12)

Substituting (10), (12) into (5), we can obtain the transfer function for the drop
port in Fig. 1b as

(13)

2.3. Transfer functions of a double ring resonator add/drop filter

SFG of a serially coupled double ring resonator (SDRR) filter is shown in Fig. 2b.
Here the input node is E1(z) while E3(z) is considered as the throughput node and E12(z)
is the drop node.

2.3.1. The transfer function 

There are three individual loop gains of the SFG, and all the loop gains are expressed as

(14)

(15)

(16)

There is one possible product of transmittance of two non-touching loops, resulting
from the separation of the loops  and , given by

(17)

The forward path transmittances from node 1 to node 3 for the throughput port and
its determinant which corresponds to the non-touching loop can be denoted as

(18)

(19)

(20)

T1d
1 s1s2 ξ–=

Δ1 1=

E8 z( )
E1 z( )

------------------ Hd
1 s1s2 ξ

1 c1c2ξ–
----------------------------–= =

E3 z( )

E1 z( )
--------------------

L1
2 c1c2ξ=

L2
2 c2c3ξ=

L3
2 c1 ξ js2–( ) ξ c3 ξ js2–( ) ξ c1c3s2

2ξ2= =

L1
2 L2

2

L12
2 c1c2

2 c3ξ
2=

T1 t
2 c2 s1

2ξ–=

Δ1 1 L2
2– 1 c2c3ξ–= =

T2 t
2 c3 s1

2 s2
2 ξ2=

Δ2 1=

T3 t
2 c1=

Δ3 1 L1
2 L2

2 L3
2+ +( )– L12

2+

1 c1c2ξ– c2c3ξ– c1c3 s2
2ξ2 c1c2

2 c3ξ
2+ +

= =

=
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From (6) and by using the relation , the determinant of the SFG from
the Mason’s rule is given by

(21)

Substituting (18)–(21) into (5), the transfer function for the throughput port in
Fig. 2b is given by

(22)

2.3.2. The transfer function 

There is only one forward path transmittance from node 1 to 12 for the drop port and
since all loops touch this forward path, therefore 

(23)

Substituting (21), (23) into (5), we get the transfer function for Fig. 2b at the drop
port as

(24)

2.4. Transfer functions of a triple ring resonator add/drop filter

SFG of a serially coupled triple ring resonator (STRR) filter is shown in Fig. 3b. Here
the input node is E1(z) while E3(z) is considered as the throughput node and E16(z) is
the drop node.

2.4.1. The transfer function 

There are six individual loop gains of the SFG being obtained and all the loop gains
are expressed as

(25)

(26)

(27)

(28)

s2
2 c2

2+ 1=

Δ 1 L1
2 L2

2 L3
2+ +( )– L12

2+ 1 c1c2ξ– c2c3ξ– c1c3ξ
2+= =

E3 z( )
E1 z( )

------------------ Ht
2 c1 c2ξ– c1c2c3ξ– c3ξ

2+

1 c1c2ξ– c2c3ξ– c1c3ξ
2+

------------------------------------------------------------------------= =

E12 z( )

E1 z( )
----------------------

T1d
2 j s1 s2 s3ξ=

Δ1 1=

E12 z( )
E1 z( )

-------------------- Hd
2 j s1 s2 s3ξ

1 c1c2ξ– c2c3ξ– c1c3ξ
2+

------------------------------------------------------------------------= =

E3 z( )

E1 z( )
--------------------

L1
3 c1 ξ c2 ξ c1c2ξ= =

L2
3 c2 ξ c3 ξ c2c3ξ= =

L3
3 c3 ξ c4 ξ c3c4ξ= =

L4
3 c1 ξ js2–( ) ξ c3 ξ js2–( ) ξ c1c3s2

2ξ2–= =
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(29)

(30)

There are five possible products of transmittance of two non-touching loops, given by:

(31)

(32)

(33)

(34)

(35)

There is one possible product of transmittance of three non-touching loops, given by

(36)

L5
3 c2 ξ js3–( ) ξ c4 ξ js3–( ) ξ c2c4s3

2ξ2–= =

L6
3 c1 ξ js2–( ) ξ js3–( ) ξ c4 ξ js3–( ) ξ js2–( ) ξ

c1c4s2
2s3

2ξ 3
= =

=

L12
3 c1c2

2 c3ξ
2=

L23
3 c2c3

2 c4ξ
2=

L13
3 c1c2 c3c4ξ

2=

L34
3 c1c3

2 c4s2
2ξ 3–=

L15
3 c1c2

2 c4 s3
2ξ 3–=

L123
3 c1c2

2 c3
2c4ξ

3=

Fig. 3. The architecture of STRR add/drop filter: a – waveguide layout, b – Z-transform diagram (SFG).

ba
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The forward path transmittances from node 1 to node 3 for the throughput port and
its determinant which corresponds to the non-touching loop can be expressed as

(37)

(38)

(39)

(40)

The loop determinant Δ of the SFG from (6) is the same with Δ4 as (40) and by
using the relation  (i = 2, 3), Δ simplifies to

(41)

We can therefore obtain the transfer function for the throughput port as follow

(42)

T1 t
3 js1–( ) ξ c2 ξ js1–( ) c2s1
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2+ +

= =

=
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3– 1 c3c4ξ–= =
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=
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2.4.2. The transfer function  

There is only one forward path transmittance from node 1 to 16 for the drop port and
all loops also touch this forward path; therefore we have

(43)

Substituting (41), (43) into (5), we obtain the transfer function in Fig. 3b at the drop
port as

(44)

3. Simulation results
The filtering responses of filters are simulated and discussed in this section. The filter
characteristics as shown in Fig. 4 are the simulation results of the throughput and drop
port of the SRR filter. The SRR has a radius equal to 136 μm, with the coupling
coefficients of κ1 = κ2 < 0.2. The FSR of 100 GHz is achieved. The group refractive
index is assumed to be ngr = 3.5 and the internal loss is fully compensated (α = 0).
The on–off ratio is calculated and more than 20 dB obtained.

The maximum transmission characteristic of SRR as a function of κ1 and κ2 is
shown in Fig. 5. The output intensities at the drop port will be unity at resonance
(βL = 2Mrπ), which indicates that the resonance wavelength is fully extracted by
the resonator, for identical symmetrical couplers κ1 = κ2, especially lossless in wave-
guide (α = 0) and couplers (γ = 0).

E16 z( )

E1 z( )
----------------------

T1d
3 js1–( ) ξ js2–( ) ξ js3–( ) ξ js4–( ) s1s2s3s4ξ

3 2⁄= =

Δ1 1=

E16 z( )
E1 z( )

---------------------- Hd
3

s1s2s3s4ξ
3 2⁄

1 c1c2ξ– c2c3ξ– c3c4ξ– c1c3ξ
2 c2c4ξ

2 c1c4ξ
3– c1c2 c3c4ξ

2+ + +
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

= =

=

Fig. 4. The realization of high on–off ratio of the SRR, with κ1 = κ2 = κ < 0.2.
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To design a box-like filter response shape, we increase the shape factor. It is
reported that the improvement of the shape factor can be achieved by using multiple
coupled ring resonators. In this paper, we restrict our investigation to the SDRR and
STRR filters. Here, the SDRR and STRR filters radii are identically formed to SRR
filter case, i.e., R = 136 μm.

The simulated filter response of the SDRR is shown in Fig. 6. With full
compensation of rings, a symmetric coupling coefficients is κ1 = κ3 = 0.5 for the outer
couplers and κ2 = 0.12 for the coupler at the center (solid line). The shape factor of
the drop port for SDRR configuration is 0.41. The steep roll off and the flat top can
be seen in the graph. In the graph of κ2 = 0.2, 0.25 and 0.3, there are two points giving
the peak response, which correspond to the two resonances. It means that every

Fig. 5. The impact of κ1 and κ2 to transmittance characteristic at resonance for Fig. 1, when α = 0 and
γ = 0. Transmittance will be unity using symmetric coupling coefficient κ1 = κ2.

Fig. 6. Filter response of the drop port of the SDRR with coupling coefficients of κ1 = κ3 = 0.5, κ2 = 0.12,
0.2, 0.25 and 0.3, α ring1,2 = 0, γ = 0.
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resonant point of a single ring is spliced into two when this is set coupled with another
identical ring. One reason why the ripples are visible in the spectrum is the slight
deviation from resonance mismatch of each involved SRR. Using the condition of
maximum transmission on resonance (βL = 2Mrπ) for the drop port, that is the Eq. (22)
is set to be zero, and setting κ1 = κ3, α ring1,2 = 0, γ = 0, the value for the coupler in
the center κ2 is

(45)

where we define κ2c as the critical coupling coefficient. We have found that if κ2 is
decreased reaching κ2c, the two resonances as Fig. 7 will merge back into the resonance
point. Figure 7 shows the case of κ2 < κ2c, which results the decreasing in output
amplitude become excess loss although the waveguide does not have any propagation
loss. It is clarified that κ2 = κ2c is the optimum coupling ratio for minimizing excess
loss at the resonance point. Besides, for realizing a box-like filter shape for lossless
SDRR, the on–off ratio of the drop port of greater than 20 dB is also achieved using

κ2c
κ1

2

κ1 2–( )2
---------------------------=

Fig. 7. The transmittance value of the SDRR comparing to the different values of κ2 is lower than κ2c
and κ1 = κ3 = 0.5, α ring1,2 = 0, γ = 0.

Fig. 8. The impact of attenuation coefficient to box-like filter shape and amplitude of the drop port of
the SDRR with κ1 = κ3 = 0.5, κ2 = 0.13.
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the same coupling coefficients for the outer couplers, and κ2 is within the narrow range
0.12–0.14. The influence of optical loss of the SDRR with α  equal to 3 and 5 dB/cm
is shown in Fig. 8. We notice that optical loss in ring resonators will result in decreasing
in the shape factor and output amplitude.

Figure 9 illustrates the simulated filter response of the STRR which is used to
achieve shape factor. For simplification, we set κ1 = κ4 and κ2 = κ3, and the filter
response for the drop port with coupling coefficients of κ1 = κ4 = 0.65 for the outer
couplers and κ2 = κ3 = 0.18–0.22 for the center couplers with α ring1,2,3 = 0, γ = 0, are
used. The on–off ratio is approximately 30 dB is noted while the shape factor of
the drop port is up to 0.6.

A flatter top, steeper roll-off and higher out-of band rejection are achieved with
this configuration. A possible solution to achieve a box-like filter shape with the shape
factor of approximately 0.6 and an on–off ratio of more than 30 dB is obtained for
lossless resonators and couplers, and they also use for coupling coefficients within
the range of κ1 = κ4 = 0.65–0.67, and κ2 = κ3 = 0.18–0.22 for the outer and center
couplers, respectively. Another possibility of achieving a box-like filter is to use
coupling coefficients of κ1 = κ4 = 0.5 and κ2 = κ3 = 0.08–0.1. This configuration

Fig. 9. The realization of box-like filter shape of the STRR with coupling coefficients κ1,4 = 0.65,
κ2,3 = 0.18–0.22, with lossless R = 136 μm.

Fig. 10. Filter response of the drop port of the STRR with coupling coefficients of κ1,4 = 0.5, κ2,3 =
= 0.1–0.4, and α ring1,2 = 0, γ = 0.
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enables an on–off ratio of more than 30 dB and a shape factor of 0.6, as an example
of κ1,4 = 0.5, κ2,3 = 0.1 (solid line), as shown in Fig. 10. Similarly, for the values of
κ2 = 0.2–0.4, there are three points giving the peak response due to the slight deviation
from resonance mismatch of each involved single ring resonator. The simulation
results of some filter response parameters such as the shape factor, cross talk, and
box-like shape of the lossless SRR, DRR, and TRR filters are compared as shown in
the Table.

4. Vernier effect
Serially coupled multiple ring resonator filters open the possibility of expanding
the FSR to the least common multiple of the FSR of individual ring resonators. This
is done by choosing different radii in the SMRR, which is called the Vernier operation.
In the case of different radii, the light passing through the SMRR is launched from
the drop port when the resonant conditions of the multiple single ring resonators are
satisfied. We investigated two and three rings serially coupled Vernier filters.

Referring to Fig. 11a, which is shown the SDRR Vernier filter architecture, where
the SFG is shown in Fig. 11b. Vernier operation of SDRR with two different radii is
expressed by:

FSR = N FSR1 = M FSR2 (46)

which leads to:

(47)

where N and M are natural and co-prime numbers and have to be carefully designed
to make sure that both N and M are integers (M > N ). To determine the transfer
function of SDRR Vernier filter, which is similar to the transfer functions as shown in
Sections 2.2 and 2.3, but the different setting in parameters of x- and z-transforms
is employed. The transfer function of SFG in Fig. 11b for the drop port is therefore
expressed by

(48)

FSR M N–
FSR1 FSR2

FSR1 FSR2–
------------------------------------------=

E12 z( )
E1 z( )

---------------------- Hd
2 js1s2s3 x1x2 z N M+( )–

1 c1 c2 x1 z N–– c2 c3 x2 z M–– c1 c3 x1 x2 z N M+( )–+
------------------------------------------------------------------------------------------------------------------------------= =

T a b l e. Characteristics data comparison between SRR and SMRR filters. 

Filter order Single Double Triple
Shape factor 0.16 0.42 0.6
Cross talk –20 dB > –20 dB > –30 dB
Box-like shape No Yes Yes
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where xi = exp(–α Li /2) (i = 1, 2) are the ring losses of the ring 1 and ring 2,
respectively.

The architecture of STRR Vernier filter is shown in Fig. 12a and Fig. 12b shows
its SFG. FSR of STRR with three different radii is expressed by:

FSR = N FSR1 = M FSR2 = LFSR3 (49)

Fig. 12. The architecture of STRR Vernier filter: a – waveguide layout, b – Z-transform diagram (SFG).

ba

Fig. 11. The architecture of SDRR Vernier filter: a – waveguide layout, b – Z-transform diagram (SFG).

ba
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where N, M and L are resonant numbers for each ring resonator and all are integers
(L > M > N ). Similarly, the transfer function of SFG in Fig. 12b for the drop port is
expressed by

(50)

where 

while xi = exp(–α Li /2) (i = 1, 2, 3) are the ring losses of the ring 1, 2 and 3 from top
to bottom. Normally, the couplers adjacent to the bus waveguides (κ1 and κN ) are
stronger than the innermost couplers.

First, we present the Vernier effect of SDRR filter followed by the corresponding
result on STRR filter. In this study, we choose the SDRR Vernier filter with
R1 = 273 μm, R2 = 341 μm and use symmetric coupling coefficients of κ1,3 = 0.5 for
the outer couplers and κ2 = 0.13 for the coupler at the center with lossless in
waveguides (α = 0) and couplers (γ = 0). According to Eq. (2), the FSR for each single
ring resonator of resonator 1 is 50 GHz and FSR of resonator 2 is 40 GHz and FSR
of SDRR is calculated to be 200 GHz as shown in Fig. 13. Therefore, the resonant

E16 z( )
E1 z( )

---------------------- Hd
3 s1s2s3s4 x1x2x3 z N M L+ +( )–

A
------------------------------------------------------------------------------------= =

A 1 c1 c2 x1 z N–– c2 c3 x2 z M–– c3 c4 x3 z L–– c1 c3 x1 x2 z N M+( )–

c2 c4 x2 x3 z M L+( )– c1 c2c3c4 x1 x3 z N L+( )– c1 c4 x1 x2 x3 z N M L+ +( )––

+ +

+ +

=

Fig. 13. Optical frequency response of SDRR Vernier filter of each ring resonator: resonator 1 with
FSR1 = 50 GHz (a), resonator 2 with FSR2 = 40 GHz (b), and of the DRR with FSR = 200 GHz (c).

a

b

c
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numbers for each ring resonator are designed to be N = 4, M = 5. The interstitial
resonances suppression of the drop port is approximately 5.2 dB.

The suppression of interstitial resonances of the SDRR is as shown in Fig. 14. This
can be improved by decreasing the coupling coefficient of the center coupler to be
κ2 = 0.08, 0.05, where the other parameters are set identical to Fig. 13. The interstitial
resonances suppression of 6.9 dB (solid line) and 8.8 dB (dash line) are respectively
achieved. We have found that the decrease of κ  in the coupler center effects a little
the deterioration of resonant loss at resonance peaks. By setting the coupling
coefficients of κ1 = κ3 = 0.5 for the outer couplers and within the tolerances of
κ2 = 0.09–0.13 for the coupler in the center, a possible solution for achieving the side
mode suppression of more than 5 dB with lossless at resonance peaks can be obtained.

Fig. 14. The improvement in suppression of interstitial resonances of SDRR Vernier filter.

Fig. 15. Comparison of SDRR Vernier filter response with different FSR ratios N :M = 1:2, 4:5, 7:8,
and 11:12.
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Fig. 16. Frequency response of STRR Vernier filter of each ring resonator: (a) FSR1 = 50 GHz,
FSR2 = 40 GHz, FSR3 = 26.67 GHz and (b) of the TRR with FSR = 400 GHz.

a

b

Figure 15 shows a comparison of the calculated magnitude responses for FSR
ratios N :M of 1:2, 4:5, 7:8, and 11:12 and other parameters. These ratios are given
the same FSR which is equal to 200 GHz. Note the increasing interstitial resonances
for the ratios of larger integer values. The passband width of the resonant transmission
peak is dominated by the largest ring; consequently, the response can be made sharper
only at the expense of reducing the passband width. For this reason, the best FSR of
DRR Vernier in Fig. 15 is a resonance number 4:5 which is suitable to design the FSR
expansion. Similar result can also be obtained when using a resonance number 1:2,
however, in this case it affects the device bending loss due to the decreasing ring radius.

The SDRR Vernier effect filter does not offer sufficient suppression of
the interstitial resonances, while those that consist of more than four rings are too
complex and expensive to fabricate, and moreover they fail to provide needed
improvement in suppression. In order to improve the suppression of interstitial
resonances, three- and four-ring series coupled Vernier effects will be used. In this
study, the next simulation of filter was mainly focused on the STRR Vernier effect.
Another advantage of STRR Vernier filter can be designed to reduce the unit delay
length as half of the SDRR Vernier filter, where the double FSR in comparison with
SDRR Vernier filter can be achieved.

The frequency responses of  the STRR Vernier filter with R1 = 273 μm, R2 =
= 341 μm and R3 = 511 μm by using symmetric coupling coefficients of κ1,4 = 0.5 and
κ2,3 = 0.01 are shown in Fig. 16. The FSR of resonator 1 is 50 GHz, the FSR of
resonator 2 is 40 GHz and the FSR of resonator 3 is 26.67 GHz from top to bottom
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as shown in Fig. 16a. The FSR of the STRR Vernier is calculated using Eq. (2) to be
400 GHz as shown in Fig. 16b, which achieves the double FSR in comparison with
SDRR Vernier. Here, the resonant numbers for each ring resonator are designed to be
N = 8, M = 10 and L = 15. The interstitial resonances suppression of the drop port is
noted to be 18.5 dB. In order to suppress the interstitial resonances, the lower coupling
coefficients in the center couplers having the advantage are shown in Fig. 17. Here,
the parameters of STRR Vernier filter are identical as in Fig. 16. The interstitial
resonances suppression for the drop port with κ1 = κ4 = 0.5, κ2 = κ3 = 0.008 is
approximately 22 dB, and κ1 = κ4 = 0.5, κ2 = κ3 = 0.005 is 26.5 dB as shown in
Figs. 17a and 17b, respectively. However, we have found that the response of STRR
Vernier filter will be reduced in the passband width, while it is sharper at the resonance
peaks.

5. Conclusions

We have proposed a novel attempt to employ a graphical approach in the analytical
derivation of the optical transfer functions of SMRR filters. The graphical approach
with SFG is used in our analysis for fast derivation of the optical transfer functions.
The improvement of a box-like passband shape using the serially coupled multiple
ring resonators has been presented. The shape factor of SDRR and STRR with loss
compensation has successfully increased to 0.42 and 0.6, respectively, which is more
than 0.16 of the SRR filter. A flatter top, steeper roll-off and a higher out of band

Fig. 17. The improvement in suppression of interstitial resonances of STRR Vernier filter: κ1,4 = 0.5,
κ2,3 = 0.008 (a), κ1,4 = 0.5, κ2,3 = 0.005 (b).

a

b
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rejection >20 dB has been achieved both for SDRR and STRR filter. The influence of
the optical loss in ring resonators of SDRR and STRR has also been analyzed and it
has been found that it had an effect on the deterioration of a box-like shape in passbands
and resonant peaks. In addition, the SMRR filters have been investigated which exploit
the Vernier effect. This opens the possibility to realize a larger FSR than would be
achieved using only a single ring resonator. The suppression of interstitial resonances
of the SDRR Vernier has been improved by decreasing the coupling coefficient of
the center coupler. We have noted the increasing interstitial resonances for the ratios
of  larger integer values. Note that the SDRR Vernier filter does not adequately
suppress the interstitial resonances that lie between the main resonances separated by
the FSR. A solution to this problem can be presented using STRR Vernier filter. In
addition, the advantage of STRR Vernier filter can be designed to obtain double FSR
in comparison with DRR Vernier filter.
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