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In order to enhance the visual quality of images obtained by underwater imaging systems, super
resolution (SR) reconstruction is introduced, including single-frame and multi-frame SR algorithms.
Experimental images from a range-gated pulsed laser imaging system are processed by SR
algorithms, results are evaluated and compared by blind, objective quality metrics. Results show
that the image quality of underwater imaging can be effectively enhanced if the appropriate SR
reconstruction algorithm is chosen.
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1. Introduction
Underwater imaging is widely used in ocean exploration and other fields, however,
due to absorption and scattering effects from the environment, serious degradation
exists in underwater images, mainly in the form of noise, blur, etc. Resolution is
an important parameter for image evaluation, therefore improving the image quality
of underwater imaging, especially in terms of human vision, largely depends on
the enhancement of spatial resolution.

Improving resolution of underwater imaging can be conducted from two
perspectives. From the hardware perspective, appropriately increasing the intensity of
laser, enhancing detection rates of sensor and reducing error rate are effective ways;
however, these will undoubtedly increase the system cost. Under a certain hardware
condition, processing by software has become a crucial step. As for the software
perspective, image processing can effectively eliminate Gaussian, speckle noise, and
improve image clarity, such as image denoising, enhancement and restoration
algorithms. But no matter how efficacious these algorithms are, resolution is still
limited by hardware conditions. 
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Image super-resolution reconstruction which has been increasingly popular in
recent years offers the possibility of improving image resolution beyond the hardware
limitations. It has been widely used ever since TSAI and HUANG [1] proposed the con-
cept in 1984. It refers to achieving high-resolution (HR) enlargements of pixel-based
images from one or multiple low-resolution (LR) images [2] using the complementary
information between image sequences. Super-resolution (SR) reconstruction consists
of three steps: registration, fusion, and reconstruction [3]. Image registration transfers
LR images into non-uniform samples, which then will be processed by image fusion
using interpolation or other methods to HR images.

Super-resolution reconstruction can be divided into categories according to
frequency domain and spatial domain. Methods in the frequency domain improve
resolution by eliminating aliasing, such as the recursive least squares method proposed
by BOSE in 1990 [4]. However, the application of frequency domain based methods is
limited by linear space invariance, which makes space domain based methods become
hot research topics. Methods in the space domain improve resolution by combining
the motion model with interpolation and iteration. Typical methods such as interpo-
lation, iterative back projection (IBP) [5], projection onto convex sets (POCS) [6],
mixed MAP/POCS method, as well as adaptive filtering, Kalman filtering methods are
widely used.

The presented effort applies several super-resolution reconstruction algorithms to
underwater range-gated imaging. The validity of the algorithms is verified by image
evaluation.

2. Theory
2.1. Single frame super-resolution reconstruction
The main approach of single frame super-resolution reconstruction is interpolation, by
which the discrete image is converted into continuous data sets, and then to a high-
-resolution image through resampling. Standard pixel interpolation methods such as
pixel replication and cubic-spline interpolation [7] are widely used in image
enhancement. The main idea of pixel replication is inserting pixels with values of or
between those of known pixels. Cubic-spline interpolation belongs to higher order
interpolation, which utilizes an approximate sampling function for interpolation, with
imposing boundary conditions; as a result, the interpolated result will have better
smoothness and visual effect.

The low-pass effect of the interpolation operator can result in blocking artifacts
and edge degradation. Wavelet transform with the features of multi-resolution and
time-frequency localization can be an effective tool to eliminate this degradation by
processing an image in high and low frequency domains separately. In order to avoid
the unmatch of high and low frequency and loss of information caused by direct use
of original image for inverse wavelet transform, high frequency coefficients for
inverse wavelet transform are derived from bilinear interpolation, while low frequency
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coefficients are obtained from nearest interpolation. Figure 1 shows the algorithm of
improved wavelet-based interpolation, in which blocks with ai denote low frequency
coefficient; while the ones with hi, νi and di represent high frequency coefficients of
horizontal, vertical and diagonal directions, respectively.

The Papoulis–Gerchberg (PG) method, proposed and studied independently by
PAPOULIS [8] and GERCHBERG [9], is an extrapolation method based on the frequency
domain. The theory of the PG method has been studied by many researchers recent-
ly [10] and some of them proposed improved versions [11]. The main idea of the PG
method is extrapolation of a band limited signal from only a part of the original
signal by iterating terminated by error energy reduction. The extrapolation in the n-th
iteration (frequency domain) can be expressed as:

(1)

g (t ) is the time domain expression of G(w) and g (t) denotes a finite segment of f (t )
with a cut-off frequency of σ : 

(2)

In the iteration process, the energy reduction error between the signals of the n-th
iteration and the (n + 1)-th iteration is reduced, thus, the extrapolated signal can ap-
proach the desired signal with sufficient iterations. The iteration can be expressed by:

(3)
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Fig. 1. Block diagram of wavelet-based interpolation algorithm.
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Figure 2 shows a flowchart of the PG method, in which the known points are pixels
from the original image, while others are extrapolated pixels. The iteration is termi-
nated by the calculation of energy reduction error between reconstructed images.

2.2. Multi-frame super-resolution reconstruction

Images captured by the same sensor in time series can be used for multi-frame image
super-resolution reconstruction. Image registration is an important step before multi-
-frame SR reconstruction. It is a mapping operation between two images spatially,
which can also be divided into two types according to spatial and frequency domains.
Methods in frequency domain use the phase correlation to estimate the motion
parameters and reduce the aliasing error [12], while the spatial motion model is used
by methods in the spatial domain [13]. Keren image registration [14] is used for
underwater imagery for its common evaluation of accuracy and robustness. The algo-
rithm is based on a rigid body transformation model:

(4)

which has three parameters: a – horizontal shift, b – vertical shift, and θ  – rotation
angle. Then, based on the Taylor series transform, error function between g(x, y) and
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Fig. 2. Flowchart of an algorithm based on the Papoulis–Gerchberg method.
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f (x, y) can be obtained. In order to minimize the error function, partial derivatives are
used; then, SR images can be obtained by interpolation, etc.

The iterative back-projection (IBP) method is proposed by IRANI and PELEG [5]. It
performs projection and back-projection iteratively with the convergence of error
projected onto the HR image grid. The traditional IBP method can induce various
degrees of ringing artifacts. An improved IBP method [15] is applied, which can be
expressed by the mathematical description

(5)

where f n + 1 denotes the SR image resulting from the (n + 1)-th iteration, f n denotes
SR image in the n-th iteration, while  denotes the LR image; λ is the gradient
step, Δ is the Laplace operator,  can represent the ringing artifacts, H is
the blurring operator which can be derived from point spread function (PSF) of imaging
systems.

Projection onto convex sets (POCS) proposed by Stark and Oskou is one of
the spatial-domain-based SRR algorithms with its flexibility of incorporating prior
information such as the PSF of the imaging system. The POCS method can be described
as an iterative equation:

(6)

where k denotes the number of limit sets, P denotes the projection operator, f n + 1 and
f n denote the SR image resulting from the (n + 1)-th iteration and n-th iteration,
g represents low-resolution image, λ represents relaxed operator, and H is the blurring
operator which can be derived from PSF of imaging systems. As for underwater
imaging systems, the PSF of the system can be derived from Wells’ small angle
approximation [16] which can be described as:

(7)

(8)

where H(ϕ, R) denotes the modulation transfer function (MTF) of the imaging system,
and ϕ denotes the spatial frequency, R is the imaging distance, c and b represent total
attenuation and scattering coefficient, respectively, θ0 is referred to the median scat-
tering angle for single scattering and cR means optical length.

f n 1+ f n λ H gi
n gi–⎝ ⎠

⎛ ⎞ Δ f i
n Δfc–⎝ ⎠

⎛ ⎞–
i 1=

P

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=

gi
n

Δ f i
n Δfc–( )

f n 1+ P f n λ P gi H fi–⎝ ⎠
⎛ ⎞

i 1=

k

∑+=

h θ R,( ) 2π J0 2πθϕ( )H ϕ R,( )ϕ dϕ∫=

H ϕ R,( ) cR– bR
1 2πθ0ϕ–( )exp–

2πθ0ϕ
-------------------------------------------------+exp=



846 YUZHANG CHEN et al.

The robust super-resolution is a relatively new method proposed in 2001 [17].
The main idea of this method has some resemblance to that of IBP method. The iterative
equation of this method is:

(9)

(10)

where λ is the scale factor of the gradient step size, f n + 1 and f n denote SR images
resulting from the (n + 1)-th iteration and n-th iteration, respectively, Bk represents
the back-projected difference image,  is equal to a scaled pixel-wise median
with the purpose of introducing robustness into super-resolution. A median can
approximate the mean quite accurately for a symmetric distribution, given a sufficient
set of samples. In case of distant outliers, the median is much more robust than
the mean. 

2.3. Image evaluation

In order to evaluate the performance of SR methods applied in underwater imaging,
metrics for measuring visual quality are needed. Image quality metrics can be divided
into subjective and objective ones [18]. Subjective metrics need manpower and time,
while objective metrics are widely used, which can also be divided into two types
depending on the demand of ideal image. As for underwater images, no reference
image can be provided, thus, blind, objective image quality metrics are needed.

The metrics chosen are gray mean grads (GMG), Laplacian sum (LS) proposed by
SHEIKH and BOVIK [19]. GMG and LS can effectively reflect the clarity and edge profile
of an image as one can see from mathematical expressions: 

(11)
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Information capacity [20] can also be used, which is defined as:

(13)

where  describes the relativity between pixels which have gray levels
of i and j, distance of d, and direction of θ. As can be seen from the above, the GMG,
LS and information capacity of better images are higher than those of degraded ones.

3. Experimental setup
The test images for image super-resolution methods described above were obtained
from a range-gated imaging system we set up, which consists of a 532-nm pulsed
laser and an ICCD with programmable timing generator as external trigger controller.
The imaging target is a stripe resolution board covered by regularly distributed white
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Fig. 3. Block diagram of range-gated imaging system.
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stripes with a black background. Figures 3 and 4 show the block and schematic
diagrams of the experimental system.

Experiments were conducted in a boat pond with a length of 200 m. The target was
located at a distance of 35 m from the laser and the CCD. The angle of field of
view (FOV) is about 4 degrees. The attenuation coefficient of the water and the scat-
tering albedo were measured as c = 0.159 m–1 and ω = 0.85. 10 frames of the test video
sequences collected by CCD are extracted for SR reconstruction tests. A sample image
is shown in Fig. 5 (original size 720×576 pixels, region of interest 256×256 pixels).

Figure 5b is used for a single frame image super-resolution reconstruction, while
the whole image sets are used for multi-frame super-resolution reconstruction

3.1. Image preprocessing

Characteristic noises appearing in CCD images have been considered to be the most
harmful phenomenon in imaging systems [21]. So, image noise should be analyzed
and filtered before SR reconstruction in order to avoid the amplification of noise. Fixed
pattern noise (FPN) and Gaussian noise are the two types of noise generally appearing
in images obtained by CCD. The former can be easily eliminated for its fixed feature,
while Gaussian noise needs to be processed by denoising algorithms. The Gaussian
filter is a typical denoising tool; however, its performance weakens when the signal
to noise ratio of image is too low. Wavelet-based denoising scheme can keep a certain
balance between denoising and keeping details, while the bilateral filter [22] is
a denoising filter based on Gaussian filtering, the weight coefficient of which is
composed by the low pass filter and brightness information; thus, it can eliminate noise
and keep edge details simultaneously. Its mathematical expression is:

(14)

where ,  represents

Fig. 5. Sample image of original size (a), and region of interest (b).
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the spatial proximity function,  denotes

the gray similarity function, σd and σr denote the standard deviation of Gaussian
function. Figure 6 shows the denoising results. GMG, LS and information capacity of
the original image and denoising results are shown in Tab. 1.

It can be easily seen even from the resultant images that bilateral filtering performs
much better than Gaussian and wavelet filters. As a result, bilateral denoising is chosen
for the preprocess of SR reconstruction.

3.2. Super-resolution reconstruction

The results of single frame super-resolution reconstruction methods are shown in
Fig. 7. Table 2 shows GMG, LS and information capacity of the original image and
reconstruction results.

We can see that the performance of interpolation algorithms is not satisfactory as
expected, only improved wavelet-based interpolation and PG method can offer
relatively better results. Traditional interpolation methods failed in improving image
quality due to its operation of creating non-existing pixels that blurs the boundaries of
black and white, which degrades the boundaries of black and white stripes. Improved
wavelet-based interpolation operates in the wavelet domain and values of interpolated
pixels are not simply linear transformation of existing pixels, so that it can preserve
the edge information. The PG method is an extrapolation method which operates due
to energy error reduction, and can also avoid blurring.
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Fig. 6. Denoising results (size: 256×256) of Gaussian filter (a), bilateral filter (b), wavelet filter (c).

T a b l e 1. Comparison of evaluation metrics of denoising results.

Original Gaussian Bilateral Wavelet 
GMG 2677964 2024402 2948232 2744921
LS 13828584 7126142 22119831 18321959
Cinfo 0.0227 0.0294 0.8750 0.0805
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Figure 8 shows the results of multi-frame super-resolution reconstruction methods.
Values of evaluation metrics for Fig. 8 are shown in Tab. 3, in which the a, b and θ
are the shift values and rotated angle calculated by Keren image registration.

It can be seen that multi-frame SR algorithms perform better than singe-frame SR
algorithms, which is not difficult to think of because multi-frame images contain more

Fig. 7. SR reconstruction results (size: 512×512) of nearest interpolation (a), bilinear interpolation (b),
cubic-spline interpolation (c), wavelet-based interpolation (d), and Papoulis–Gerchberg method (e).

a b c

d e

T a b l e 2. Comparison of evaluation metrics of single-frame reconstruction results.

Nearest Bilinear Cubic Wavelet PG
GMG 2201032 1482923 1867139 2281622 6928387
LS 12038072 4655161 6317201 21489991 23174544
Cinfo 0.0227 0.0023 0.0059 0.0247 0.0280

Fig. 8. SR reconstruction (size: 512×512) results of IBP (a), POCS (b), and robust SR (c).

a b c
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information than one single image. However, owing to the steep cut-off frequency,
resultant HR images have some ringing artifacts which can be obviously seen from
Fig. 8b. As a result, some kind of regularization is needed to decrease the ringing
drawbacks.

The reconstruction results of the POCS method with regularization by the PSF of
the imaging system is shown in Fig. 9, the parameters used to estimate the PSF are
from the physical properties of experimental facilities including the diffraction limit
of sensors. The image quality of Fig. 9 is compared with that of the traditional POCS
method in Tab. 4.

From Table 4, we can clearly see an enormous increase in information capacity
when a PSF is used. This is due to the prior information the PSF contains, in which
the diffraction limit of sensors is the most useful one. As a result, it can be concluded
that the merge of prior information can substantially enhance the performance of
SR reconstruction, which can achieve the best result currently. 

4. Conclusions
The presented effort introduces image super-resolution reconstruction to underwater
imaging. Varied SR reconstruction algorithms are applied to an underwater range-gated
pulsed laser imaging system. Experimental results show that multi-frame SR recon-

T a b l e 3. Comparison of evaluation metrics of multi-frame reconstruction results.

a b θ IBP POCS Robust SR
GMG

1.06178 19.5214 1.7984
16551701 7660501 12697107

LS 92018103 37496951 67565361
Cinfo 0.1002 0.0240 0.0505

Fig. 9. SR reconstruction results (size: 512×512) of POCS method
with estimated PSF.

T a b l e 4. Comparison of evaluation metrics of traditional POCS and that with PSF. 

POCS PSF-based POCS
GMG 7660501 20081956
LS 37496951 121399379
Cinfo 0.0240 0.2361
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struction algorithms perform better than single-frame SR algorithms, the deployment
of prior knowledge can enhance the performance of traditional SR algorithms such as
POCS. Further research will be conducted from two aspects, the research for a better
estimated PSF for SR algorithm, and applications of other SR algorithms.
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