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Effect of structure factor on aggregate 
number concentration estimated 
using Rayleigh–Debye–Gans scattering theory
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We suggest that the structure factor could be a source of uncertainty when the number concentration
of non-absorbing aggregate particles is experimentally determined from Rayleigh–Debye–Gans
(RDG) scattering theory. Different characteristics of various structure factors have been examined
as a function of qRg. We present deviation of various structure factors from the exponential
structure factor. Number concentrations estimated from various structure factors differ in the range
of 1.0 < qRg < 10 where most of flame-synthesized non-absorbing particles are present as
aggregates. We compare aggregate number concentrations of silica particles determined using
various structure factors.
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1. Introduction
Aggregate volume fraction and number concentration are important parameters in
the field of nanoparticle generation using flame synthesis as they should be controlled
for mass production and quality control. Industrially, for example, silica particles are
widely used in the optical fiber manufacturing process such as outside vapor deposi-
tion (OVD), chemical vapor deposition (CVD) and the vapor-phase axial deposition
(VAD). The number concentration of silica particles should be determined since it is
directly related to the production rate. The aggregate volume fraction is calculated
from the aggregate number concentration and the aggregate particle size which are
measured using Rayleigh–Debye–Gans (RDG) light scattering theory. The uncertainty
of the value of aggregate number concentration and volume fraction has been an issue
for two decades [1–7]. Specifically, ZHAO and MA [6] have suggested applicable range
of RDG light scattering theory for calculating the Mueller scattering matrix of soot
aggregates. The valid range for the RDG light scattering theory is applicable for soot
characterization by light scattering [7]. To better understand the uncertainty associated
with RDG light scattering theory, we investigate the influence of various structure
factors on the aggregate number concentration of silica particles.
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2. Theory

Structure factor S  is defined as a light scattering intensity I  normalized by the square
of the number Np of primary particles included in an aggregate. Thus, the structure
factor is proportional to the scattering intensity as: 

(1)

The magnitude of the scattering wave vector q is denoted as q [5].
Structure factor can be obtained from experimental intuition as well as derived

from explicit mathematical formula. For example, FISHER and BURFORD derived
a structure factor shown below Eq. (2) by investigating the scattering wave at a critical
point [8]

(2)

where Df  is the fractal dimension and u is defined as qRg , where Rg is the radius of
gyration. Equation (2) is called as a modified Ornstein–Zernike form [9]. Structure
factors show unique characteristics depending on qRg (= u). For u << 1, the structure
factor is approximated to the Guinier equation which allows us to determine the radius
of gyration. For u >> 1, the structure factor is approximated to power-law formula
which enables us to find the fractal dimension. DOBBINS and MEGARIDIS [10] suggested
a well-known structure factor as follows:

(3)

Equation (3) is widely used to determine the fractal dimension and the radius of
gyration for aggregate particles. For small u, structure factor is simply expanded to
S(u) = 1 – u2/3. For large u, an explicit aggregate density autocorrelation function is
used. An aggregate density autocorrelation function depends on the cut-off function,
which mathematically describes the boundary of aggregate. Note that the cut-off
function determines the extent of growth of aggregate. An aggregate density autocor-
relation function also depends on fractal nature. The cut-off function is related to
the relative distance of spherules on imaginary surface from the center of an aggregate.
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As the cut-off function becomes sharper, the aggregate structure becomes more
compact. The structure factor is expressed as follows

(4)

where the aggregate density autocorrelation function is given as g (r) ~ rDf – dC(r/ζ )
and the cut-off function is given as C (r/ζ ) = e–(r/ζ )β.

Structure factor obtained from an exponential cut-off function (β = 1) is shown in
the following equation [9, 11, 12]:

(5)

SORENSEN et al. [1] proposed a Gaussian cut-off function (β = 2). To obtain
the structure factor using a Gaussian cut-off function, one should take a Fourier
transform of the aggregate density autocorrelation function. The structure factor is
analytically given as

(6)

where 1F1 is the Kummer confluent hypergeometric function [1]. The Gaussian
cut-off function has a sharper decline than the exponential cut-off function, which
implies that the effect of stretching growth of an aggregate is hardly reflected for
the case of the Gaussian cut-off function. The structure factor simulated using
the Gaussian cut-off function at Df = 3.0 gives an asymptotic curve to the RDG light
scattering intensity for a spherical particle [5].

3. Results and discussion 

When it comes to the scattering intensity I  derived from the RDG light scattering theory
for spherical particle, periodic humps appear as u increases more than the value of 3.
Since the u value from the flame-synthesized particles at the measurement angle of
90° ranges from 1 to 10, these humps can cause a significant error in the calculation
of the aggregate number concentration for non-spherical particles. Usually, flame-
-generated particles are not spherical particles but aggregate particles, thus we need
to introduce a light scattering theory for aggregate particles. Even small molecules can
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be studied using RDG light scattering theory [13]. Aerosol physical properties even
in the coastal area can also be studied using the RDG light scattering theory [14].

As described earlier, structure factors highly depend not only on the fractal
dimension but also on the radius of gyration. The shape of the Fisher–Burford structure
factor is smooth in all regime of u. Such a simple shape of the structure factor is one
of the reasons why the Fisher–Burford formula is extensively used to determine
the gyration radius and the fractal dimension. The structure factor with the exponential
cut-off function showed similar trend to the Fisher–Burford structure factor. This is
due to the fact that Fisher–Burford formula has the same form as the exponential
structure factor when Df  is equal to 2. We calculated the deviations of each structure
factor from the exponential structure factor. Figure 1 shows that the structure factors
behave differently even though they are calculated with the same fractal dimension.
The different behavior of each structure factor leads to the uncertainty of aggregate
number concentration. Note that the slopes in the region of qRg >> 1 for each structure

Df = 2.1

Fisher–Burford
Dobbins–Megaridis
Exponential cut-off function
Gaussian cut-off function

100

10–1

10–2
0.1 1 10

S
tru

ct
ur

e 
fa

ct
or

qRg

Fig. 1. Various structure factors for the case of Df = 2.1. The circle, square, rhombus and triangle are
indicators that distinguish each model.
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Fig. 2. Deviations of various structure factors from exponential structure factor: Df = 1.8 (a),
Df = 2.1 (b). The circle, square and rhombus are indicators that distinguish each model.
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factor are the same since the slope approximates to the fractal dimension as qRg
increases. 

Figure 2 shows that the Fisher–Burford structure factor is slightly larger than
the exponential structure factor for aggregate particles with Df = 1.8 and the deviation
does not exceed about 10%. For aggregate particles with Df = 2.1, on the other
hand, the exponential structure factor is larger than the Fisher–Burford structure factor.
The Dobbins–Megaridis structure factor and the Gaussian structure factor are deviated
from the exponential structure factor more than 50% as qRg increases. The volume
fraction calculated by multiplying the number concentration and the aggregate particle
volume can be different depending on the structure factor.

The number concentration of non-absorbing aggregate particles is usually obtained
from the scattering intensity which is proportional to structure factor. Thus, the devia-
tion of volume fraction is easily estimated from the ratio of structure factors. Figure 3
definitely shows that the aggregate number concentration is apt to change depending
on which structure factor is used. The value of qRg for the flame-generated silica
aggregate particles ranges from about 1.0 to 10 at the measurement scattering angle
of 90°. Structure factors dramatically change in this range, thus a proper structure
factor should be used when calculating aggregate number concentration and aggregate
volume fraction by using RDG light scattering theory. The aggregate number
concentrations were measured at various positions using RDG scattering theory with
various structure factors. 

Figure 4 demonstrates that the aggregate number concentration measured from
the scattering intensity of silica particles generated in counterflow diffusion flame
highly depends on the structure factors. Radius of gyration (Rg) of the silica particles
was measured at every position by the analysis of images obtained from transmission
electron microscope. As can be seen in Fig. 4, the aggregate number concentration
estimated using the Gaussian structure factor is nominally twice larger than that
estimated using the exponential structure factor. Since Dobbins and Megaridis (DM)
structure factor has been extensively used due to its simplicity, it is suitable for
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Fig. 3. Deviations of number concentration from exponential structure factor: Df = 1.8 (a), Df = 2.1 (b).
The circle, square and rhombus are indicators that distinguish each model.
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choosing the DM structure factor for the analysis of silica particles. However, the DM
structure factor has two different forms depending on qRg. It would be recommended
that the continuous structure factor providing similar results to the DM structure factor
be chosen. Among structure factors investigated in this study, the Gaussian structure
factor best fits the DM structure factor. In summary, structure factor should be
properly selected and specified for better estimation of particle characteristics such
as an aggregate number concentration and a volume fraction. The question about
the selection of structure factor remains open and requires a further study.

4. Conclusions
We report that different structure factors could be a source of uncertainty when
the number concentration of non-absorbing aggregate particles is experimentally
determined from Rayleigh–Debye–Gans (RDG) light scattering theory. Various
structure factors were compared in the range of qRg from 1.0 to 10. Structure factors
dramatically change in this range, so that a proper structure factor should be used when
aggregate number concentration and the aggregate volume fraction of non-absorbing
particles are calculated by using RDG light scattering theory.

Acknowledgements – This paper was supported by the New Professor Research Program of KUT.
We give special thanks to the Institute of Advanced Machinery and Design at Seoul National University
for allowing us to generate the silica particles in flames.

References
[1] SORENSEN C.M., CAI J., LU N., Test of static structure factors for describing light scattering from

fractal soot aggregates, Langmuir 8(8), 1992, pp. 2064–2069.
[2] SORENSEN C.M., CAI J., LU N., Light-scattering measurements of monomer size, monomers per

aggregate, and fractal dimension for soot aggregates in flames, Applied Optics 31(30), 1992,
pp. 6547–6557.

Dobbins–Megaridis 

Gaussian cut-off 

approx.

function

Exponential cut-off 
function

6

5

4

3

2

1

0
3.0 3.5 4.0 4.5 5.0 5.5 6.0

Distance from fuel exit [mm]

N
um

be
r c

on
ce

nt
ra

tio
n 

[c
m

–3
]

×109

Fig. 4. Dependence of aggregate number concentration on various structure factors for silica particles at
various positions. 



Effect of structure factor on aggregate number concentration... 525

[3] KÖYLÜ Ü.Ö., MCENALLY C.S., ROSNER D.E., PFEFFERLE L.D., Simultaneous measurements of soot
volume fraction and particle size/microstructure in flames using a thermophoretic sampling
technique, Combustion and Flame 110(4), 1997, pp. 494–507.

[4] XING Y., KOYLU U.O., ROSNER D.E., In situ light-scattering measurements of morphologically
evolving flame-synthesized Oxide nanoaggregates, Applied Optics 38(12), 1999, pp. 2686–2697.

[5] SORENSEN C.M., Light scattering by fractal aggregates: A review, Aerosol Science and
Technology 35(2), 2001, pp. 648–687. 

[6] ZHAO Y., MA L., Applicable range of the Rayleigh–Debye–Gans theory for calculating the scattering
matrix of soot aggregates, Applied Optics 48(3), 2009, pp. 591–597.

[7] ZHAO Y., MA L., Assessment of two fractal scattering models for the prediction of the optical
characteristics of soot aggregates, Journal of Quantitative Spectroscopy and Radiative
Transfer 110(4–5), 2009, pp. 315–322.

[8] FISHER M.E., BURFORD R.J., Theory of critical-point scattering and correlations I. The Ising model,
Physical Review 156(2), 1967, pp. 583–622.

[9] TEIXEIRA J., Experimental methods for studying fractal aggregates, [In] On Growth and Form,
Fractal and Non-Fractal Patterns in Physics, [Eds.] Stanley H.E., Ostrowsky N., Dordrecht, 1986,
pp. 145–162.

[10] DOBBINS R.A., MEGARIDIS C.M., Absorption and scattering of light by polydisperse aggregates,
Applied Optics 30(33), 1991, pp. 4747–4754.

[11] FRELTOFT T., KJEMS J.K., SINHA S.K., Power-law correlations and finite-size effects in silica particle
aggregates studied by small-angle neutron scattering, Physical Review B 33(1), 1986, pp. 269–275.

[12] BERRY M.V., PERCIVAL I.C., Optics of fractal clusters such as smoke, Optica Acta 33(5), 1986,
pp. 577–591.

[13] GHAZY R., EL-BARADIE B., EL-SHAER A., EL-MEKAWEY F., Static laser light scattering (SLLS) investi-
gations of the scattering parameters of a synthetic polymer, Optics and Laser Technology 31(6),
1999, pp. 447–453.

[14] ZIELINSKI T., PETELSKI T., Studies of aerosol physical properties in the coastal area, Optica
Applicata 36(4), 2006, pp. 629–634.

Received September 30, 2010
in revised form December 10, 2010


