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This paper studies the propagation of optical solitons through birefringent fibers with parabolic
law nonlinearity. The Hamiltonian perturbations that are inter-modal dispersion, self-steepening,
third-order dispersion and nonlinear dispersions are taken into account. Both, Riccati equation
expansion method and Jacobian elliptic equation expansion method are used. Finally, analytical
solutions that are Jacobian elliptic periodic traveling wave solutions, periodic solutions, unbounded
solutions, singular solutions, bright and dark soliton solutions are obtained under several constraint
conditions.
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1. Introduction

Optical solitons, the most ideal carriers of information, have important application fea-
tures in the optical communications and ultra-fast signal processing systems [1-5].
Most of the existing papers mainly focus on the optical solitons in the polarization
preserving fibers, while there are very few papers that study the optical solitons in
the birefringent fibers [6—14]. So the key idea of this paper is to seek exact soliton so-
lutions to the birefringent fibers with Hamiltonian perturbations and parabolic law
nonlinearity.

Birefringence is a natural phenomenon that occurs in optical fibers [6, 8]. The optical
pulse will split into two orthogonally polarized pulses that have different propagation
constants and group velocities, because it is very difficult to have delicate circularly
symmetry for optical fibers [8].



400 QIN ZHoU et al.

In the presence of strong Hamiltonian type perturbations, the governing equation
for the propagation of optical solitons through birefringent fibers with parabolic law
nonlinearity is given by the following Hirota equations:
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In Equations (1) and (2), the unknown functions ¢(x, #) and r(x, f) are the optical
wave profiles for the two components in birefringent fibers; x and ¢ represent the spatial
and temporal variables, respectively.

For /=1, 2, the constant parameters a,, b, ¢;, A, s; and 7, are, respectively, the pa-
rameters of the group velocity dispersion (GVD), self-phase modulation (SPM), cross-
-phase modulation (XPM), inter-modal dispersion (IMD), self-steepening and third-or-
der dispersion (TOD) for the two polarized pulses. The terms with d,, e;, and f; are as-
sociated with the quintic terms of the parabolic (cubic-quintic) law nonlinearity [7, 8].
Finally, #; and 6, are the nonlinear dispersions.

The aim of the present work is to construct the Jacobian elliptic periodic traveling
wave solutions, periodic solutions, unbounded solutions, singular solutions, singular,
bright and dark soliton solutions in the birefringent fibers with Hamiltonian perturba-
tions and parabolic law nonlinearity. The strong Hamiltonian type perturbations that
are IMD, self-steepening, TOD and nonlinear dispersions are taken into consideration.
The integration methods are the Riccati equation expansion method and Jacobian
elliptic equation expansion method. Several constraint conditions for analytical solu-
tions to exist are displayed.

In order to obtain exact solutions to Egs. (1) and (2), making the hypothesis in
the form [6-9]:

g(x, 1) = Alpl[n(x, t)] exp [i¢1 (x, z)} 3)

r(x, 1) = Asz[n (x, z)} exp [i By (x, t)} (4)

where 7= B(x — vt)and ¢, = —x;x + @;t +6;; P/(n7) and ¢,(x, ¢) for / = 1, 2 are the am-
plitude and phase components of the two solitons, respectively; 4;, B and v represent
the amplitude, width and velocity of the solitons. Additionally, x; are frequencies of
the two solitons, @, are the wave numbers, while 8, are the phase constants.
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Substituting (3) and (4) into (1) and (2), and separating the real and imaginary parts,
respectively, one obtains

(@ A+ a i+ i) )Pt e AP P4 d AP + o AT AT P+

4 4 253 2pm _
1A P Pp (bt s+ G k) AP+ (a;+ 3yK)B°P) = 0 ()

(A= 20,0 =357 —v) By + Gyt 20+ 6) 47 P+ 1 BP = ©)

for/=1,2and =3 1.

2. Riccati equation expansion method
Assume that P;(77) satisfies

P/(1) = a+bPi(7) (7)

where a and b are the nonzero real constants. Equation (7) is the famous Riccati equa-
tion [15—17], the solutions of which are listed in Table 1.

Table 1. Solutions to the Riccati equation (7).

Py(n) oab_ tan(/ab 1)

ab>0 b
P(n) = —J‘?cot(ﬂn)
P(n) = - “7Zb tanh (v—ab 717)
ab<0

P(n) = - “7Zb coth (v/—ab 1)

Substituting the assumption (7) into Egs. (5) and (6) yields
(@ A+ apk )Pt e AP PR d AP ey A7 AP P

+fi A7 PP+ (bt sk + O K)AP + (a+ 3 7/11(,)32(2abPl + 252P,3) =0
(8)

(420~ 352 v)(a+ bPE) + 35+ 20+ 6) 43 P (a + bPE) +

+ 78(24% + 8ab? P+ 6P| = 0 )
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Then using the homogeneous balance principle, from Egs. (8) and (9), setting the co-

efficients of each power of P,(77) to zero gives:
@, = 4K - a ki - 1Kk + 2ab(a; + 3 y%)B*
2 2 2 2 _
(b +s,K+ 6K) A] +2b"(a;+ 3yK) B™+¢; 47 = 0

d A} +e, A,ZAI?+J;A;‘ =0

v /1,72a1/(,f3711(,2+2ab7/132

a(3s;,+2u,+ 6)
v = /1,—2a11c,—3;/,1c,2+8ab7/132+ 1 bﬂz 1 A?

(3s,+24,+ ) A, +6b° B> = 0

(10)
(11)
(12)
(13)
(14)

(15)

It needs to be noted that upon equating the two values of the solitons velocities

from (13) and (14) also yields the same relation as given by (15).

Equating the two values of the soliton velocity v, for / =1, 2, from Eq. (13) gives

the width of the soliton as

1/2
| G A =20k - a k) =301 - 1)

2ab(%—-7%)

which introduces the constraint condition

ab(y— 1| (A= ) = 2@ - ap k) =3 = 7,57) | > 0
From Eq. (15), the amplitude of the solitons are given by

12
2 2
3b}7[(ﬂl—ﬂi) - 2(a;K - a; k;) = 3(yk; — 7[,,(]7)}
a(3s;+24,+ 6)(y,— 77)

Al: -

with the constraint condition

Y (3s,+2u,+ 6) <0

(16)

(17)

(18)

(19)

Additionally, Equations (11) and (12) pose other two constraint conditions that are

given by
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37%(b,+ s,k + 6,k 3¢y
ALY 11)+ 17 = 4, +3% K (20)
3s,+2u,+ 6, 3Si+2ﬂf+(9i
) 2
dy . enr N Ni%; -0
(3S1+2/‘1+91)2 (3s;+2u;+ 6)(3s; + 2 + 6;) (3Sl,+2ﬂl,+gl,)2 o

Hence, finally the singular solutions, dark and singular soliton solutions for the bi-
refringent fibers with parabolic law nonlinearity are obtained, which are listed as fol-
lows.

Case 1 —when ab > 0, Egs. (1) and (2) admit the singular periodic solutions that
are given by

g(x, 1) = Jc;_bAltan[JEB(x _ vt)] exp [i(—l(lx + o+ 6, )} 22)
Fx, 1) = @Aztan[m B(x - vt)} exp [i(—l(zx + oyt + 92)} (23)
g(x, 1) = — Jz_bAlcot[MB(x - vt)} exp [i(flclx + o+ 6, )} (24)
rnf) = — J‘Z_” Azcot[ﬂ B(x - vt)] exp [i(—zczx + oyt + 92)] 25)

Case 2 — when ab <0, Egs. (1) and (2) admit the dark soliton solutions that are
given by

qg(x, t) = — ‘_Zb Altanh[A/—ab B(x - vt)} exp [i(—l(lx + ot + (91)} (26)
r(x,t) = — ‘;fb Aztanh[A/—ab B(x - vt)} exp [i(—l(2x + Wyt + 6?2)} (27)

and the singular soliton solutions that are given by

g(x, t) = — ‘_Zb A, coth[A/—ab B(x — vt)} exp [i(—l(]x + ot + 6, )J (28)

rx, f) = — “‘;‘b Aycoth| Jab B(x—vo) [expliC-ryr+ mpi+ 6)]  (29)

where the amplitude and width of the solitons are given by Eqs. (18) and (16) respec-
tively, while the velocity of the solitons are given by Eq. (13) or (14) and finally
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the wave numbers are given by Eq. (10). The constraint conditions for analytical so-
lutions to exist are given by Egs. (17) and (19)—(21).

3. Jacobian elliptic equation expansion method

Assume that P;(77) satisfies

) 2 4
Pi(n) = gyt g P(mn)+g,P () (30)
where g, g, and g, are the nonzero real constants. Eq. (30) is Jacobian elliptic equation,
the solutions of which are listed in [2, 18-20].
Substituting the assumption (30) into Egs. (5) and (6) yields

+f1A;_‘ P, Pli‘ + (b, + 5,5+ 6K)AT P} + (a;+ 374;«,)32(&1), + 2g4P13) =0
(31)

2
(/11—26111(1—37/11(12—\)) +2(/11—2allq—37/lk‘12—v)(3sl+2,ul+ 6)A4; P +
2
+ (35, + 20, + 6)° 43P} = }/12B4(g2+6g4P12) (32)

Then using the homogeneous balance principle, from Egs. (31) and (32), setting
the coefficients of each power of P;(77) to zero gives

o = gy(a+ 3y KB+ K - a ;i - yK; (33)

(b, + 5,5+ e,zq)Ai+c1A§+2g4(a,+3Wc,)Bz =0 (34)

d) A} + e A7+ f;47 = 0 (35)

v = /1,—2a,l(1—37/,1(12+g2;/132 (36)

v = A= 20K - 3K - sl - (37)
(3s;+2u,+ )4,

(3s,+24,+ ) A, = 6g,7 B’ (38)

It needs to be noted that equating the two values of the solitons velocities from (36)
and (37) also yields the same relation as given by (38).
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Equating the two values of the soliton velocity v, for / = 1, 2, from Eq. (36) gives
the width of the soliton as

12

(4= A7) = 2(a;K,— a; K;) — 3(yx7 — }/iKIZ)

B = (39)
(Y- 71—)

which poses the constraint condition

61— )| (A= A) = 24— ap 5) = 357 - 10 | > 0 (40)
From Eq. (38), the amplitudes of the solitons are given by

172

6247 | (A= Ap) = 2(ay5— a; 1) =35 = 7,10 |
4, = 41
! &35+ 24,+ 6)(1— 77) @1

with the constraint condition
4% (Bs;+2u,+ 6,)>0 (42)

Additionally, Equations (34) and (35) pose other two constraint conditions that are
given by

3y,(b,+ 5K+ 6K 3¢y
7 (b + 5,k 11)+ 1] +(a,+3%K) = 0 (43)
3s,+2u,+ 6, 3Si+2ﬂf+9i
2 2
dy - enr N S -0
(3s,+ 241, + 6)) (Bs;+2u;+ 6)(3s; + 2u; + 6;) (3s; +2u; + 6.) "

Hence, finally the explicit Jacobian elliptic periodic traveling wave solutions for
the birefringent fibers with parabolic law nonlinearity are constructed (see Table 2).
The amplitude and width of the solitons are given by Eqgs. (41) and (39), respectively,
while the velocity of the solitons are given by Eq. (36) or (37) and finally the wave
numbers are given by Eq. (33). The constraint conditions for analytical solutions to
exist are given by Egs. (40) and (42)—(44).

It needs to be noted that when the modulus m = 0 and m = 1, the Jacobian elliptic
periodic traveling wave solutions become trigonometric periodic solutions (see Table 3),
unbounded solutions (see Table 4), singular solutions (see Table 5), singular, bright
and dark soliton solutions (see Table 6).



408 QIN ZHoU et al.

4. Conclusion

The Hirota equation, describing the propagation of optical solitons through birefrin-
gent fibers with Hamiltonian perturbations and parabolic law nonlinearity, is studied
analytically by employing the Riccati equation expansion method and Jacobian elliptic
equation expansion method. We report the Jacobian elliptic periodic traveling wave
solutions, periodic solutions, unbounded solutions, singular solutions, singular, bright
and dark soliton solutions. We obtain the constraint conditions for these solutions to
exist.
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