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The structure of photochromic high silica glasses (PHSGs) was studied by UV–VIS–NIR and
IR spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) tech-
niques. PHSG plates were obtained by impregnation of silica porous glasses at first with AgNO3
aqueous solution (in or without the presence of the sensitizers, such as Cu(NO3)2 or Ce(NO3)3),
next in the mixed halide salt (NH4Cl, KBr, KI) solution. Then a part of the samples was sintered
at temperatures from 850 to 900 °C up to closing of the pores. The results of  TEM study have shown
that the PHSG plates have two-phase structure with inclusions of the size of 10–100 nm. According
to XRD data, the PHSGs contain the AgBr phase. IR spectra confirmed the presence of AgI, AgCl,
CeO2, CuCl2, CuCl phases in PHSGs. 
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1. Introduction

We have synthesized and investigated the samples of photochromic high silica
glasses (PHSGs) which are the photochromic porous glasses (PPGs) and photochromic
quartz-like glasses (PQGs) obtained by sintering of PPGs up to closing of the pores.
PHSG is new photosensitive composite material, which possesses a number of prop-
erties inherent to quartz glass [1]. PHSGs are usually obtained by impregnation of
the silica porous glasses (PGs) with photosensitive silver halides phases (AgCl, AgBr,
AgI) [1–3]. The materials of this kind are used for creation of the plasmonic
waveguides, in the optical data storage, in superlenses and sensors [4–13]. Formation
of these microoptical elements occurs due to the use of laser irradiation [4, 11, 14]. In
the case of PHSGs, the photochemical properties can be improved through variation
in PG plate thickness and conditions of their preparation, as well in solution compo-
sition of impregnant and sintering modes [2]. 
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2. Experiment
2.1. Synthesis of the glasses

Synthesis of PHSGs was carried out according to the procedure [1–3], which consists
in following. At first, PG samples (in the form of the rectangular plane-parallel plates
of the size of (1.5 ± 0.03)×(10–15)×(15–25) mm3) were placed in AgNO3 aqueous so-
lution (in or without the presence of sensitizers, such as Cu(NO3)2 or Ce(NO3)3).
Next the samples were submerged in a mixed halide salt (NH4Cl, KBr, KI) solution.
As the result, the samples of PPGs were obtained. PPGs were sintered at temperatures
from 850 to 900 °C for 10–40 minutes [2]; owing to that, a closing of the pores and
formation of a monolitic high silica material, i.e., PQG, took place. The pure quartz
-like glasses (QGs) were prepared from PGs without impregnation under the same sin-
tering conditions. The glasses under investigation have following compositions (as
analyzed, wt%): 0.30 Na2O, 3.14 B2O3, 0.11 Al2O3, 96.45 SiO2 (PGs) [3],
0.20–1.05 Na2O, 0.39–0.48 K2O, 3.07–3.45 B2O3, 94.11–96.09 SiO2, 0.33–1.25 Ag2O
(with/without ≤0.1 Al2O3), and in or without the presence of a sensitizer (0.03–0.04
CuO, 0.02–0.03 Ce2O3) – PHSGs. The copper quantity was determined by the flame
photometry method on iCE of 3000 Series spectrometer, cerium – by inductively cou-
pled plasma mass spectroscopy (ICP-MS) on Elan 6100 drc. 

2.2. Methods of glass characterization 

The synthesized glasses were investigated by the following techniques:
– IR transmission spectra were obtained with SPECORD M-80 spectrophotometer

in the range of 4000 to 300 cm–1 at the spectral resolution of 4 cm–1. For measurements
of IR spectra, the glasses were powdered and mixed with KBr in order to obtain thin
pellets by vacuum pressing.

– Transmission spectra were measured by SF-2000 UV/VIS spectrophotometer in
the wavelength range of 190–1100 nm with a step of 0.115 nm.

– TEM images were obtained by the well-known method of cellulose-carbon
replicas with EM-125 electronic microscope at an accelerating voltage of 75 kV [1].

– X-ray diffraction studies were carried out on the DRON-2 device with
monochromatic CuKα-radiation (rotation speed of the counter was 2 °C/min). 

3. Results and discussion
3.1. The structure of the glasses under investigation

The electron micrographs of the synthesized samples are presented in Fig. 1. It is seen
that the structure images of the PQGs with different dopants are various. The separate
inclusions in the size of 10–100 nm are observed inside a silica matrix in the cases of
impregnation of PG by silver halides (Fig. 1a) or by silver and copper halides (Fig. 1b).
In pure QGs, such inclusions were not observed [1].
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It is necessary to notice that according to TEM study, the QGs have a structure of
a “micro-liquation” type [1]. It gives the grounds to assume that the inclusions are
formed by a photosensitive phase. It is visible that the total amount of inclusions in
PQGs doped with silver and copper halides (Fig. 1b), is greater than in PQGs doped
only with silver halides (Fig. 1a), and reaches ~45%. However in the case of
PQG doped with silver and cerium halides, a characteristic pattern of crystallized
material [15, 16] is visible (Fig. 1c). 

X-ray diffraction spectrum of PQG samples under study is shown in Fig. 2. Our
measurements indicated that all three types of the PQGs contain silver bromide in
the cubic system. In the case of PQG doped with silver halides without sensitizers,
the diffraction spectra have the peaks (200) AgBr, (220) AgBr and (222) AgBr. The unit
cell parameter of AgBr crystallites equals a = 5.775 Å and is slightly lower than the table
value (Database PDF-2 file No. 79-0149). The glasses additionally doped with copper
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Fig. 1. TEM photographs of the photochromic quartz-like glasses with: silver halides (a); silver and
copper halides (b); silver and cerium halides (c).
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Fig. 2. Typical X-ray diffraction spectrum of the photochromic quartz-like glasses. An asterisk indicates
the strongest line of quartz.
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or cerium have even smaller unit cell parameter of AgBr, namely a = 5.704 Å and
a = 5.648 Å, correspondingly. Such reduction of the unit cell parameters can be ex-
plained by the fact that for mixed crystals of the silver halides, the superimposition
and the shift of the diffraction peaks are characteristic. At that it is necessary to notice
that the diffraction peaks of AgCl, AgI and AgBr phases have a close location [17]. 

3.2. UV–VIS–NIR and IR transmission spectra investigation

The transmission spectra of PGs, QGs and PQGs are given in Fig. 3. It is seen that in
the case of QGs, the cut-off was observed at λ = 206 nm, which shifted to λ = 233 nm
for PGs and to λ = 267 nm for PQGs. The transmittance of PQGs is reduced as com-
pared with PGs and QGs. At that PQGs doped with silver and cerium halides have
the lowest transmittance value in the spectral range 395–1100 nm in comparison with
other glasses. Also for given glass, an intermittent increase in transmittance in the spec-
tral range 300–395 nm is observed (Fig. 3, black solid line). This result can be caused
by absorption of cerium nanoparticles as well by a formation of silver colloidal nano-
particles [18, 19].

IR transmission spectra of glasses under investigation are shown in Figs. 4 and 5.
It was found that all types of glasses have eight fundamental absorption bands at
3684–3672, 3520–3472, 3432–3420, 2928–2916, 2824–2820, 1668–1652, 1392–1376,
1108–1080 cm–1. On the basis of the literary data [19–37], the following structural
groupings can be identified on characteristic peaks.

Broad-bands placed at 3684–3672, 3520–3472, 3432–3420, 1668–1652 cm–1 are
assigned to stretching vibrations of hydroxyl groups and water. The broad-band at
3432–3420 cm–1 is due to Si–OH stretching of surface silanols hydrogen and also due
to vibrational structure of Si–O–Si. Two bands at 2928–2916 and 2824–2820 cm–1 are
connected with hydrogen bonds. The band at 1392–1376 cm–1 is connected with
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Fig. 3. Transmission spectra of the glasses: silica porous glass (dash line), quartz-like glass (dot line),
and photochromic quartz-like glasses: doped with silver halides (green solid line), doped with silver and
cerium halides (black solid line).
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asymmetric stretching vibrations of [BO3] unit. Broad-band placed at 1108–1080 cm–1

is associated with Si–O–Si asymmetric stretching. 
Apart from the absorption bands mentioned above, the PPGs and PQGs have

the following bands. The shoulders at 1320–1316 and 1100–1088 cm–1 became broad-
er (Figs. 4 and 5). This result was due to the interaction between the AgCl/Ag particles
and the matrix of the glass and due to the addition of AgI, which induces a change in
the spectra in this range of the frequencies. The band at 860–848 cm–1 in PPGs (Fig. 4,
solid line) and PQGs (Fig. 5, short-dash and dash lines) indicates some effect of
the AgI on the glass structure. The band at 792–776 cm–1 (Fig. 4, short-dash and solid
lines) is associated with the symmetric stretching mode of Ag–O–Si bonds, showing
that the Ag clusters have oxygen as an adsorbate atom/surrounding atom. The weak
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Fig. 4. IR transmission spectra of the glasses: silica porous glass (dash-dot line), and photochromic porous
glasses: doped with silver halides (short-dash line), doped with silver and copper halides (solid line),
doped with silver and cerium halides (dash line).
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Fig. 5. IR transmission spectra of the quartz-like glass (dash-dot line), and photochromic quartz-like
glasses: doped with silver halides (short-dash line), doped with silver and copper halides (solid line),
doped with silver and cerium halides (dash line).
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shoulder at 704–688 cm–1 is assigned to Si–O–Al deformation and also due to bending
of B–O–B linkanges in the borate network. The shoulder at 616–608 cm–1 (Fig. 4,
short-dash and dash lines) is assigned to vibration of Ag–O bonds. The band at
536–528 cm–1 which is observed in Fig. 5 (dash line) can be attributed to the Ce–O
stretching vibration. The sharp peaks in 560–400 cm–1 range (Figs. 4 and 5, solid lines)
show the copper halide linkages (CuCl, CuBr, CuI) whereas halides behave as a bridg-
ing ligand. The bands at 516 and 408 cm–1 (Fig. 4, solid line) can be attributed to
the CuCl2 and CuCl phases. The band at 452–444 cm–1 is attributed to δ  (Si–O–Si)
symmetric stretching and bending vibrations. The symmetric and asymmetric Ag–O
stretching bands were observed at 464–460, 392–384 and 336–332 cm–1. 

4. Conclusions
UV–VIS–NIR transmission spectra have shown that PGs, QGs and PQGs are
transparent throughout the visible and near infrared spectral range. The intermittent
increase in transmittance at λ = 300–395 nm in PQGs doped with silver and cerium
halides is connected with the absorption of cerium nanoparticles. 

According to TEM data, a structure of PHSGs has a “micro-liquation” type with
the inclusions of a photosensitive phase, a portion of which depends on the kind of
the entered sensitizer. Crystallization is characteristic for samples which are doped by
silver and cerium halides.

X-ray diffraction spectra of PQGs show that they contain AgBr phase in the cubic
system. According to IR transmission spectra, all samples of PHSGs contain AgI, AgCl,
Ce–O, Ag–O, Ag–O–Si, Si–O–Al units; copper halide linkages (CuCl, CuBr, CuI),
CuCl2 and CuCl phases.
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