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Stability of plane and stationary nonlinear waves in optical fibers is discussed as solutions of the 
exponential nonlinear Schrôdinger equation.

1. Introduction

In recent years, there has been a growing interest in the nonlinear wave theory in 
optical fibers [1] —[4]. This interest has been stimulated by the invention of 
powerful mathematical tools for analysing the nonlinear wave phenomena. From the 
experimental point of view, the main question is the observability of nonlinear waves 
in the optical fibers, hence the importance of the theoretical problem of stability of 
nonlinear waves and especially, the stability of solitons is a very important subject 
to study.

It is well known that the fundamental equation describing the nonlinear 
evolution of pulse envelope, as the pulse propagates along the fiber, is the nonlinear 
Schrodinger equation (NLSE) or its generalizations [5] -  [10]. These equations have 
been derived basing on the small amplitude assumption by introducing a small 
nonlinear parameter e (|fi|« l) in the following expansion:

u = u0+iy f (1)
»=1 m--aa

where: uj}) =  0, m #  ± 1 , uj^* =  i/ij,, t =  e(t—Xx), £ =  e?x. The derived NLSE has 
the following form [5], [6]:

iu{̂ + fi\u{V\2 u{p + a = 0. (2)

Here p and a are the nonlinear and dispersive coefficients, respectively.
We now proceed to consider the exponential NLSE introduced recently to 

nonlinear plasma physics by D ’E v e l y n  and MORALES [11], KAW et al. [12] and 
S h e e r in  and O n g  [13]

i«€+ j? (l-e -l“l> + a u Tt =  o. (3)

In nonlinear optics, this equation does not include the Raman nonlinear dissipation 
term [6] which may become important for the case of strong electric field E.
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We simply neglect this term to make the equation analytically tractable, though we 
are aware that this makes our approach only approximate. The full problem is left 
for future numerical studies.

For derivation of Equation (3), no assumption of small wave amplitude was 
made. However, in this limit, the nonlinear term of Eq. (3) transforms to that of Eq. 
(2). Moreover, for relatively small amplitudes of the incident pulse the nonlinear 
effects may be neglected and we actually have the linear regime. Similarly, for 
infinitely large amplitudes, the waves interact weakly with the medium and thus the 
nonlinear term in the model equation may be replaced by a linear one. Thus, the 
saturated exponential nonlinearity effect plays an important role in maintaining 
waves of finite amplitudes. It is worth noting that Eqs. (2) and (3) are equivalent at 
certain lim its, it has been shown by D ’ E v e l y n  and M o r a l e s  [11] that both Eqs. 
(2) and (3) give essentially the same results for normalized amplitudes smaller than 
0.2. For amplitudes greater than 0.5, the influence of the exponential nonlinearity 
causes a significant difference from the estimation predicted by the cubic non­
linearity.

This paper is organized as follows. The next Section presents the derivation of the 
exponential nonlinear Schrôdinger equation (henceforth, ENLSE) assuming ex­
ponential dependence of the refractive index on the electric field. Section 3 shows 
a necessary condition for the modulational stability of the ENLSE. In Section 4, 
the Infeld-Rowlands method [15] is applied for this equation to study a stability of 
waves as its solutions. Numerical calculations and results are presented in Sections 
5 and 6, respectively. The final part is a short summary.

2. Derivation of model equation

The refractive index of the medium can be represented in the form of a power 
expansion of the electric field. See K o d a m a  [5], K a r p m a n  [14], and references 
therein. There are several effects which may lead to such dependence. One of them is 
the Kerr effect which arises from the orientation of anisotropic molecules in the 
electric field [14]. Also électrostriction and the ionization of the medium by the 
incident electric field may be the causes [14].

Let us express the refractive index in the following form:

" =  X > ,|£ |2'·
1=0

Here, we used the even powers of the electric field because they come from the 
interaction of dipoles, quadrupoles, and so on, with the incident electric field. This 
expression should be valid for arbitrary value of £ , and in the limit of infinite field 
E the refractive index should be finite. It suggests that the reasonable choice is

n =  n ,+ n2[ l - e x p ( - |£ |2)].

The linearly polarized optical wave pulse in an optical fiber is given by the 
equation
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^xx
_  2n2n0 

c2 (4)

where n2 represents a nonlinear part of the refractive index,

n = n,+n2(l —e-1*1*). (5)

The optical Kerr effect arises from the orientation of anisotropic molecules in the 
wave field E. A good reference is Piekara [16] who used the following dependence 
of the refractive index n of liquids on the intensity of electric field E:

n =  nI+ n 2|£ |2+ n J E f + n 6|£ |6.

The sequence of terms such as \E\2, |£ |4, and so on, in this formula is a consequence 
of an interaction of the electric field E with dipoles, quadrupoles, and so on, 
respectively. In the limit |£ |2—0, for weak incident electric field, it is quite sufficient 
to drop higher-order terms to obtain the classical quadratic dependence of the 
refractive index on the electric field envelope. For stronger fields, however, such 
approach is very rough and a natural correction is to use all three terms and even to 
extend it by taking the next ones.

So, here we generalized quadratic dependence of the refractive index n on the 
electric field E to the exponential one. Let us notice that for |£ |« 1  the last term in 
the formula (5) transforms to n2|£ |2.

In expansion (5), n, is a linear part of the refractive index and n2 is a small 
constant We assume that

n0 =  wi(w0). (6a)

and D, is a linear part of the displacement vector

D i=  \  n2(t—t?)E(t')dt' (6b)
—  00

where we extract the slowly varying complex envelope u(x, t) of the short-wavelength 
optical field,

E(x,t) =  u(x,t)eilqx~0ot). (7)

Here q is the propagation constant
Substitution of expression (7) into Eq. (4) leads to the equation

idi +  2iqdx- q 1+ k 'i+ 2 ik<)k’0B,-i(k’0)t +  k0ki13}}u

=  ? Mo ei»0ra2[ ( l _e—I (8)

where: k2 =  —- ”1, 
c

kl colnl
kfn =

dk
dco a>o

82k
dco2

and 8 means the partial derivatives operator. For samples short enough the r.h.s. of 
(8) may be replaced by
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- 2 ^ ( 1  -e-M *)«. (9)
n0

We also use the slowly varying envelope approximation

k0»(dx—2k?0dj. (10)

Finally, we get from (8)

i(w,+ * £ , « , ) fcS (1 -  e - =  0. (11)2 C

Using a stretched variable

t =  t-k!0x , (12)

we obtain

iux+<xu„+P(l-e~M1)u =  0 (13)

where:

« =  -\k"o. /¡ =  ^ ·  (14)2 C

For small amplitudes u, 1—e_,“|a reduces to |u|2, and we have the NLSE.

3. Modulational stability

Equation (13) has a plane-wave solution

u =  tt0exp(—iAkx) (15)

where u0 is an arbitrary constant, and

Ak — — ̂ (1 —exp(—Uo)). (16)

We perturb the wave by the small amplitude disturbance ¿u(x,x)

u(x, t) =  (u0 +  Su)exp(- iAkx). (17)

Substitution of the above formula into Eq. (13) and removal of the nonlinear terms 
leads to the following equation for the disturbance Su

i\5u,+a<5u„+/Jexp(-u§)[u§(5u+<5u*)] =  0. (18)

Setting Su =  u+iv  and separating the real and imaginary parts, we obtain

a u„ - v x +  2fiuluexp{ -  u%) =  0, (19a)

olvxx +  ux =  0. (19b)

Looking for solutions of the form

u,i7~ exp [i(Kx—Ox)], (20)
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we find dispersion relation

K 2 =  ctQ2 [ctQ2 — 2/Juoexp( — «o)]> 

which has the solution

K = ±  [x02(x(22 -  2/JuJ exp( -  uj)]1'2.

This equation admits of an oscillatory instability for a >  0 and 

fl2 <  Q} m 2ffupexp(—Up)

A maximum growth rate y corresponds to the maximum of an imaginary part of 
K  and occurs for

=  2.

Its value may be easily calculated from (22)

(24)

o 2
max|ImK| =  |a |y . (25)

The modulational instability is a very important subject to study in nonlinear 
fiber optics [9], [10] and in other areas of science [1 7 ]-[1 9 ]. It relays on a process 
in which small amplitude perturbations from the steady-state grow exponentially 
as a result of an interaction between Fourier modes. From Eq. (23) we see that 
a critical frequency also called the cut-off, depends both on the value of the 
amplitude u0 and the quotient fi/oc.

4. Stabilities of the exponential nonlinear Schrddinger stationary waves

This part of the paper presents results of the stability analysis of nonlinear waves, 
solitons and shock waves like solutions of ENLSE, which is rewritten here in the 
form

iux+un+P(l — e~M1)u «  0. (26)

This equation is obtained from (13) by the transformation z-*^/\a\t, where a is 
positive. In the case of a negative a, Eq. (26) may be also derived both by the 
transformation of t and the renaming of the nonlinear coefficient p and the 
coordinate x to — p and — x, respectively.

4.1. Stationary wave solutions

We now look for stationary envelope solutions

u =  u0(T)e*W2 +**) (2 7 )

where x =  t —cx. Equation (26) leads to

(21)

(22)

(23)
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u0n-pu 0-Pu0e "2 = 0 (28)
where we defined 

c2
p = b + ~ f i .

After integration of Eq. (28) multiplied by uQx, we get

ulx =  p u l - P e - ' l+ p l= Y ( u 0). (29)

Here / is another integration constant
The qualitative nature of the solution of the ENLSE may be determined from 

consideration of the function Y(u0) which should be bounded for bounded u0 and 
must possess double roots. This happens when

r (u o) = y ( u o) =  0 .

Hence, we find the condition for p and p

pP <  0, p{P+p) <  0 (30)

and values of l corresponding to the double roots

min, max , In ( -  1 j .  (31)

We now consider the case of p >  0 assuming that the conditions (30) are satisfied. 
We call this case the “soliton” case. For / =  and l — lmlu, we have linear waves 
and solitons as solutions of Eq. (29). For /max>  / >  lmln and / <  Jmln there are periodic 
waves. The general behaviour of the function 7(u0) with u0 and P >  0 is shown 
schematically in Fig. 1. The other case we shall take into consideration is for p >  0,

\

a y'

y - / ~

/

/1 ______________

Fig. 1. Phase diagrams for the exponential nonlinear Schrodinger equation for the case /? =  1: a  — linear 
wave limit, b — soliton, c — cnoidal wave

Fig 2  As for F ig 1, but here: a  -  linear wave limit, b -  cnoidal wave
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p < 0 ,  p{P + p)> 0 .  (32)

For / >  P/p, there exists a range of periodic waves as solutions of Eq. (29). For 
/ =  p/p there is a linear wave. See Figure 2 for a qualitative behaviour of the function 
Y(u o).

The case of the negative value of p (p <  0) is applicable in the optical fiber 
context when the dispersive coefficient a <  0. See the comment below formula (29). 
If conditions (30) are satisfied we have a range of periodic waves for lmln <  l <  L.* 
For l =  lmla and / =  there are the linear wave and shock wave, respectively. We 
call this case the “shock-wave” case. See Fig. 3.

Fig. 3. Case of — —1: ·  — linear wave limit, 
b — cnoidal wave, c — shock wave

4.2. Stability analysis

One approach to the study of the stability of optical pulses as solutions of 
a nonlinear wave equation is to assume a small amplitude and long period 
perturbations and consider whether or not this perturbation grows with distance. 
This approach allows us to approximate a nonlinear wave equation for perturbation 
by a linear equation: we superimpose a small disturbance of envelope with a long 
period and small amplitude upon the steady state given by Eq. (29)

u =  [uQk)+5ut {x)el^ kx)+5u2{T)e-i(0'+*x)]e i(ctl2+bx\  (33)

Here we have introduced coordinates of the moving frame

x — t —cx, x =  x. (34)

Physically, it means that in the moving frame the nonlinear wave does not change its 
form with the distance, whereas the disturbances depend on the distance.

In the coordinates of the moving frame, the ENLSE takes the form

i(ux—cux)+ utx+ P ( l—e ' M2)u =  0.

Substituting (33) and dropping nonlinear terms, we find

(35)
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L<5u+ — k5u_ +  2ico5u+x—co25u+ =  0, (36a)

LSu_ —k5u++2i(o5u_x—co25u_ =  0 (36b)

where the following notation is used:

L =  d2- p - P e ~ ul,
L = L + 2 p u le ~ u2o,
5u± =  5ul ±5u2,

and the astersk denotes the complex conjugate. In further calculations we assume 
co to be small and use the following expansion:

k — fc1ft)+fc2iu2+  ···» (37a)
6u+ =  <5u+0 +  a><5u+1+  . . . .  (37b)
Su_ =  K(5u_0+coSu_l +  ...). (37c)

Here K  is an arbitrary constant which will be determined in the future. From the 
zeroth- and first-order equations in co after an elimination of secular terms, we 
obtain

<5u_0
6u+0

5u_i

5u+1

where:

u0,
“Ox.

«o +
2 iK - k t 

2 rjK
P 0 »

u0r+Yp (2+ikl Kx)Q0+ l̂ Q 2,

(38a)

(38b)

(38c)

(38d)

u

u

u

Ox \~2 =  0 ™ O t+ Q o (T)> 
JWot

fuodt _

0tJ ^ 7 ·
XWox+QlM-

(39a)

(39b)

(39c)

Here, P0, Q0 and Q2 are periodic functions with the same period as the nonlinear 
wave X.

In the second-order of co, we find

L5u+2 — ki K5u_i — k2Ku0+2i5u+ix—u0x =  0, 
k k

L5u- 2~ K 5u+ i ~ K U°'+ 2i5u_lx- u° =  0.

(40a)

(40b)

We use the following properties of the operators L and L: 

Lu0 =  0, (41a)
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Lu0x =  0, (41b)

and the fact that they are self-adjoint Multiplying (40a) by and integrating over 
the period A, we get

2i<u0t<5u+lT> —fc1X<u0t5u _ i> -< u g t> = 0 ,  (42)

where we used the definition

< />  =  \ \ f d t ·
*0

Similarly, multiplying Equation (40b) by u0 and integrating, we find

2K «o* « - i , > - ! < M « +i > -< «3>  =  0. (43)

The above Equations (38 c), (38d), (42) and (43) are indispensable to obtain 
a dispersion relation. After the straightforward but lengthy calculation we find

A 0 l B 0 i k i+ ( A 0 2B 0 i + A 0 l B 02+ A 0 3B 03)k i+ A 0 2B 02 =  0, (44)

where:

AO, =  fi(u0xP 0>,
A 02 =  — 2;/(2<u0tQ0t>+/K uot>),
A 0 3 =  2(ij<Ku0tP0y +  xrj<u0xQ0ty-riP<u0xQ2xy),
BO, =  n(x<u0Q0y - P ( u 0Q2y),
B02 as 2P(2(u0xPo> — i/<Mo»,
BO3 =  2 ( r , < u 0 Q 0 y - p < M 0 x P o y ) .

Equation (44) is a very general test for stability of nonlinear waves. This equation 
usually gives complex k, for real values of the coefficients. If Im(k,) <  0, the effective 
amplitude of the wave will grow boundlessly. This effect is called instability. For 
fourth-order polynomial such as (44), if Im(k,) >  0, another mode exists for which 
Im(k,) <  0. So, both damping and blowing modes may exist

To calculate the roots of Equation (44), we must find out numerically the number 
of quantities such as p, <u0>, <u§>, <exp(-u§)>, <Uo 2>. For this purpose, we have 
used the Gauss-quadrature method for an integration. Other quantities are ex­
pressible by the above mentioned ones and may be calculated analytically. We do 
not present explicitly the lengthy formulae, however. They may be found from Eqs. 
(28), (29) and (39). For details of such calculations for other equations see, e.g., 
[20] , [21].

Changing the parameter /, we change amplitude of wave and by that way we 
can pass through the whole range of nonlinear waves which are solutions of the 
ENLSE equation. Our method is now well established and may be summarized as 
follows. We choose / just a bit bigger than the smallest one and solve the dispersion 
relation (44). If there is complex part of k, we claim that the wave (for certain /) 
is unstable. Repeated calculations allowed us to draw k vs. L
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5. Numerical calculations

We now describe the numerical calculations performed for solving the dispersion 
relation (44). We have applied the Gauss-quadrature procedure from CERN library 
to calculate integrals, such as

u0du0
«0,

(45)

where a and b are the roots of equation uj, =  0. This procedure has been tested for 
analytical integrals. Besides, <u0> should be exactly equal to zero for the case of 
positive fi and for / <  Lin (Fig. 1) and for / >  (Fig. 2). Our method has given 
values approximately equal to 10~4 at 500 main grid points of the integration region. 
An accuracy 10“ 5 has required a double computer time. See Fig. 4 for the

Computer time [min]
Fig. 4. Dependence of the accuracy of the 
numerical calculations on a computer time

dependence of the accuracy on a computer time. Additionally, the regions both at 
b and a (see Eq. (45)) have been divided to 500 mesh points. In order to verify this 
accuracy, we have performed a standard numerical test doubling the number of 
divisions of the integration region. No significant changes have occurred in our 
results.

We have also applied the procedure RZERO from CERN library to calculate the 
roots of equation Uqx =  0. The accuracy of performed calculations has been 10~6. 
Other quantities have been calculated on the basis of analytical formulae. All 
calculations have been made on a PC/AT computer. Every step for a parameter 
/ required about 16 min, of CPU time at 500 divisions of the integration region. The 
numerical calculations have been carried out in double precision.

6. Numerical results

In this part of the paper, we present numerical results for the ENLSE comparing 
them, whenever possible, with those for the NLSE obtained by Infeld  and 
Rowlands [15]. Firstly, we discuss the soliton case. See Section 4 for the meaning. 
We have a range of periodic waves for lm]n< l <  and / <  IBb and the soliton for
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A
Fig. 5. Maximum value of imaginary part of the dispersion relation solution for fi -  1, b «0.25, e — 1 
and for l__<  l<  The smallest value of l corresponds to the soliton. A case of small amplitudes
Fig. 6. As for Fig. 5, but / <  /__ The largest value of l corresponds to the soliton

f =  l m in · It has been found that for small amplitude waves, all periodic waves are 
unstable, although a weak instability exists for I <  U r  The soliton is stable to the 
perturbations. See Figs. 5 and 6. These results agree with those for the NLSE, which 
is valid for small amplitude limit, except the region I < lmia, where stability has 
been found [15]. The explanation of this apparent discrepancy is inherent in different 
physical meanings of these equations. Here, both small saturated nonlinear effects 
have been applied and possibly numerical inaccuracies are involved which caused 
a very small (10~4) growth rate and thus instability. We have made sure that 
qualitative nature of the stability for l <  lmla does not depend on the value of the 
parameter p/fi, connected with a wave amplitude. For larger amplitude waves in the
region of lmla <  l <  l___ the instability region becomes narrower and we have found
only instabilities both at the soliton and the linear wave. See Figs. 7 and 8. This 
behaviour may be explained in the following way. Small amplitude waves have too

Fig. 7. As for Fig. 5, but b -  0.99 and c -  0. A case of larger amplitudes 
Fig. 8. As for Fig. 7, but / <
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little energy to resist to destructing small amplitude perturbations. Resonances cause 
a transfer of the energy from the wave to the disturbances. This in effect brings the 
instability. Oppositely, large amplitude waves have so much energy to be robust with 
repect to the perturbations and we have got the stabilities.

Secondly, we take into consideration the case of the positive /7, but now we 
get only periodic waves as solutions of the ENLSE. In Fig. 9, we see that although 
the instability rate is very small (10“*) all periodic waves are unstable to this kind of 
perturbations. We have not observed the qualitative changes for larger amplitude 
waves.

Fig. 9. Maximum value of imaginary part of the dispersion relation solution for fi — 1, b *  —3 and c *  1. 
A case of periodic waves
F ig  10. Maximum value of imaginary part of the dispersion relation solution for /7 — — 1, b -  —1.5 and 
c — 2. The “shock-wave” case. The lowest and greatest values of l correspond to a linear wave and the 
shock wave, respectively. The small amplitude limit

Finally, consider the case of negative nonlinear coefficient /7, the “shock-wave” 
case. Here, we get a range of periodic waves bounded both by the linear wave and 
shock-wave like solutions of the ENLSE. In a small amplitude limit, we 
should recover the results obtained by I n f e l d  and ROWLANDS [15], for the NLSE.

F ig  11. As for F ig  10, but b =  -1.99, c =  2 and larger amplitudes waves
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It has been found in this limit that all waves are weakly unstable but the rate 
of instability is about 10“ 4 The shock wave has been found to be stable (Fig. 
10). Practically, this means that waves are stable because we have calculated the 
integrals with an accuracy 10“4. For larger amplitude waves, we have observed that 
waves are even more stable. The corresponding growth rate is about 10“ s. See 
Fig. 11.

7. Summary

Basing on the rigorous development of the nonlinear optics method, we have 
derived the nonlinear Schrôdinger equation with the saturated exponential non­
linear term. Use has been made of the assumption of the exponential dependence 
of the refractive index n(x, t) on the electric field E(x, t). It has been shown that 
whenever the dispersive coefficient a is positive (anomalous dispersion) the waves 
are modulationally unstable when angular frequency of disturbances does not ex­
ceed the critical value. In this region of the angular frequency co0, it is impossible 
to carry on the experiment The stability exists for a < 0 , however. And, thus, this 
is the best region of co0 to carry on the experiment

The Infeld—Rowlands method has been developed to study stability of statio­
nary waves, as solutions of the ENSE, with respect to small amplitude and 
long-period disturbances. The small amplitude soliton which is used as a carrier of 
an information in optical fibers has been found to be stable.
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