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Calculation o f  the form o f stationarity region 
for speckle refractometry o f the eye
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In this paper, the influence of the position of a coherent source with respect to an illuminated 
rough surface in the measurement of the refractive state of the eye with the aid of speckle pattern 
on the form and the position of the so-called region of stationarity is considered. This problem is 
connected with the design of a compact measuring apparatus for refractometry.

1. Introduction

If a diffused reflective rough surface is illuminated by a coherent beam, the observer 
of the surface gets an impression of a granular structure, since the light intensity 
changes from point to point This phenomenon is known as the speckle pattern [1], 
which is due to the interference produced by coherent light waves which are 
backscattered from the illuminated area of the rough surface. This interference 
pattern may be observed either as real images at many different distances in front of 
the rough surface or as virtual images in many planes behind the surface. Thus, the 
images are created in all possible planes and may be conjugated with the retinas of 
all possible refractive abilities. If the scattered radiation passes through an optical 
system, including that of the eye, and this image is recorded, we call it the image 
speckle pattern. The appearance of speckle is not limited to imagery formed with 
reflected light If a photographic transparency is illuminated through a diffuser, then 
in the image we again find large fluctuations of irradiance caused by the overlapping 
of a multitude of dephased amplitude spread functions.

The essence of the refraction measurement by using the image speckle pattern is 
that the patient observes the illuminated rough surface from a distance of about 6 m. 
If the subject eye does not move and the surface rotates at a constant velocity, then 
the direction of the speckle movement depends on the kind of refraction error of the 
eye [2]. If the patient’s eye is hypermetropic, then he reports the direction of the 
speckle movement opposite to that of the surface movement If the patient is myopic, 
he reports the speckle movement direction consistent with that of surface movement 
For the astigmatic eye, none of the principal meridians is identical to the surface 
movement, and consequently the speckle pattern movement is oblique to that of the 
surface. The speckle appears stationary for the emmetropic eye (the subject reports 
a whirling movement of the speckle pattern). In this case the retina is conjugate to 
a plane, which is called the plane of stationarity. However, in general we feel that this
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is not a plane but a region. For our purposes it can be called the region of 
stationarity and we will now determine its position and form. The answer to this 
question is very important for the creation of a compact laser refractor. Earlier, this 
problem was studied only as a plane problem and the position of the “plane” of 
stationarity was determined in paper [3].

2. Region of stationarity

The cylindrical coordinates are appropriate to perform the due calculations. The 
source of coherent radiation placed at the point Q [r, p, Zfl] illuminates the moving 
rough surface (a cylinder rotating around its own axis). Let P [R, a, Zp~\ be an

Fig. 1. Scheme of our arrangement

arbitrary point on the surface. A [p, <p, Z ] is a point optically conjugated to the 
point A' placed on the retina of the investigated eye (Fig. 1). Then the total optical 
length between points Q and A' is

S =  S2 +  kS2 +  S2 +  5a (1)

where: S3 is the optical length between points A and A', being constant because these 
points are optically conjugated, Sa is a parameter which represents the profile 
differences caused by the roughness of the surface, k =  1 if the point A is placed in 
front of the surface, and k =  — 1 if it is placed behind the surface. The optical lengths 
Si (between the points Q and P) and S2 (between the points A and P) may be 
expressed, respectively, as

SA =  [r2 + R2 — 2rRcos (a—P)+(Zp—Zi)2] 1/2, (2a)
S2 =  [p2 +  R2-2pKcos(a-<p) +  ( Z ,- Z ) 2] 1/2 (2b)

where: r, R, p, a, P, q> are defined in Fig. 1, Zp denotes the Z-coordinate of the 
point P, Zq denotes the Z-coordinate of the point Q, Z is the Z-coordinate of the 
point A. The parameter SM is very small because the amplitude of the surface 
roughness is comparable with the light wavelength and therefore it can be neglected 
in our calculation. The dependence of the optical length S on the angle a does not 
change in time and therefore
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4 ^ 1 = 0 .  
dt J

If an immobile eye is focused on an arbitrary plane, then 

S =  S(a, X Z),

and we can write Eq. (3) in the form

d fd S ~ \_  d2S 
d t l d a ]  dot2

d2S d2S

(3)

(4)

(5)

where:
daco =  — — the angular velocity of cylinder rotation, dt

vy =  ~  — the speckle pattern velocity in the direction of y axis, 

dZ
vz — —  — the speckle pattern velocity in the direction of z axis.

If we wish to stop the speckle pattern movement (vy — 0 ,v t =  0), it is necessary 
either to stop the cylinder movement or fulfil the following condition:

P S
da2

=  0. (6)

This condition is identical with that given by F e r c h e r  and Sp r o n g l  in [4] and it is 
the sufficient condition of the stationary speckle pattern in the case of a cylinder 
rotating around its own axis or a sphere rotating around its centre. After having 
calculated the second-order partial derivative of the optical length S with respect 
to a, we can write

rRcos(ct-f}) r2R2sin2(a —/1) f [pRcos(ct-(p) p2R2sin2(<x-(p)~\ A /wn

S. siL S, Si J“a (7)
This equation has no solution for k =  1, while for k — — 1 it is the equation for 
a region, its plane sections being shown in Figs. 2 and 3. They were calculated for 
r =  1, p =  0, Zt =  0, R — 0.1, a =  0, Zp =  0. It is evident that we cannot regard 
them as an expression for the volume of stationarity. An envelope of the region 
determined by Eq. (7) will create the region of stationarity, because all points of the 
illuminated area contribute to the appearance of the speckle pattern. The points of 
the surface are determined by coordinates a and Zp. We need to calculate:

d2S rRsin(ct—f}) 3r2R2sin(ct—f})cos(ct—f}) 3r3K3sin3(a—fi)
à ?  si +  si

p.Rsin(a—ç>) 3p2.R2sin(a—ç>)cos(a—ç>) 3p3Æ3sin3(a—q>)
+  +  s !  s l  ’

(8a)
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▲
Fig. 2. Plane section z — 0 of the region determined by Eq. (7) 
Fig. 3. Plane section y  — 0 of the region determined by Eq. (7)

d3S rJ?(Z,—Za)cos(a—/}) 3r2R2(Zp—Z4)sm2(tt—fi)
a < x 2 a z ,  ~  S i  +  S i

pK (Z ,-Z )cos(*-ç> ) 3p2R2(Z ,-Z )a m 2(a-P)
+  Si Si

The following conditions have to be valid for the envelope:

d*S „ 

do? ~  ° ’

d2S
da 2dZ, =  0.

If we label

rRcos(a—/1) r2R2sin2(a -/l)
C, =

Si

„  rRsin(a—^) 3r2.R2sin(a—/l)cos(a—fi) t 3r3.R3sin3(a—/1) 
C2 — ---------- ^  l·-si si
„  rR(Zr — Z,)cos(a — 0),

s i  +  Si

v =  pHsin(a—ç>), 

u =  pHcos(a—ç>),

(8b)

(9a)

(9b)

(10a)

(10b)

(10c)

(lOd)

(10e)

then we get the set of equations for the region of stationarity in the form: 

S l C j + V + î o C ^ O ,  (lia )

S!k+ d2-S 1 C , =  0, (lib )
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S l C s + i Z ' - Q i S l C ^ v ^ ^ O ,
p2+ R 2—2u+(Zp—Z)2—S2 = 0,

(11c)

(lid)

to which we add Eq. (2b). If we express v, u, Zp—Z  from Eqs. (11a)—(11c), and 
substitute them to (lid ) and take into account that

where the coefficients an for n =  1........ 12 are expressed as follows:

n0 =  6561K4Ci°,

at =  17496R4C? — l3122R2Cll —29l6R*ClC2, 
a2 =  20412K4C f-41553K 2C i°+6561C }2+324K4C iC i+4374K 2C?Cl 

-5 8 3 2 R+ClCl,
a3 =  432-R4C? d +11664.R2Ci C2 —1458 C?C2—4860.R4Ci C\ 4* 13608jR4C] 

-58320K 2C? + 17496 C i1,

a4 =  13122R2C fC i-2187C ?C i-2160R 4C iC i-721?2C iC !+6561R 2C !C | 

-47628R 2C? +  5670JR4C ?+ 20412C }°-243C fC i-324^ 2C i d  

+216R4C5CS,
a5 =  36ClCl-4&R2Ci C l-64ZC 51Ci+4&R*Ci C i - 4 n R 2ClCi

+  8100.R2 C? C2 — 972C] Cf — 540.R4Ci C \+ Y1496R2C\ C2—24948K2 Cj 
+  1512R4Cf +  13608C?,

a6 =  20412H2Ct C2 — 8694-R2C*+ 252R4C4+ 5670C? +  2970R2Ci C2 

+  \3 S C \C l-1 2 R 4'C \C l-594C \C t+ 4R *C \+ 2 \6R 2C2l C i+ № C \C l  
- 8 U 2C !+ 4C !,

a7 =  28 Cx C® —252C? C3—48 .R2 Cx C f+648 R2 Cj C2 +  270 C* C \—4R*Ct C\
+ 13608 R2C\C\ +  1512CJ -  2016R2Cj +  24R4C?, 

a8 =  5670 R2 Ci C2 — 300jR2 C4+ -R4 C2+252 Cf + 78 .R2 C2 C l+99 C4Ci 
-51C ?C f-4R 2C^+4C!,

a9 = 4R2Ci C l+ l6 C lC l-4 C i C i+ l5 l2R 2C lC l-2 6 R 2C l+ 24C l 
al0 =  252R2C21C Z -R 2Ci + C i+C2l CL 
an  =  24R2Cl C l  
al2 =  R2C2,

depend only on a and Zr  Equation (13) has only two real roots greater than zero 
and we have solved it by computer. The first one is S2 =  Sv  It is an evident solution 
of (7) and because, in this case, the point A coincides with the point Q in front of the 
surface, it is not the solution we seek. The second root is within the range of (0, R).

then we obtain the following equation for S2:
12

(13)
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Fig. 4. Dependence of the polynomial from (13) (labelled p) on S2 

Fig. 5. Dependence of the polynomial from (13) (labelled p) on S3

Fig. 6. Plane sections z -  0 of the region of stationary  
Fig. 7. Plane sections y =  0 of the region of stationarity

The graphs of the dependence of the polynomial (13) on S2 are in Fig. 4 and Fig. 5. 
They were calculated for r =  1, /? =  0, Z4 =  0, R =  0.1, Zp =  0. It is therefore 
possible to write S2 =  S2(a, Zp), and the parametric representation of the region of 
stationarity is

f  sjd  . r « .  r  sia  i 2)1'2
Rl[S2+3C1]1 + L 2 1 [S2+3C,]2J I ’

(12a)

q> =  a+arcsin

SjC2

S2+ 3C ,

f S j c l  r  I 2) 2« 1
lCS2+3C1] 2 + L 2 1 [ S ^ C , ] 2]  1

(12b)
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SlC 3[S2+ 3 C 1]»
' C t iS z + S C tY - lS lC l '

(12c)

where S2 is the solution of Eq. (13). The plane sections of the region of stationarity 
are in Fig. 6 and Fig. 7. They were calculated for the case when the source was placed 
on the optical axis (β =  0°, Z4 =  0), the radius of the cylinder R =  0.1 m and the 
illuminated area of the surface a e ( —50°, 50°), Zpe ( - 0.1, 0.1).

3. Conclusions

From this parametric representation, we find out that the change of the source 
position has only a small influence on the form of the region of stationarity. The 
approach of the source towards the surface results only in the shift of the region 
towards this surface. In the case of the source located at infinity (r -+ oo) on the 
optical axis, the region of stationarity intersects the optical axis at the point p = R/2. 
Consequently, it is possible to illuminate the moving surface from a short distance by 
a diverging laser beam with its centre located at a point which is placed off axis. 
We then have to take account of the changes of the position of the region of 
stationarity depending on the position of the coherent source towards the moving 
surface in the astigmatism measurement In this case, we rotate the cylinder axis 
around the optical axis.
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