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Letters to the Editor

Thermal lensing compensation from composite C 0 2-laser windows

E. Cojocaru, T. Julea, V. Teodorescu

National Center of Physics, P.O. Box MG-6, Bucharest, Romania.

Laser beam defocusing and distortion which is referred to as thermal lensing can be produced in 
high-power C 0 2 laser systems due to a window nonuniform irradiation. An analysis of thermal 
lensing compensation from composite windows is given. Isotropic materials and single crystals cut 
along [111] plane are considered.

1. Introduction
A nonuniform laser window irradiation in high-power C 0 2-laser systems can 
produce a radial temperature gradient across the window that causes the window to 
bulge becoming thicker in the center. A temperature gradient in the refractive index 
is induced. As an added complication, the thermally induced stresses cause the 
refractive index to be different for different polarizations, that is a birefringence can 
be thermally produced. The resulting distortion and defocusing of the laser beam, 
which is referred to as thermal lensing has been studied for example in [ l] - [5 ] .  The 
distortion can be reduced by using a composite window consisting of two layers of 
transparent materials, one of which tends to diverge and the other to converge the 
laser beam [1], [5].

The purpose of this note is to analyse further the thermal lensing diminution in 
high-power C 0 2 laser systems.

2. Basic formulae
Let us consider a Gaussian beam of amplitude a(p,0) ~  exp( — a2p2) incident on 
a thin cylindrical window, where p is measured in units of the window radius. The 
thermal lensing of the laser beam transmitted through the window is determined by 
the aberration function <PP'9 associated with the p and 0 polarized waves. For a thin 
cylindrical window the aberration function takes the form [3], [4]

<Py = p0S\AT + 4p0S lp -2U xA Tx  (1 )
o

___*J0
where y =  p or OAT =  J dzAT(p,z,t), t]0 =  L0/(2p0), p0 and L0 are the window

-«o
radius and thickness, respectively, z refers to the coordinate along the window
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thickness, AT is the temperature rise in the sample, and SJ are the material 
parameter coefficients. For the small time case when AT ~  t one obtains [3]

<Py =  C \ exp(—2a.2 p2) +  [1 — exp( — 2a2p2)] /(a2p2) (2)
where Cj =  SjL0P0pt/c\  P0 is the laser beam peak power, /? is the bulk absorption 
coefficient and c is the specific heat.

The laser beam intensity V at a prefccal point relative to the initial value PQ in the 
absence of distortions is given by [5], [6]

Iym =  1 - A y, (3)

with

2 y =  k2[<(<F)2> -< < F > 2] (4)

where k is the free space wave vector, and < )  is defined as

<F> =  $dSa{p,9)F/$dSa{p,Q), (5)

the integral being taken over the window plane.
In the case of a single-layer window A of thickness LA we obtained

f t  = (kP0tLA)2A \, (6)

with

f t  =  2 + J?(a)[//(X )]2 +  I Q W m f m  (7)

where

f,’(A) =  ff l(A) /c ,  (8)

l/(a) =  ./(5 « ) //(a )-L « 3 a )№ )]2, (9)

with

/(ma) =  [1 —expf —ma2)]/(ma2), (10)

R(oc) =  {El (a2) -  61^ (3a2) +  5E1 (5a2) + /(a) -  6/(3a) +  5/(5a)

-  [Fj (3a2) -  Et (a2)] 2/ [a2/(a )] } / [a2/(a ) ] , (11)

G(a) =  { £ 1(5a2) - F 1(3a2) - [ £ 1(3a2) - £ 1(a2)]/(3a)//(a )}/[a2/(a)] (12)

where El is the exponential integral [7].
For a thin composite of two layers A and B of thickness LA and LB, the 

aberration functions are additive, <Py =  <Py(A) +  <Py(J3), and one obtains

f t „  = (kP0tLA)2A’AB, (13)

with

d yAB =  ayr t2 +  2alx +  ay3 (14)

where
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1 =  L J L a, a\ =  A\, a\ =  A \ t (15)

ay2 =  U(a)f\ (A)f\(B) +  R(ot)n(A)fUB) +  Q(«)UyM )f l (B )  + f U B ) f l W .  (16)

As it was done in [5], we require the thickness ratio x which minimizes AyAB for 
a fixed thickness LA

X l = - a l / a \ .  (17)

For this value of x one obtains

J yAB*> =  a l - ( a l ) 2la\ .  (18)

The sensitivity to variations of x about xym may be measured by the parameter t] [5] 

rj =  m \ d 2(AyAB/AyABJ/d(x/xym)2\ =  \al2/ ( a \ a l - a l2)\. (19)

It can be noted that the relations obtained are quite different from those in [5].

3. Results
We have applied to above procedure for composite pairs of typical 10.6 pm window 
materials by supposing a unit length of material A and obtaining the value of LB/L A 
which minimizes A\B. The seven materials investigated are NaCl, KC1, KI, KBr, 
GaAs, ZnSe, and CdTe. The material parameters as given in [3], [4] are considered.

3.1. Isotropic materials

In case of isotropic materials the material parameter coefficients S\ are given by 
[2 ]-[4 ], [8]:

Si =  dn/dT+an3[( l  —v)p12 —vpn ]/2  +  a(l +  v)(n — 1), (20)

Sf =  an3(l +  v)(pn —p12)/8 =  —S02, (21)

Si =  5n/5T +an3(p11-2 v p 12)/2 +  a(l +  v )(n - l)  (22)

where n is the refractive index, dnjdT is taken at zero stress, a is the linear thermal 
expansion coefficient, v is Poisson’s ratio and ptJs are elasto-optic coefficients.

Results are given in Table 1 for p-polarized waves. They are almost the same for 
0-polarized waves. As one can see the composite NaCl-KI would result in 
substantially less lensing.

We obtained a strong dependence on the beam shape (a2) as is shown in Table 2 
for p-polarized waves for composite NaCl-KI. It is different from the relatively weak 
dependence on a2 which is reported in [5].

3.2. Single crystals cut along [111] plane

For a single-crystal window whose plane is cut along [111] plane we obtained: 

Si =  dn/dT+an3[(l —5v)pn  +  (5 —7v)p12 —2(l +  v)p44]/1 2  +  a ( l+ v ) (n - l ) ,  (23) 

Sp2 =  an3(l +v)(p-n  - p 12 +  4p44)/24, (24)

Si =  dn/dT+an3[3(l —v)pn  + 3 (1 -3 v )p 12 +  6 ( l +  v)p44]/12  +  a(l +  v)(n-  1).(25)



T able 1. Aberration properties of composite 
windows at 10.6 pm for isotropic materials 
and a2 = 1
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T able 2. Aberration properties of NaCl-Kl 
composite at 10.6 pm as a function of a2 
for isotropic materials

E. C o jo c a r u , T. Ju l e a , V. T e o d o r e s c u

Composite
(Л-В)

L b/ L a Aab/Aa t] a2 Lb/L a ^ abI ^ a 4

NaCl-KI 0.969 0.039 26.3 0.5 0.640 0.37 x 10“ 1 28.0
KI-GaAs 0.514x10“2 0.304 4.29 1.0 0.969 0.39x10“ * 26.3
KI-ZnSe 0.838x 10“2 0.500 3.00 2.0 0.807 0.37 x 10“ 3 2680.0
KI-CdTe 0.570 x 10“ 1 0.393 3.55

Table 3. Aberration properties of composite windows at 10.6 pm for [111] plane and a2 = 1

Composite {A-В)  L Bj L A AabI ^ a h

KBr-GaAs 0.137 x 1 0 '3 0.4 x 10“ ’ 0.26 x 102
KBr-ZnSe 0.201 x 10“ 3 0.7 x 10“4 0.14 xlO5
KBr-CdTe 0.146 x 10“2 0.2 x 10“ 1 0.44 x 102
KCl-GaAs 0.476x 10“2 0.8 x 10“ 1 0.13 xlO2
KCl-ZnSe 0.689 x 10“2 0.6 x 10“2 0.17 xlO3
KCl-CdTe 0.508 x 10“ 1 0.6 x 10“ 1 0.18 x 102
KI-GaAs 0.648 x 10“2 0.2 x 10“2 0.52 x 103
KI-ZnSe 0.985 x 10“2 0.3 x 1 0 '1 0.38 x 102
KI-CdTe 0.699 x 10“ 1 0.1 x 1 0 '4 0.93 x 105

These formulae are different from those given in [5]. Results are shown in Table 3 
for p-polarized waves. A wider variety of appropriate pairs for composites there is 
with excellent improvements, by as much as several orders of magnitude, comparing 
to izotropic materials.
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Компенсация термического линзинга, происходящего из сложных окон лазера С 0 2
Расфокусирование, а также дисторсия, называемые здесь совместно термическим линзингом, могут 
возникнуть в лазерных системах СО, большой мощности вследствие неоднородности облучения 
окна. Дан анализ компенсации термического линзинга, происходящего из окон. Рассуждены 
изотропические материалы, а также монокристаллы, срезываемые вдоль плоскости [111].
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