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Letters to the Editor

Thermal lensing compensation from composite C 02-laser windows

E. Cojocaru, T. Julea, V. Teodorescu

National Center of Physics, P.O. Box MG-6, Bucharest, Romania.

Laser beam defocusing and distortion which is referred to as thermal lensing can be produced in
high-power C 02 laser systems due to a window nonuniform irradiation. An analysis of thermal
lensing compensation from composite windows is given. Isotropic materials and single crystals cut
along [111] plane are considered.

1. Introduction

A nonuniform laser window irradiation in high-power C 02-laser systems can
produce a radial temperature gradient across the window that causes the window to
bulge becoming thicker in the center. A temperature gradient in the refractive index
is induced. As an added complication, the thermally induced stresses cause the
refractive index to be different for different polarizations, that is a birefringence can
be thermally produced. The resulting distortion and defocusing of the laser beam,
which is referred to as thermal lensing has been studied for example in [I1]-[5]. The
distortion can be reduced by using a composite window consisting of two layers of
transparent materials, one of which tends to diverge and the other to converge the
laser beam [1], [5].

The purpose of this note is to analyse further the thermal lensing diminution in
high-power C 02 laser systems.

2. Basic formulae

Let us consider a Gaussian beam of amplitude a(p,0) ~ exp(—a2p2) incident on
a thin cylindrical window, where p is measured in units of the window radius. The
thermal lensing of the laser beam transmitted through the window is determined by
the aberration function P9 associated with the p and 0 polarized waves. For a thin
cylindrical window the aberration function takes the form [3], [4]

= pOS\AT+4pOS|p-2cL)JxATx (1)

%D

where y = p or OAT = J dzAT(p,z,t), tj0= L0O/(2p0), p0 and LO are the window
-«0

radius and thickness, respectively, z refers to the coordinate along the window
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thickness, AT is the temperature rise in the sample, and SJ are the material
parameter coefficients. For the small time case when AT ~ t one obtains [3]

f= Clexp(—2apd+ [1—exp(—2a2p2)]/(a2p2) 2
where Cj = SjLOPOpt/c\ PO is the laser beam peak power, /? is the bulk absorption
coefficient and ¢ is the specific heat.

The laser beam intensity V at a prefccal point relative to the initial value PQin the
absence of distortions is given by [5], [6]

Iym = 1-Ay, ©)
with

2y= k2[<(<F)2>-<<F>2] 4)
where Kk is the free space wave vector, and <) is defined as

<F> = $dSa{p,9)F/$dSa{p,Q), )

the integral being taken over the window plane.
In the case of a single-layer window A of thickness LA we obtained

ft = (KPOtLA2A\, (6)
with
ft = 2+ 32@@)[/(X)]2+ 1Q W m fm @
where
f,”(A) = ffI(A)/c, 8
l/(a) = ./(5«)/I(a)-L «3a)Ne )]2, ©)
with
/(ma) = [1—expf—ma2)]/(ma2), (10)
R(oc) = {El(a2) - 61" (3a2) + 5E1(5a2) +/(a) - 6/(3a) + 5/(5a)
- [Fj(3a2) - Et(a2)] 2[a2(a)] }/[a2(a)], (11)
G(a) = {£1(5a2) - F 1(3a2) - [ £ 1(3a2) - £ 1(a2)]/(3a)//(a)}/[a2(a)] (12)

where EI is the exponential integral [7].
For a thin composite of two layers A and B of thickness LA and LB the
aberration functions are additive, B/= <B(A) + B/(J3), and one obtains

ft,, = (kPOtLA2ARB (13)
with
dyB= ayt2+ 2alx + a$ (14)

where
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1=LJLa, a\ =A\, a= A\t (15)
ag = U(a)f\ (A)\(B) + R(ot)n(A)fUB) + Q(«)UM)FI(B) +fUB)FIW.  (16)

As it was done in [5], we require the thickness ratio X which minimizes AyB for
a fixed thickness LA

Xl=-alla\. a7
For this value of X one obtains
JyB>= al-(al)2a\. (18)
The sensitivity to variations of xabout
j=m \d2(ApBAPRI/d(x/xp)2F \al2/(a\al-al2)\ (19)

It can be noted that the relations obtained are quite different from those in [5].

3. Results

We have applied to above procedure for composite pairs of typical 10.6 pm window
materials by supposing a unit length of material A and obtaining the value of LB/LA
which minimizes A\B The seven materials investigated are NaCl, KC1, Kl, KBr,
GaAs, ZnSe, and CdTe. The material parameters as given in [3], [4] are considered.

3.1. Isotropic materials

In case of isotropic materials the material parameter coefficients S\ are given by

[2]-[4]. [8]:

Si = dn/dT+an3[(I —)p2—vpn]/2 + a(l + v)(n—1), (20)
Sf = an3(l + v)(pn —p12)/8 = —SQ, (21)
Si = 5n/5T+an3(pll-2vp12)/2+ a(l + v)(n-1) (22)

where n is the refractive index, dnjdTis taken at zero stress, a is the linear thermal
expansion coefficient, v is Poisson’s ratio and ptJs are elasto-optic coefficients.

Results are given in Table 1 for p-polarized waves. They are almost the same for
0-polarized waves. As one can see the composite NaCIl-KI would result in
substantially less lensing.

We obtained a strong dependence on the beam shape (a2) as is shown in Table 2
for p-polarized waves for composite NaCIl-K1. It is different from the relatively weak
dependence on a2 which is reported in [5].

3.2. Single crystals cut along [111] plane
For a single-crystal window whose plane is cut along [111] plane we obtained:

Si
S@
Si

dn/dT+an3[(I —5v)pn + 6—7v)pL2—2(1 + v)p44]/12 + a(l+v)(n-1), (23)
an3(l +v)(p-n - p 12+ 4p4d4)/24, (24)
dn/dT+an3[3(l —v)pn +3(1-3v)p 12+ 6(1+ v)p44]/12 + a(l + v)(n- 1).(25)
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Table 1. Aberration properties of composite Table 2. Aberration properties of NaCl-KI
windows at 106 pm for isotropic materials composite at 106 pm as a function of a2
and a2=1 for isotropic materials

Composite Lb/La Aab/Aa f{] a2 Lb/La  Agplnra 4

(N1-B)

NaCl-KI 0.969 0.039 26.3 05 0.640 0.37 x 101 28.0
KI-GaAs 0.514x10“2 0.304 4.29 10 0.969 0.39x10“* 26.3
KI-ZnSe 0.838x 10“2 0.500 3.00 20 0.807 0.37 x 103 2680.0
KI-CdTe 0.570 x 101 0.393 355

Table 3. Aberration properties of composite windows at 10.6 pm for [111] plane and a2= 1

Composite {A-B) LBjLA Aabl*a h

KBr-GaAs 0.137x10'3 0.4 x 10*” 0.26 x 102
KBr-ZnSe 0.201 x 103 0.7x 10“4 0.14 x105
KBr-CdTe 0.146 x 102 0.2x 10*1 0.44 x 102
KCI-GaAs 0.476x 102 08x 10“1 0.13xI02
KCI-ZnSe 0.689 x 102 0.6 x 10%2 0.17x103
KCI-CdTe 0.508 x 10“1 0.6x 10*1 0.18 x 102
KI-GaAs 0.648 x 102 0.2x 10%2 0.52 x 103
KI-ZnSe 0.985 x 102 03x10'1 0.38 x 102
KI-CdTe 0.699 x 101 01x10'4 0.93 x 105

These formulae are different from those given in [5]. Results are shown in Table 3
for p-polarized waves. A wider variety of appropriate pairs for composites there is
with excellent improvements, by as much as several orders of magnitude, comparing
to izotropic materials.
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KomneHcaumsa TepMmUYecKoro SIMH3VHIa, NPOUCXOAALLEro U3 CoXHbIX OKOH nasepa C 02

PacthokycmpoBaHue, a Takke AUCTOPCUS, Ha3blBaeMble 3[eCb COBMECTHO TEPMUYECKUM IMH3UHTOM, MOTYT
BO3HUKHYTb B /1a3epHbIX cucTemax CO, GO/bLUO/ MOLHOCTW BCAEACTBUE HEOAHOPOAHOCTU O6/TyUeHNs
OKHa. [laH aHa/M3 KOMMEHCALMMN TEPMUYECKOTO JIMH3WHIA, MPOMCXOASLLEr0 M3 OKOH. PaccyzieHbl
M30TPOMMYECKME MaTepuasbl, a Takke MOHOKPUCTAI/bI, CPesbiBaeMble BAO/b MiockocTu [111].

Mepesen CTaHucnas MaHua>K



