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Fresnel field of a multiple diffraction grating system 
illuminated by a point source

Ro m u a l d  Jóżw icki

Institute of Design of Precise and Optical Instruments, Warsaw Technical University, ul. Chodkiewicza 
8, 02-525 Warszawa, Poland.

General relations in the Fresnel area describing the field propagation by a system consisting of 
an arbitrary number of diffraction gratings have been derived. The considerations are based on 
the analyses of changes of the Fourier spectrum during the field propagation through the 
gratings. The application to the study of the moiré fringes formed in a double-diffraction system 
has been demonstrated.

1. Introduction

Systems of separated diffraction gratings are applied in various metrological 
problems [1]. The utility of such systems follows from their simplicity and 
flexibility to construct different measuring configurations. Additionally, the filtering 
of the grating spectra enhances these attributes.

The analyses of the Fresnel field of double-diffraction systems are known [2], 
[3]. In order to determine the field in the image space of the last grating, the field 
distributions in the plane of every grating are found successively. This way of 
conducting of the analysis focuses our attention on the fields in the grating planes. 
The diffraction field equations are derived using the distances between the gratings 
as the functional parameters. Though such an approach seems very natural, it does 
not take into account fundamental property of the phenomenon. The centre of the 
propagating field is situated at the point source and this fact occurs for every 
grating in a system, independently of the grating position.

In the paper a new approach for studying the multiple diffraction grating 
system has been proposed. It is based on the analysis in the Fourier plane. For the 
first time such an approach has been applied to the Talbot effect interpretation in 
the case of one diffraction grating [4]. If an infinitely large diffraction grating is 
illuminated by a point source, then the Fourier plane coincides with this source 
and the Fourier distribution is discrete. In this plane we have a set of points 
appearing at equal distances along the direction perpendicular to the diffraction 
grating lines. Every light spot in the Fourier plane of the first diffraction grating 
may be taken as the point source for the second one. This spot also generates 
discrete spectrum in the Fourier plane of the second diffraction grating. If the lines 
of both gratings are inclined, then two-dimensional set of points in the Fourier
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plane will be seen [5]. The influence of the next gratings can be analysed in the 
same way. It means that the changes of the field for all gratings will be seen with 
the aid of the Fourier spectra only. The advantages of such approach follow from 
the constant position of the Fourier plane, the discrete form of the Fourier 
distributions and the simple mathematical operations defining the transitions from 
the spectrum to the spectrum of adjacent gratings. At the end of the analysis we 
can admit that the field distribution in a plane of the image space of the last 
diffraction grating is a result of the interference of light emitted by all the points of 
the Fourier plane. In the mathematical sense we shall determine the Fourier 
transform of the respective Fourier distribution. In addition, the proposed ap­
proach facilitates the harmonic analysis and allows the direct derivation of general 
conclusions.

2. Field propagation through one diffraction grating

Let Vv(a) be a field distribution on a sphere I ,  which coincides with a diffraction 
grating G (Fig. 1), â is the radial position vector on I ,  5 — centre of the sphere I .  
Directly behind the diffraction grating on the sphere I '  the field distribution arises

Fig. 1. Field propagation through a diffraction grating G

in the form V  = K T, where T is the diffraction grating transmittance. Although 
the spheres I  and I '  are coincident in the figure, they are in the different spaces of 
G. The sphere I  is in the object space, and I" in the image space of G. The field 
distribution V (a) from the sphere I '  generates its own Fourier transform distribu­
tion V;(q) on the sphere with the centre M. For the case shown in the figure 
the Fourier spectrum is virtual with respect to the grating, q is the radial position 
vector on the sphere Z'F.

Denoting

Â = kâ/z, (1)

we can write

V;(q) = ¿zFT+ [K (l)  7(1)] (2)

where z is the distance between the centres M and S, k = In/h, A — wavelength, 
FT+ — the operator of two-dimensional inverse Fourier transform. The modulus
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A is a parametrized measure of the angular position of points on the spheres I  
and I ',  as seen from their centres. The introduction of the quantity À  will be very 
useful, because the field changes during the propagation in space represent some 
characteristics of the grating geometrical shadow projected from the point S. This 
means that the field distributions ad different distances from S are in some degree 
invariant with regard to the angular variable Â, but it is not a case for the linear 
variable a.

If the direction of the periodical changes of the diffraction grating G is given 
by the versor ¿3°, then

T(Â) =Y_tcm Qxp(imcoÂ) (3)
m

where cm are the coefficients of one-dimensional Fourier series. The modulus œ 
= 2n/WA is the fundamental angular frequency of the diffraction grating, WA — 
the period of the diffraction grating related to the parametrized quantity Â and, 
according to (1), WA = kWJz (Wa is the period of the diffraction grating in the 
linear measure). The sum in the relation (3) is taken in the infinite limits.

After substituting Eq. (3) into Eq. (2) we obtain

K (<?) = Z cm Vyig + nio)) (4)
m

where

(5)

The distribution Vf {q), as the Fourier transform of the field distribution from the 
sphere I ,  arises on the sphere I F in the object space of the diffraction grating. 
According to Eq. (4) we can conclude that the transmission of a field distribution 
through a diffraction grating leads to the multiplication of the Fourier spectrum of 
this distribution. The effect is known as the image multiplication by the sampling 
of the Fourier spectrum [6]. In this case, roles of the image and its spectrum are 
interchanged.

In particular case, the diffraction grating may be illuminated by a point source 
S. We have: FX(A) = V0, and from (5): Vf(q) = ÀzV0ô(g). V0 is the constant 
amplitude of the wavefront I .  On account of (4) the spectrum in the image space 
of the diffraction grating is given by

= k:VC,£c„â(ë+mco). (6)
m

The last relation represents a discrete distribution on the sphere Z'F. The equidis­
tant points are situated on the line, which coincides with the direction of 
periodical changes of the grating (coincident with ¿3°). The distance between the 
adjacent points of the Fourier spectrum equals œ (see Fig. 2).

The relation (4) and, in particular case, the relation (6) allow the determination 
of the change of the Fourier spectrum related to the transmission of a field
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Fig. 2. Fourier spectrum of one diffraction grating illuminated by a point 
source 5

distribution through a linear diffraction grating. To follow the field propagation 
through a system of diffraction gratings it is necessary to find the relation defining 
the changes of the Fourier spectrum related to the field propagation in free space 
between the gratings.

With reference to Fig. 1 let spheres I '  and Z'F be the spheres with the known 
field distributions in the image space of a diffraction grating (Fig. 3). It is 
important to know that on the sphere I '  with the centre S we have the field 
distribution directly behind the grating, and on the sphere ZF with the centre M — 
the Fourier spectrum of the field distribution from the sphere Z'. To find the field 
distribution on a sphere Z'd with the centre located at the point S, it is sufficient to 
determine, in agreement with our approach, the Fourier spectrum of this distribu­
tion. The Fourier distribution occurs on the sphere ZFd with the centre Md, and 
the relation between the spectra from the spheres Z'Fd and ZF, according to Fig. 3, 
is given by

Vpd (Q) = K  (6) exp (ikpg2) (7)

where

P 1 C 4 > (8)

Fig. 3. Propagating field distributions on the 
spheres I '  and I'd and their Fourier transforms 
on the spheres Ip  an£  ̂ respectively
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From the relation (7) it follows that the propagation of the field with the 
discrete spectrum does not change its discrete character. Indeed, substituting Eq. 
(6) into Eq. (7) we have

Kd(e) = kz V0 ]T cm exp (ikpm2 œ2)ô(g + mœ). (9)
m

Then, the propagation of the field with the discrete spectrum introduces the 
respective phase shifts in the spectrum only.

In general case, the relations (4) and (7) solve our problem of the field 
propagation through the arbitrary diffraction grating with the aid of the Fourier 
spectra. The field transmission through a diffraction grating can be described by 
the spectrum multiplication (see Eq. (4)). On the other hand, the propagation in 
free spece can be expressed by the product of the spectrum distribution and the 
phase factor (see Eq. (7)). The simplicity of mathematical operations and the 
constant position of Fourier transforms are the essential advantages of the 
proposed method of analysis. The additional advantage of our approach is related 
to the system illuminated by a point source, because in this case the spectra are in 
the form of two-dimensional sets of points.

3. Field propagation through a system of diffraction gratings

First, we shall combine the Eqs. (7) and (4), and in this manner we shall obtain 
one relation describing the transmission and the field propagation simultaneously 
for one grating. For this purpose let us consider K-th diffraction grating of a 
multiple grating system (see Fig. 4), K = 1, 2, N  {N — number of grating in 
the system). Moreover, let VFfK(g) be the object spectrum distribution of diffraction 
grating GK. It means that this distribution occurs in the object space of GK on the 
sphere ZFK with the centre at MK. In order to determine the object spectrum 
distribution VFtK+i (p) of the diffraction grating GK + l according to (7) and (4) we 
can write

Vf.k+Aq) = 'Z cmKexp{ikpK'K + l Q2)VF'K(Q + mKœK) (10)
mK

E f.k*i E f. k Gk Gk„

Fig. 4. Field propagation through one element 
of the multiple diffraction grating system as the 
change of the Fourier spectrum distributions on 
the spheres EFK and EFK + i , respectively
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where

1 /1
Pk,k+ i —

2 \zK
( 1 1 )

The spectrum VvK + x{q) occurs in the object space of the grating GK+X on the 
sphere r FJC+1 with the centre at MK + l . coK is the fundamental angular frequency 
in the vectorial form of K -th grating, cmK — coefficients of the Fourier series of the 

same grating.
Now, let G be a system of N diffraction gratings, illuminated by a point source 

S (Fig. 5). For simplicity, the first and last gratings are marked in the figure only.

G
-/N.

A s________ __ Mi Mn Mn*i
jôN.1

Z1
2:n

zN.i.

Fig. 5. Propagating field distri­
bution on the sphere 1*+ , 
and its Fourier transform on 
the sphere 2 f ,n + i  a s  a  result 
of the propagation of a spheri­
cal wave through a multiple 
diffraction grating system G 
(S — light point source)

Taking into account the relation (10), for the first two diffraction gratings we can 
write

Ff,2(î?) = Azt V0J^cmiexvlikpl'2(ml (di)2]ô(ë+rn1cdi), (12a)
mt

VF,3 (Q) = F o i l  cmi exp [ikpx<2 K  < t̂)2]

" im2 (12b)
X cmi exp № > 2 , 3  (mi Û>1 +  m 2 d̂ 2 )2] à [Q + {m\ + m2 m2)],

because Ff1 (p) = Xzx V0ô(q).

Going on with the recurrent Eq. (10) for the subsequent gratings, we shall 
obtain for AT—1 gratings the following relation:

K . s №  = k t F oX X ... £  5 (5 + 0 » .,)  (13)
m x wi2  mN — 1

where the following denotations have been introduced:
M

d„ = FI C„ (14a)
s =  1 

M
H M = YJ mt(bt, M = 1, 2, ...·, N,

t= t
(14b)
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and

Cs = cmsexp(ikps,s + 1 Q2S). (15)

The field distribution Ffjv({?) is the object spectrum of the N-th diffraction grating 
and it arises in the sphere ZF<N not marked in the figure. The surface r FiJV, as the 
Fourier sphere, coincides with the point S, and its centre is located at the point 
MN. Now, the question is what the field distribution is on a sphere ¿ * + 1  located 
in the image space of the whole system at the distance zN+l from the source S (see 
Fig. 5). Using once more the relation (10), we shall obtain the spectrum of the 
demanded distribution in the form

KFJV+1(e) =  ^ i « ' ' „ H ... I  £<¿„¿(¿+0*). (16)
m i nt2 — 1

The last distribution arises on the sphere ZFtN+1 with the centre M N+l. The field 
distribution on the sphere ZN+i can be found from the relation

vn+1(A) = - ^ —  F T -C K ^ .fe ) ]  (H)
AZn+ !

where FT- is the Fourier transform operator. Now, the quantity A equals 
kaN+l/zN+l, where aN+l is the radial vector position on the sphere ZN+1. 
Substituting Eq. (16) into (17) it will be

VN+l{A) = - ^ — V(oX £ . . .  X X dNexp(iAQN). (18)
1 m j  m2 mN — 1 mN

Summing up, the relations (18) and (16) give the field distributions VN+l(A) 
and K.,v+i({?) on two characteristic spheres Tv+1 and ZF.N+ j, respectively, in the 
image space of a system of N diffraction gratings illuminated by a point source S 
(see Fig. 5). N is the arbitrary number of gratings, and in the extreme case it can 
be N = 1 (for the proof compare the relations (16) and (12a)). According to the Eq. 
(16) the Fourier spectrum is a set of points. The field distribution on the sphere 
ZN+i may be treated as a result of the interference of the light emitted by the 
points sources of the spectrum, which is presented in the mathematical form by the 
relation (18). The distribution of the field amplitude of the original source among 
the spectrum points is expressed by the moduli 1^1, which result from (14a) and 
(15) as follows:

W*l = n  l<w· (19)
s =  1

It means that the amplitude distribution depends on the ones in all grating spectra 
only. The amplitude distribution for s-th grating is defined by the amplitudes of 
the Fourier series harmonics |cmJ, m = 0, ±1, + 2 ,   and s = 1. 2...... N.

If we assume ds = \dN\ exp(i(pN), then according to (16), (14a) and (15) the 
secondary point sources of the spectrum are phase shifted with respect to the
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sphere r FJV+1. The phase shifts are given by the relation
N

<Pn = Z  [Arg (cm)  + kpS'S+ J Qs2] . (20)
s =  1

Thus, the phase shifts of points consist of the phase corrections related to the 
construction parameters of gratings [Arg(cms)] and the phase corrections depend­
ing on the grating positions. If all gratings are amplitude type and symmetrical, 
then Arg(c*ms) may equal 0 or n only for every s and m. In this case it is better to 

neglect Arg(cm) in (20) assuming the negative modulus of coefficients cm . It meansS 'S
N

that Eq. (19) should have the form \dN\ = ]̂ [ cms.
s =  1

The form of the phase corrections in Eq. (20) related to the positions of 
gratings is adapted for the discription of the transitions between the adjacent 
gratings, because every component Arg(Cs) = kpss+iQ2 concerns the phase chan­
ges introduced by the field propagation between the gratings s and s+1 (s 
= 1, 2, ..., N — 1), as well as between iV-th grating and the sphere I N+ t . The form 
of the phase corrections results from the applied process of analysis. In this case 
the influence of the position of a grating may be considered with comparison to 
the self-image of the preceding grating. For example, the fulfilment of the condi­
tion

kpK.K + iOjl = 2nM, M = ±  1, ±2, ..., (21)

signifies that the M-th self-image of the grating K is located in the plane of the 
grating K + l [4]. Therefore, according to the definition (14b), the component 
kPk.K+i mK°)K in (20) may be neglected. However, from practical point of view, the 
coincidences of the self-images of different gratings with the image sphere ZN+l 
(Fig. 5) are more essential. In order to adapt the relation (20) to the analysis of 
this coincidence, the order of the elements in it have to be transposed. Squaring 
the sum in parentheses and rearranging the terms, using the relation ps>f + p,,u 
= pStt, we can write

N  N

<P*= £  [Arg (cms) -f kps<N+! m] cos2] + 2 £  kpStN+ x ms cos Qs_ t (22)
s =  1 s — 2

instead of (20). The above form of the phase shift q>N is similar to the results of the 
paper [3], obtained for two gratings. Although the relations (20) and (22) are fully 
equivalent, the second form is less clear. Moreover, the position of the sphere 
Tjv+i (the change of zN+i) changes, in the sum (20), the last component with 
P s . n + i  only· This may facilitate analyses of the field distributions at different 
distances from the grating system. On the other hand, the relation (22) allows, in a 
more easy way, to take into account the condition

kpK'N+la)j = 2nM, M = ±  1, ±2, ..., (23)



Fresnel field of a multiple diffraction grating system ... 21

concerning the coincidence of M-th self-image of the grating K with the sphere 
ZN+l. In this case, the components kpSyN+lm^a>  ̂ with s = K in (22) may be 
neglected.

According to Eq. (18), the phase factor exp(iAQN) describing the field distribu­
tion of the field harmonics on the sphere I N+l does not change its form during 
the changes of the sphere position (the changes of the distance zN+1, see Fig. 5). 
This convenient property has been obtained by the introduction of the parametriz­
ed vector position A. In order to determine parameters registered in the image 
plane, it is necessary to find the relation between the angular frequency C2N related 
to the parametrized vectorial coordinate A and the distribution period W^N+l) in 
the linear measure of the same harmonic on the sphere ZN+1, The vectorial form 
of Qn may be neglected, because the period Wa is defined in the direction of the 
harmonic changes. The quantity A equals kaN+l/zN+l, where aN+l is the radial 
distance on ZN+l. Moreover, from (18) it follows: QN = 2n/WA, where WA is the 
harmonic period related to the quantity A. This means that WA = kW}N+l)/zN+l, 
and

W ( 1 V + 1 )  _  2 i I Z N + 1  _  Â Z n + 1  ? A

kQN QN ' ( '

The same relation is between the periods W^s) of s-th diffraction grating and their 
fundamental angular frequency œs, i.e.,

(25)

From the last equation it results, in particular, that in our approach the position 
change of a grating with given period W^s) changes the fundamental angular 
frequency cos.

4. System of diffraction gratings illuminated by a plane wave

The above analysis and the form of the obtained relations have been well adapted 
to configurations with the light source located at a finite distance from the 
gratings. In this case, a system of diffraction gratings is illuminated by a spherical 
wave, and the spectra for all gratings are located in the same plane at a finite 
distance. On the other hand, the system illuminated by a plane wave is the case of 
a great practical importance as well. Consequently, the problem of necessary 
changes in our equations arises, including this particular case.

For the source located at the finite distance the utility of the parametrized 
coordinate Â  was based on the shadow property of the propagating field projected 
from the source. Now, the quantity Â  is useless and the analogical shadow 
property of the field is fulfilled for the linear coordinate â. Moreover, because the 
Fourier plane shifts to infinity, it is necessary to introduce the notion of the 
angular field distribution for it. For that purpose let Vf(q) be a field distribution
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on a sphere I F with the centre M (see Fig. 6). Physically, the intensity distribution 
If(q), [If(q) = Vf ( q) FF*(p)], is proportional to the surface power density of the 
distribution related to the elementary area of the sphere I F, (IF ~ dW/dSF). For the 
sphere I F located at infinity (z -*· oo) the intensity distributions IF, as well as the 
field distribution VF become useless too, because both quantités are infinitesimal.

Fig. 6. Reference sphere with the Fourier transform 
distribution and its elementary area dSF

The angular intensity distribution J F(w) related to the intensity distribution If(q) 
is proportional to the optical power of the distribution per unit solid angle 
subtended by the element of the area dSF at the point M. The vector vv equals q/ z, 

then the modulus w is the angular coordinate of the points of the sphere I F as 
seen from the point M. The radial versor vv° defines the meridional plane. On 
account of the relation J F(vv) ~ z 2dW/dSF we can write J F(vv) = z2If{q). It means 
that the angular field distribution UF(xv) defined on the sphere I F. [JF(vv) 
= UF(w) l/£(vv)], and the field distribution Vf(q) are related by the expression

Uf(w) =  z Vf(q). ( 26)

The quantity UF(w) is particularly useful for distributions located at infinity 
(z -  x ).

Now, using Eqs. (25) and (26), as well as the general relation <5(ci?) = S(g)/c2, as 
in this case z jz t =  1 (s, t =  1, 2, . . . ,  N + l), Eqs. (16) and (18) with the defining 
expressions (14) and (15) can be easily transformed into the following forms of 
relations valid for the plane wave

An2 V
Uf.»+i ( * ) - — I  I  + (27)

^ mj m2 m;v- i ™/V

^ +1(0) = V0£ X . . .  £  I ^ e x p (13%) (28)
ml m2 myy.jmjv

where:

R = kw, (29a)

4  = n  Q ,
s — 1

(29b)
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&N= Z  ms(Os,
s =  1

C; = cmsexp
//zizs,s+1o;

2k · ) ■

(29c)

(29d)

ojc = (29e)

**+, (¿7) is the field distribution on the plane ZN+l as the result of the propagation 
of the plane wave T0 through the system G of N diffraction gratings (Fig. 7), â is 
the radial vector position, V0 -  amplitude of Z 0. UFtN'+1 {R) designates the

G

to Gi G2 Gn I n«i

Fig. 7. Propagating field distribution on the plane 
ZN+i and its Fourier transform at infinity as a result 
of the propagation of the plane wave I 0 through a 
multiple diffraction grating system

angular field distribution in the angular spectrum of VN+1(a). The radial vector R 
is the parametrized angular coordinate of the spectrum, the angle w is marked in 
the figure. W^s) designates the fundamental period of the s-th diffraction grating in 
the linear measure. d rs_s+, is equal to the distance between the gratings s and s+ 1
(s = 1. 2.......N — 1), AzN'N+l is the distance between the plane Z „+, and the last
diffraction grating of the system. As before, cms are the coefficients of the Fourier 
series of s-th diffraction grating. The direction of the vector eô' coincides with the 
direction of periodical changes of the s-th diffraction grating.

It should be remarked that in both cases of the light source located at finite 
and infinite positions, the different quantities have been parametrized, i.e., the 
quantity Â  is related to the image sphere (Eq. (1)), and R — to the spectrum (Eq. 
(29a)). We have assumed that it is convenient to parametrize the quantities 
describing the distributions which can be displaced to infinity. Certainly, for the 
finite distance of the source the determination of the field distribution at infinity 
may be interesting. Unfortunately, the assumed parametrization would complicate 
parallel analyses of the field propagation through a system with the source at finite 
and infinite positions. For such comparative considerations, the equations related 
to the plane wave are recommended, except for Eq. (29d), because the image 
sphere Z N+i (or plane) must be at the finite and constant position. In place of it, 
according to Eqs. (15), (14b) and (25), we can write

S

X ™,ztaj't)2 .
/= 1

C's = cmsexp
k

( 3 0 )
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5. Two-grating system

Two-grating system is chosen to demonstrate the utility of our approach (see Fig.
8). In the place of Eqs. (18) and (16) we can write

V3(A) = Z- ^ - 1 ' £ d 2exP{iA01), (31)
mj m2

K.,(®  = k l V0Y .’Z d 25(e+Q 2) (32)
mj m2

where, according to (14) and (15),

d2 = cmi c„2 exp(ifcp1>2 m\ co{) exp [ikp2̂  (m, w x + m2 a>2)2], (33a)

Q2 = m1a>l + m2a)2. (33b)

As Pi, 2  + P2 .3  = Pi,3 > the Eq. (33a) may be easily rearranged into the form 

d2 = cmi cm2 exp [ik (plt3 m\ co\ + p2,3 m\ wj + 2p2i3 mx m2 (bx ¿>2)], (34)

that corresponds to Arg(d2) given by Eq. (22). It may be shown that the Eq. (34) is 
in full agreement with results of the paper [3].

Ef.3 G, · G2 Z3

M·

Fig. 8. Propagating field distribution on the sphere Z3 and 
its Fourier transform as a result of the propagation of the 
spherical wave with the centre S through a double-diffrac­
tion system (G,, G2 — diffraction gratings)

It is worth remembering that the field distribution V3(A) arises on the sphere 
T3 with the centre 5, and its spectrum VFt3(Q) — on the sphere £ Ft3 with the 
centre M3. The central part of two-grating spectrum is shown in Fig. 9. The 
grating system is illuminated by a point source S. Every point of the spectrum is 
marked in the figure by labels composed of two numbers mlt m2, which are the 
numbers of the harmonics of the Fourier series for first and second gratings, 
respectively. The directions, perpendicular to the lines of both gratings, are marked 
by the sections mi = 0 and m2 = 0. V0 in the Eq. (31) is the wave amplitude in the 
plane of the first grating. Therefore, the factor z x V0/z3 can be interpreted as the 
wave amplitude on the sphere £ 3 with no gratings present.

If the second grating is located in one of the self-images of the first grating, 
then kpU2(oj = 2nM (Af = ± 1, ±2, ...), and in (33a) we can put 
Q\p(ikpx.2m\(o\) = 1. The simultaneous coincidences of the self-images of the first
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Fig. 9. Fourier spectrum of two inclined diffraction gratings illuminated by the point source S

Fig. 10. Fourier spectrum of two inclined Ronchi gratings illuminated by the point source S

and second gratings with the sphere I 3 relate to the fulfilment of the two 
following conditions together

i * · 1 (35»kp2t3 ci>2 = 2nM2)

(Mj , M2 — integers), in this case the relation (34) can be reduced to

d2 = cmi cm2exp(2ikp2t3m1 m2w1 m2). (36)

5.1. Perpendicular lines of gratings

Let us denote the components of the vectors g and A in the directions coincident 
with <«! and ai2 by gt , g2 and At , A2, respectively. As a31ft}2 =0, ¿(p)
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= <5(0i)<5(02), — mi coi Al + m2oj2A 2 , we can write (using (34) in the place of
relations (31) and (32))

(37)

*F,3 (e) = te t F0[£  + c^2S(g2 + m2w2)] (38)

where:

c'mi = cmi exp(i/cp1>3 ml wj), 

c'm2 = Cm2 exp(ï7cp2>3

(39a)

(39b)

Taking into account the above equations it can be concluded that the propagation 
of the spherical wave through a system of two diffraction gratings with the 
mutually perpendicular lines may be reduced to the independent considerations of 
two component fields for two principal sections. The resultant field equals the 
product of the component fields.

5.2. Moiré phenomenon in coherent light

It has been shown that the field in the image space of a system of diffraction 
gratings illuminated by a point source appears as a result of the interference of the 
spherical waves generated by all point sources of the Fourier spectrum. The 
interference of waves emitted by two points gives the linear fringe structure, for 
which the direction of the field changes is parallel to the line joining both sources, 
and the frequency of fringes is proportional to the distance between the sources. It 
is necessary to remark that the linear fringes arise on the sphere. On the plane the 
fringes are in the form of hyperbolae, which can be approximated in the paraxial 
region by the straights. Considering the Fig. 9, if the difference of the fundamental 
frequencies Aw = w2 — Wi of both gratings is considerably smaller than the compo­
nent frequencies (Aw aq and Aw w2), the fringes may arise with small 
frequency Aw. In this case, one says about moiré fringes.

According to Eq. (26), the intensity distribution generated by the double­
diffraction system can be found from the expression

In the case of moire phenomenon analyses the intensity changes with high 
frequencies are not detected. This may be obtained using a detector integrating the 
intensity in the direction perpendicular to Aw. Hence, our further considerations 
may be limited to the study of the intensity changes with the frequency of 
magnitude Aw only. Now, on account of (31), the relation (40) may be reduced to 
the form

I3(A )= V3(A)V3*(A). (40)

h(A )= £l< ?(A ) (41)
n
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where /^(T ) is the intensity generated by all points sources with labels m1? m2 
fulfilling the relation n = ml +m2. The points with the constant values of n are 
marked in Fig. 9. For example, the component of the intensity I 3](A) is given by 
the interference of light emitted by the points with labels (3, — 2), (2, —1), (1, 0), 
(0, 1), ( - 1 ,  2), ( - 2 ,  3), and so on.

The above equations may be used to analyse moiré phenomenon with the aid 
of a computer. In our case, we shall present an analytical method study a double­
diffraction system with Ronchi gratings (equal widths of the bright and dark lines). 
The coefficients of Fourier series representing both gratings can be found from the 
relation cm = 0.5 sine (0.57rm). They may be expressed in a more general form, 
taking into account the grating shifts with comparison to their symmetrical 
positions. Beside the complication of the analysis, it does not introduce any new 
elements except for the respective shifts of moiré fringes. This means that a shift of 
one of the gratings, measured in the fractional part of the grating period, 
introduces the equivalent shift of moiré fringes, measured in the fractional part of 
the period of fringes. For this reason, the influence of the shifts of gratings is not 
considered.

Analogically to Fig. 9, the central part of the Fourier spectrum of a double­
diffraction system, composed of Ronchi gratings, is shown in Fig. 10. The field 
amplitude distribution is symbolized by the diameters of the spots (that equal 
|cm cm21), and the power distribution — by their area. As cm = 0 for m even, in

every section with n odd (n = mx + m2) there are two spots only [(0, m2) and 
(wq, 0) for wq = m2 = m2 = ± 1, ±3, ...] with equal amplitudes. On the other 
hand, for every section with n even, except for n = 0, we have the equidistant and 
infinite set of spots with the period equal to 2Aoj. For the section n = 0. 
additionally to the situation described for n even and n #  0, the spot (0, 0) is 
observed.

To determine the intensity distribution of moiré fringes on the sphere I 3 (see 
Fig. 8) it is sufficient, according to (41), to sum up the partial intensity distribu­
tions generated by the spots of every section with n constant. The partial 
distributions are periodical with the frequencies equal to module Aco. It means that 
every partial intensity distribution, and consequently, the intensity distribution of 
the moiré fringes, can be described by the following series:

/ 0 = (z t F0/z3)2; j p, f p designate the amplitude and the phase, respectively, of p-th 
intensity harmonic for the intensity normalized to 10 = 1 {p = 0, 1, 2, ...).

For example, let us consider the section with n = 1, where the spots (1,0) and 
(0, 1) are located. On account of the relations (31), (33b) and (34) the partial field 
distribution will be in the form

I3(A) = I0 Y^jp cos (pAœA +fp), (42)
P

(43)
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For the partial intensity distribution we can write

I'iHA) =  V ^{A )· = 21 o co c? [1 + co s(Ja> /i+ /,)]  (44)

where, as previously, Aco = cd2—cd1, and

A  = kp2,3o )l-k p lt3o)j. (45)

The distribution contains two intensity harmonics with the frequencies
equalling zero and Aa>. Moreover, according to the general relation (42), j 0 = j x 
= 2c \c \ and / 0  = 0, j p = 0 for p > 1.

Analogically, we can show that the spots (0, — 1) and ( — 1,0) — the section n 
= — 1, see Fig. 10 — give the partial intensity distribution I{f l)(A), which differs 
from the distribution I(3]{A) defined by the Eq. (44) by the sign of the phase of 
the first intensity harmonic, only.

Both intensity distributions of fringes I(3]{A) and I 'f^ iA )  may be observed in 
the system shown in Fig. 11. Let Gi and G2 be the Ronchi gratings with equal

Fig. 11. Double-diffraction system of the 
gratings G, and G2 demonstrating the 
moiré fringe phenomenon with filtering 
of the spectrum. The system is illuminat­
ed by the point source S0 through the 
condenser K„ (ttf -  filter plane, n3 -  
observation plane)

u F Tt3

linear periods. Moreover, let the gratings be illuminated by a point source S0 
through a condenser K„. If the point S is the image of S0 given by K n, then the 
spectra of both gratings arise successively on the spheres .TF>1 and I Ft2. The 
centres of the spheres are at M x and M2, respectively. The phase shifts between 
the spheres ZF1 and TF>2 are related to the field propagation between the gratings 
Gx and G2. The moire fringes arise on the sphere I 3 with the centre S, and its 
spectrum is on the sphere r F<3 with the centre M3. The proposed configuration is 
convenient from the experimental point of view because all spectra and the sphere 
1 3 are real in one space. In this manner, the spectrum can be easily filtered with 
respective diaphragm located at the plane nF, and the result of filtering can be 
registered in the plane n3. If the diaphragm transmits the spots from the section n 
= 1 or n — — 1, the fringes observed in the plane n3 have the same period and 
direction, alternatively. However, in the general case, they are not coincident. The 
changes of the distance z3 between the plane n3 and the spectrum plane introduce 
the shifts of both fringe images, but in the directions mutually opposite. The shifts 
of fringes are related in Eq. (45) to the change of the phase f lt induced by the 
change of z3, the opposite directions concern the opposite signs of the phase/for 
both distributions.
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If the spots of the sections n = 1 and n = — 1 are transmitted simultaneously, 
the stationary fringes will be observed with the contrast changes during the change 
of the distance z3. This fact results immediately from the relation

iy '-  l)(Â) = I(3 ](Â) + /<3- » (Â) = 4J0 cl c\ [1 + cos(A) cos(d«T4)]. (46)

The same conclusions about fringe shifts and fringe contrast can be deduced 
directly from the Fourier distribution. For this purpose, it is sufficient to remark 
that the direction of the linear fringes coincides with the dashed line shown in 
Fig. 10.

According to (46) the fringes for cos(/i) = 1 and cos(/,) = 0 are shown in Fig. 
12. The fringes of the component intensity distributions may be observed at the 
edge of Fig. 12b because both areas of the fringes are not exactly coincident. The

Fig. 12. Photographs of the moiré fringes obtained in the configuration shown in Fig. 11 for two 
different distances z3\ a -  maximum contrast of the fringes, b — minimum contrast of the fringes

perceptible curvature of fringes is connected with the aberrations of the condenser. 
The spectrum of the double-diffraction system registered in the plane nF, is shown 
in Fig. 13. It can be seen that the used gratings differ from Ronchi ones. Because 
of that the experimental demonstration of the relation (46) shown in Fig. 12 was 
possible only in the case the filtering of the sections and the filtering op proper 
spots in the sections n = 1 and n = —1. In spite of the equal linear periods of both 
gratings, the fundamental angular frequencies cj1 and co2 are slightly different 
because the gratings Gx and G2 are at the different distances from the point S. On 
the base of the spectrum image of two Ronchi gratings shown in Fig. 10 we can 
conclude that the first intensity harmonic, beside the sections n = 1 and n = — 1, 
can be generated by the spots (1, — 1), (0, 0) and (—1, 1) of the section n = 0 only. 
For these spots the partial intensity distribution will be given by the following
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■
 Fig. 13. Intensity distribution in the Fourier plane for two inclined

diffraction gratings

expression

/ (30) (Â) = I0 [ci + 2c\ + 4cJ c\ cos (A (p) cos (AcoÂ) + 2c\ cos {2AœÂ) (47)

where

A(p = /cp1>3 col + kp2'3 o)2 — 2kp23 u>\ co2 . (48)

In this case we have three intensity harmonics, the contrast of the first harmonic 
depending on the position of the sphere I 3 only.

Summing up the Eqs. (46) and (47) the intensity distribution on the sphere I 3 
for 7 central spots of Fig. 10 will be obtained. It is worth remarking that the even 
harmonics of the intensity (p = 2, 4, ... in the Eq. (42)) will be generated by the 
sections with n even only.

So far, as the first intensity harmonic of moire fringes for the Ronchi gratings 
can be studied analytically (this conclusion may be extended to the odd harmo­
nics), the second or every higher even harmonics are composed of the infinite 
terms, and the computer analysis is necessary. The last inference concerns the odd 
intensity harmonics not only in the case of Ronchi gratings.

6. Conclusion

The general equations for the Fresnel field of a dffraction gratings system 
illuminated by a point source have been derived. The simplicity of the procedure
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results from the analysis of the Fourier spectrum of the field propagating through 
the system. The advantages of the proposed approach can be seen particularly well 
during the analysis of the moire fringes with filtering of their spectrum.
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Область Френеля для системы дифракционных решеток 
освещенной точечным источником

Определены общие формулы в области Френеля для системы состоящей из произвольного 
количества дифракционных решеток. Анализ основан на исследовании изменений спектра Фурье 
во время распространения волны через дифракционные решетки. Обнаружено применение ана­
лиза для изучения полос Моры возникающих в двойной дифракционной системе.


