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Bending of thick holographic cylindrical lens

M iroslav M iler

Institute of Radio Engineering and Electronics, Czechoslovak Academy of Sciences, CS 182 51 Prague, 
Czechoslovakia.

A theoretical analysis of the light intensity across the aperture of the thick holographic 
cylindrical lens of the planar type has been performed and non-uniform distribution obtained. 
The non-uniformity is partly possible to be removed by bending the lens, which is also desired 
from the point of view of its imaging properties and Fresnel losses. Much more uniform 
distribution one can obtain by moon-like shapes of the lens.

1. Introduction

Holographic cylindrical lenses can be used as HOEs for transforming of free 
propagating beams and also as grating lenses on the surface of planar waveguide 
for transforming of guided modes. Extensive theoretical study of properties of 
volume (thick) holographic cylindrical lens was performed [1-3] using two- 
dimensional coupled-wave theory [4] as well as localized one-dimensional theory 
[5]. Grating lenses for guided-wave optics were experimentally realized firstly as 
chirp-gratings [6, 7] only, then also with inclined grating lines [8]. Two-dimensio­
nal coupled-wave theory was used by means of modal approach for analysis of the 
last type of planar grating lens [9]. All the analyses and experimental realizations 
maintained this type of optical element as a grating medium with straight and 
parallel boundaries. Small exception was made in [9], where one boundary is 
suggested as curved in order to compensate decreasing of coupling coefficient from 
the centre to the border of the element in the case of the polarization in the plane 
of incidence.

In this paper it will be shown that curved boundaries can be very useful for 
properties of that kind of optical element, particularly from the point of view of a 
uniformity of the beam but also for geometric optical advantages.

2. Distribution of the intensity across the aperture 
of the lens

Volume holographic cylindrical lens transforms a plane wave into a cylindrical 
wave or vice versa. This lens can be made by holographic exposure of a sensitive 
medium which fills a volume of planparallel slab or parallel strip. For the
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recording of the lens one must use waves of.the same shape as these which will be 
used for reconstruction. In Fig. 1 the recording is sketched. One boundary of the 
recording medium lies in the coordinate plane xy and the other in the distance d0 
from this plane. The v-axis is parallel to the focal line of the cylindrical wave and

Fig. 1. Recording of the thick 
holographic cylindrical lens

the distance of the focal line from xy-plane is /. The angle of incidence of the plane 
wave is 0 O. In a general point P(y) the ray of the cylindrical wave having the 
angle of incidence 0 ( y ) interferes with the ray of the plane wave, and the grating 
vector K{y) in this point is given by the relation

<?c(>7) = d0- K ( y )  (1)

where <?c(v), <r0 are propagation vectors of the cylindrical and plane wave rays, 
respectively. (|crc(y)| = |<t0| = fi = In/ /., \K (y)| = K = 2n/A, where a is the wave­
length of the light and A is the period of the grating). Components of the vectors 
are:

<70 = !/icos<~V P Sin0o|,
tf'c(j’) = \ P L \ / f 2 + y2, P y / s / f 2+ y 2\*
K(y)=  \Kcos<P Ksin<P],

which substituted into Eq. (1) gives for the local period of the grating the 
expression

1 M 2(y) = (2/;.2)[ l —(/c o s  ©o + y sin 0 O)/ v/ / 2+ ? ] ·  (2)
and for the angle of the grating vector

tan <P(y) = (y -  J f 2 + y2 sin<90) / ( / -  J . f 2+ y2 c o s 0 o). (3)

For simplicity we will suppose that the grating lines are straight because usually 
the condition d0 <̂ f  holds.
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Applying localized one-dimensional theory of volume holograms [5] for our 
transmission case, we can obtain local diffraction efficiency in the form

V(y) = sin2 \{nnt dJX x/cos6>0) N ''l + (>’//')2 I (4)

for on-Bragg case. Note that from the localized' theory there cannot be done deep 
conclusions about exact intensity distribution across the aperture, because it in fact 
does not take into account an interaction between waves in the grating medium, 
and approximates the results for thickness approaching zero. But the locations of 
the minimum and maximum efficiency it can predict with good accuracy. For m-th 
maximum it holds that the argument in (4) must be equal to (2m — lXfl/2) and for 
m-th minimum the expression (m— \)n  takes place.

For a moment let us assume on-axis case 0 O — 0 and properly chosen 
parameters that on the axis m-th maximum of the diffraction efficiency be located. 
Then m = 1/2 + nl d/X, and as an example, for the first maximum and d0 = 10/ 
there must be nl = 0.05. If m-th maximum should be on the axis then nxd/X = m 
— 1/2, and (m+M)-th minimum for a point P(y) can be obtained if

tan 0  = y/ f  — |[2(m— 1 + Af)/(2m— l)]4 —1}1/2. (5)

As can be seen from the last expression, large variation in the intensity across the 
aperture of the cylindrical thick holographic lens can be expected. The table

Angles of minimum efficiency

nl d/X 1

M

2 3

1 63.6 80.8 85.3
10 24.9 40.9 50.2

100 8.1 13.9 17.9

summarises the angles 0  of the minimum efficiency for three values of the 
coupling constant nt d/X and three following orders. Naturally, this disadvantage 
in the distribution of the intensity can be compensated by the change of the shape 
of one boundary, similarly as sugested in [9] for another compensation. The 
condition is that the argument in (4) must not change with y-coordinate. from 
where

d(y) = d0 [ l+ (y // )2] " 1/4. (6)

This rather complicated geometric shape can be replaced by parabolic if one takes 
into account very narrow vicinity of the central point only y/ f  1, when

d(y) ~  d0 [1 — (y/2/)2], (6.1)

which can be rewritten as d(y) % d0 — y2/2g, where g = 2 f 2/d0. From (6.1) it 
follows that for instance for /  = 40 mm and d0 =  1 mm the radius of curvature g 
= 320 mm, but for d0 = 3 mm the radius is g — 106.7 mm. Note that the function 
d(y) is independent of 0 O.
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Fig. 2. Curves for compensation of the inten­
sity distribution across the aperture by 
means of the change of shape of one boun­
dary: curve a — dependence of the argu­
ment of the function of local diffraction effi­
ciency (Eq. (4)) on the lateral coordinate, 
curve b — ideal shape of the boundary (Eq. 
(6)), curve c — approximate parabolic shape 
of the boundary (Eq. (6.1)), curve d — argu­
ment of the function of local diffraction effi­
ciency for parabolic shape of the boundary

In most cases the shape (6.1) can replace (6) with good accuracy in much 
greater extent, as it is seen from Fig. 2 where three functions involved are plotted.

3. Bending of the lens

As it has been mentioned above a curved slab or strip of the grating medium can 
have advantages against the straight one. We expell from our consideration such 
bending when the convex side is directed to the focus and will treat the opposite 
case only due to its essential character. As an approach to the necessary demand 
of curving we study at first the case when interference fringes are perpendicular to 
the boundary and calculate the shape of the boundary. From (3) we see that a 
slope of the boundary curve is

dz/dy = ( / -  J f 2 + y 2 cos 0 o)/{y -  J f 2 + y2 sin <90), (7)

and for the simplicity we consider again the case 0 O =  0. Then

dydrj = (1 -  J \  + t]2)lrf (7.1)

where £ = z/ f  and rj = y / f  Integrating (7.1) the shape of the boundary is of the 
form

C = In\ti\ -  [v T -f )j2 -  In |(1 + J \  +  r}2)/r]\] + C, (8)

when C is an integrating constant.
Using general relations of differential geometry we can also obtain the curva­

ture of the curve (8) as dependence on rj

= [>72 + ( 1 - v F + V )2] 3/z

6 */(i — v  i + /̂2)
(9)
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—  4

where q — rtf. Figure 3 shows both last curves. From the curve for the curvature it 
is seen that the radius of curvature in the centre is equal to the focal length, then 
increases with increasing q and about rj % 0.6 has the value q = 2. Between rj 
= 0.78-0.79 the curve has zero curvature and then the curvature is changed to 
opposite and the radius of curvature quickly decreases.

Naturally, this complicated shape must be replaced for practice by more simple 
one — circular or parabolic. In Fig. 4a absolute differences between the shape (8) 
and the circular shape Ac = |£| —{q — ^ / q2 — *]2) or the parabolic one Ac — |£| 
— t]2/2Q are plotted for q = 2, and in Fig. 4b relative differences for a sequence of

Fig. 4a. Differences between ideal shape of the bounda­
ries of the bent lens after Eq. (8) and circular Ax £ = |£| 
- ( ( ? - s /e 2- 1 2) or parabolic A2C = I c l s h a p e s  
if o = 2
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Fig. 4b. Relative differences d£/£ for both cases in Fig. 4a and a sequence of curvatures q

Ac,lc, are plotted. It is seen that most convenient radius of curvature lies around a 
value q = 2.

When the lens is bent, a point P, in which we have to consider the interference, 
does not lie on the y axis and relations for period (2) and angle (3) are no more 
valid. With the help of the sketch in Fig. 5 one can obtain new components of 
vectors which have more complicated form:

<J0 = {/?[v/T -^ c o s6 > 0 — *7sin<90], /?[N/ l  - r j 2 s i n 0 o + rjcos0o]},

s  j i - ( ^ - i  + y T ^ V ) 2+ ^ - ( i - ^

' I 2 [ ( i - i  + v/ r = F ) 2+ „ 2] ‘'2 ’

f,________ , . . I
t f + I M + . / T V ) 2] 1'1)

where =  y/r, and for z-coordinate of the point P it holds zP =
r - J r 2- y 2.

The expression for the diffraction efficiency then takes a form

11circ = sin2
(2717̂  d

K -i+ y r v ]1'4
[ ! + ( { - !  +  y i  - 1}2)2+ »)2 -(1  -  {)J] 1/2 [ v 'l -  I]2 cos @0 -  sin 0 O] 1,2

( 10)

which is much more complicated than the very simple form (4). Not only circular 
shape can be borne in mind for the shape of bent lens but also a parabolic one. In
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Fig. 5. Recording of the thick bent holographic 
cylindrical lens

this case the z-coordinate of the point P is zP — >,2/2r and in this sense the square 
roots x/ l  - t ] 2 should be changed. Then the diffraction efficiency after simple 
algebraic alterations is

________________ [ £ 2 +  *72 ( l  ~~ £) +  *?4/ 4 ] 1/4_________________

* K  + r\2(1 -  m  + X [(1 -  n2/2) cos 0„  - sin 0 O] 1,2

When the lens is bent the maximum, and minimum diffraction efficiencies must 
occur in another positions than in the case of straight boundaries. Figure 6 shows 
dependences of position of minimum efficiency on the curvature of the lens for 
some cases of the smaller M. It is seen that the shift to higher values of the

Fig. 6. Dependencies of position of minimum 
efficiency on the curvature of the lens for 
smaller m and Af: curves a for m ^  100 and 
M = 1, 2, 3; curves b for m ^  10 and M 
= 1.2.3
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transversal coordinate rj for optimum curvature is not so much pronounced as one 
should want to expect. Therefore, the main result of bending can not be the 
removing of non-uniformity across the aperture which is due to non-uniformity of 
the diffraction efficiency. This must be done by a change of the thickness as in the 
case of planar lens.

If the diffraction efficiency ought to be uniform the argument in (10) or (11) 
must not change with rj, and the thickness of the lens must change according to 
the expression

d(r])

_  [1 + (t  - 1  + v/ l  -  q2)2 + q2 -  (1 -  f)2] 1/2 x [ v/ l  -  cos 6>0 -  qsin 6>0] 1,2
[(i-i + y r ^ + r T '4 ( a)

for the circular shape, and

d(r, ) _ i i + n 2W ~ i ) + ^ V l2m->l2/2)cos0o- ^ s m e or 4 
d0 κ J^ V (l-^ )+ > ι7 4 ] ,,* ( '

for the parabolic shape. These expressions are also very complicated and one must 
seek more simple form. This can be, for example, the subtraction of two circles of 
the same diameter but with shifted centres of curvature of circular shape, as it is 
seen in Fig. 7. The thickness of that moon-like section is changed according to the

Fig. 7. Moon-like shape of the lens having moon-like shape d{rj) = d0cos .9. Curve Ad is the diffe- 
boundaries of the same curvature rence between both curves in magnified coordinate
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dependence d{rj) = d0cos$, where ,9 =  arcsin{y/r), and in Fig. 8 both shapes and 
the difference between them are plotted in magnified coordinate for the case c 
— f i r  = 0.5. It is seen that for cases important in practice, e.g., f/max % 0.5, these 
shapes can replace the theoretical shape very well. Naturally, one can also use 
circles with different radius for both boundaries of the element. But a choice of the 
radius of circles is limited by the inequality r ^ r '  < r  + d0, and therefore an , 
improvement is only very slight.

4. Conclusion

Non-uniform distribution of the intensity across the aperture of the thick hol­
ographic cylindrical lens can be compensated in the most part by the bending of 
the lens shape. This bending is realizable in the case of the lens in planar optics 
very easily by masking the grating. The distribution can still be improved when 
both boundaries of the shape have the same diameter.

Moreover, three other advantages follow from the bent shape of the element. 
The first of them is that Fresnel reflection loses on the boundaries can be smaller 
than in the case of straight boundaries because angles of incidence are smaller, 
especially in the off-axis part of the element. This fact has connection with other 
advantage: bent shape of the element generates more uniform distribution of a 
Gaussian beam which falls on the element from the concave side and is collimated 
by this element. It is due to replacement of tangens function by sinus function in 
the distribution of the intensity as dependence on the radius.

The third advantage is based on an improvement of aberrations if the optical 
element is bent. Optimum bending is under the condition f / r  = 0.5, where an 
optical imaging is aplanatic. The same condition has been found in this paper for 
more uniform distribution of the light intensity across the aperture of the thick 
holographic lens.

This analysis has already been applied to calculate the performance of grating 
lenses to planar optics. Experimental work to verify the calculated results is 
currently being undertaken in our laboratory.
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McKpHBJieHHe tojktoh rojiorpa<J>H4ecKOH infJiHH/q>HHecKOH jihh3m

TeopeTHnecKH aHaJW3HpoBaHa HHTeHCHBHOCTb CBeTa B03Jie anepTypw tojictoh rojiorpa())HMecKOH 
UH.iHimpHHecKOH jiMH3bi ruianapHoro m na h nojiyneHO ee HepaBHOMepHoe pacnpe/ie:ienne. 3Ty 
HepaBHOMepHOCTb MOHCHO MaCTHHHO yCTpaHHTb HCKpHBJieHHCM JIHH3bI, KOTOpoe )KeJiaTejlbHO TOHee H3 
tomkh jpeHHH H3o6pa*aiomHx cbohctb h (JjpeHejieBCKHx 3aTpaT. Jlynmew paBHOMepnocTH mo>kho 
HOCTHHb JiyHapHblM BHAOM JIHH3bI.


