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Self-imaging phenomenon of tilted linear 
periodic objects

P iotr  B iało b rzesk i, K rzyszto f  P atorski

Institute o f Design o f Precise and Optical Instruments, Warsaw Technical U niversity, 
ul. K . Chodkiewicza 8, 02-525 W arszawa, Poland.

Self-imaging phenom enon o f a cosinusoidal, amplitude type linear diffraction grating 
illuminated by  a plane beam tilted with respect to the grating normal is investigated. 
Equations describing the case of simultaneous tilt in the plane perpendicular and 
parallel to grating lines are derived, they include the special cases recently described 
in the literature.

1. Introduction

In the recent paper [1] an attention has been drawn to the properties of the 
Fresnel diffraction field of linear diffraction grating being tilted with respect 
to the optical axis or, equivalently, being illuminated by the oblique plane 
wavefront. The special eases of the grating tilt about the axis either parallel 
or perpendicular to grating lines have been treated separately. It has brun 
shown that in both the cases the well defined diffraction images of the gratii g 
can be found in the observation planes parallel to the grating plane. When 
changing the observation distance the diffraction images arc periodically detect­
ed. The above characteristics have been obtained by calculating or heuristic- 
allv interpreting the intensity distribution patterns in the planes perpendi­
cular to the direction of the illuminating beam. The experimental verification 
has been given. The established properties of the self-imaging phenomenon 
under oblique illumination are of practical importance in the shadow Moiré 
technique described in [2].

In this report we would like to present the investigation of a general case 
of the plane wavefront oblique illumination. Incidence plane of the illuminating 
beam does not coincide with the plane either parallel or perpendicular to the 
grating lines. The analytical formulae will be derived using the concept of an 
angular spectrum of plane waves. Additionally, the simplified calculation model 
pertinent to one of the special cases treated in [1] (the incidence plane being 
perpendicular to grating lines) will be presented. This model enables direct 
calculation of the intensity distributions in the planes parallel to grating plane.
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Therefore, direct analytical estimation of the lateral period of diffraction images 
is possible in this case.

2. Analysis

The calculation o f the Fresnel field pattern of obliquely illuminated linear 
periodic object could be done using Kirchhoff integral [3, 4]. However, we will 
adopt (as in the referenced paper [1]) the approach based on the concept of 
an angular spectrum of plane diffracted waves [5, 6]. These plane waves, when 
summed in both amplitude and phase, give the desired field distribution, the 
diffraction pattern can be considered as an interference pattern of all plane 
waves originating at the grating.

2.1. Calculation of the propagation directions of diffraction orders

In order to perform the summation of diffracted beams it is necessary to 
know their propagation directions. For this purpose the Fresnel-Kirchhoff 
calculation model will be used. Let us introduce, after [7], the general diffrac­
tion arrangement, its notation is schematically shown in Fig. 1. The point

Fig. 1. Fresnel-Kirchhoff diffraction geometry for calculating the propagation angles of 
diffracted beams

source plane x0y0, the untilted object plane x'y' and the observation plane xy 
are separated by z0 and z, respectively. The plane object shown as an aperture 
in Fig. 1 is rotated about the x' and y' axes by the angles a and /5, respectively. 
Using the usual approximations assumed when calculating the Fresnel-Kirchhofl
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integral [7] we can calculate the complex amplitude at the point P  in the obser­
vation plane in the form

cos (3 c c
U(P) o c ------ — — J J  exp {ilc(r +  s)}dS (1)

8

where A  denotes the amplitude of the wave emitted by the point source P „, 
d is the angle between the line P 0P  and the z axis, 8  corresponds to the object 
surface, dS is the object element and k denotes the wave number. Other sym­
bols are shown in Fig. 1. After expanding r and s into the power series including 
the linear terms only [7] and performing simple calculations, Eq. (1) becomes

U(P) =
i COS Ô

X
Aexp{ift(r'-|-s')} J J exp{ifr/(|, rj)}d£dr)

s
(2 )

where

/(£ ,  rj) — — £cos a +  {m0 — m)rj cos/5 -f (£sin a +  rjsin¡3)
_ _ _ _ _  _______ _ _  (3)

X | / l - ( ! *  +  » * ) - A - ( I J + m J ) ] ,

h =  -yolr't  1 =vl»'\
• (4 )

m0 =  — a?0/r ', m — xfs'

Let us consider the case of plane beam illumination; in this case l0 =  m0 — 0. 
Introducing the notations

L  =  Zcosct +  s in a f l— Vl-^(l2 +  m2)]
1 J (5)

M =  mcos/9 +  sin /3[l— ^1 — (i2 +  m2)]

we obtain

U(P) = C  f  exp { - i k ( L g  +  Mt])}dgdti (6)
s

where C is the proportionality constant. Now, let us introduce a periodic 
structure of spatial period d as the object in the £»? plane. The object lines will 
be assumed as being parallel to r] axis. The amplitude transmittance of the 
singular linear element of the structure will be denoted by P (l). Using Eq. (6) 
and the calculation model shown in [7] the amplitude at P  is

N-1
U(L) =  Ue(L) JT1 e x p {— ikndL}

n=0
( 7)
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where N  is the number of linear elements in the object and

U„{L) =  C f  F(i)exp{-i1eL}dS.  
s

(8)

The intensity becomes

I(L) = I 0H [N ,
kdL \ lsin(NMLI2)V 
~2 / ”  °\ sin (M X /2) /  ■

(9)

From the last equation we obtain the condition for the angular localization of 
diffraction orders, i.e.

L = (10 )

Since the amplitude transmittance of periodic object is constant along the r? 
direction we have

U(tj) =  J o,xp{—ikM},  (11)
s

what imposes

M  =  0 . ( 12)

Inserting Equations (10) and (11) into Equation (5) we obtain the following 
system of two equations with two unknown l and m:

ïcosa +  sinafl — V̂ l — (Z2+m 2)| =  n —-|
d\.  (13)

mcos^ +  sin/S[l — Vl — ( ï2 +  m2)] =  0 J

The parameters l and m correspond to the propagation directions of diffraction 
orders of the periodic object in the coordinate system xyz. They are calculated 
from (13) as:

nX sinacos/1 f nX smacos/?
l — —------ - —  ---------------------  cosacos/H—  ----------------

acosa 1 —sm2asm2p [_ a cosa

|cos2acos2/3 +  2
nX
—  sm acos2/? — 
cl

n2X2
“ d 2”

m =  —
sinacos/S 1

1 — sin2 asin2/?
eosacos/? +

nX sin a cos /?

(14)

d cosa
( 15)
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From these equations describing a general case of oblique illumination a  ^  0, 
yS ^  0 the expressions relevant to special case [8-10] are readily obtained:

i) a  =  0

l =  n-

m =  — sin /9 [cos /3 — ^cos2/?—>tA/d)2]

ii) /3 =  0

l =  cosa j—  — sinaj +  sin a l^l — (sin a — «1/d)2 

m =  0

iii) a =  /3 =  0

7l =  n — 
d

m — 0

(16)

(17)

(18)

2.2. Calculation of the Fresnel diffraction field

Knowing the propagation directions of diffraction orders of obliquely illuminated 
periodic structure we are ready to calculate the Fresnel diffraction field using

Fig. 2. D iffraction geom etry for ca l­
culating the Fresnel field o f linear 
periodic structure having the norm al z0 
tilted with respect to the illuminating 
beam propagation direction. Plane beam  
impignes along the z direction. The 
ob ject plane gg is tilted b y  the angles 
a and fl with respect to  the piano x'y' 
normal to z
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the concept of an angular spectrum [5, 6]. It has been found from many trials that 
for the convenience and simplicity of calculation of a general case a ^  0, ^  0
it is good to assume the z axis of the coordinate system as coinciding with the 
illuminating beam propagation direction. It passes through the centre of the 
plane $rj. This choice is much better than the assumption that the z axis is coin­
ciding with the grating normal. The diffraction geometry, corresponding to 
the calculation in the following, is schematically shown in Fig. 2. It is readily 
seen that the incidence angles a and (i of the illuminating beam correspond now 
to the tilt angles a and ft of the grating. However, according to the convention 
of the signing angles, assumed before, we have to change signs of the grating 
tilt angles.

The complex amplitude of the Fresnel light field in the plane perpendicular 
to the illumination direction will be calculated. For the simplicity of analysis 
we will assume the cosinusoidal amplitude transmittance of the periodic object 
in the form of linear, amplitude-type diffraction grating

T(|) -  V0+Vcos(2n(ld)  (19)

where V0 and V denote the amplitude modulation parameters. Using the con­
cept of an angular spectrum of plane waves [1, 6] the light field in the obser­
vation plane xy perpendicular to z axis is expressed by

y  _____________
U(x,y ,z)  =  F 0exp{tfc2:} +  —  e x p f i f c f i c m + j+ y ^ + a j / l -^ j+ m ^ ) ] }

(20)
y  ______________

+  —  exp {ik [xm_x +  y L i + z  V 1 -  ( i i j  +  m ij)]}

where l+1, m+], l_1 and m_, denote the propagation directions of the + 1  and — 1 
diffraction orders, respectively; l0 =  m„ =  0. In the following we will be con­
cerned with small values of Î and m, this is usually the case when low frequency 
gratings are used for the self-imaging applications. For example, when the grat­
ing of maximum frequency of 50 ¡/mm is considered we have l =  0.05 and m =  
0.0005 for A =  0.633 (im. In such a case Eq. (20) becomes

U(x, y, z) =  exp {ikz} |f o+  exp jaxm+i +  y l+ i - i + < i '}]
x m - i + y l - i -

z
2

(21)



Self-imaging phenomenon. .. 301

The intensity distribution is

V2 V2 [
I ( x , y , z )  =  V20 +  —  +  ~2 ~ coskjæ(m+I- m _ 1) + y ( ï+i - L i )

j  d U - l i t  +  mh ~»»Li)J
X

+  2 7 07cosft|— (m+1 +  m_1)

+ —· a+1 + ^ -i)— ~  a h  +^-i + TO+i + m-i)} c o s f c (m+1 — m_j)

+ a+1 ~  i-i) — ^  a h —^-1+ mh

If
( 22 )

It is seen that the intensity distribution consists of three basic terms: the 
background term, the fundamental and the second harmonic. The fundamental 
is of primary importance, it is composed of the following terms:

i) The term describing the intensity distribution in the xy plane, that is

cosfcj| -(m +i-T O _1)+ -| - ( i+1- L i ) - j  (?2+1- l 2_ i+ m 2+1- m 2_1)j. (23)

It expresses a periodic linear intensity pattern, the normal to the fringes is inclin­
ed with respect to the y axis (Fig. 3) by an angle a> given by

Fig. 3. Schematic representation of the periodic 
intensity pattern in the xy plane (without showing 
the contrast modulation effect)

m+1 — m_j
tan co — — —-------- -.

l+i — l-i

The spatial period ds of the intensity pattern is

d, =  2X[a+i- l - iY  +  {m + i -m _l

(24)

(25)

The lateral shift p0 of the periodic intensity distribution with respect to the
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origin of the æ, y plane (measured along direction specified by the angle œ) is 

Po =  » (Z + i-iL i+ w + i-iw iiK M A . (26)

ii) The term describing contrast modulation of the periodic intensity pat­
tern expressed by Eq. (23). It is proportional to

cosit j— (w+i +  w_i) +  "  (1+1 +  1_i) — — (l+i +  ill +  m+i +™ li)|· (27)

The maximum contrast is obtained when

x(m+1 +  w_j) + y ( l+1 +  !_,) — ~  (1+, -r ili + w 2+1 + w 2_,) = 0 .  (28)

Last equation provides the conditions under which the constant contrast is 
observed in the detection plane

tana' =

tan fj' =

2 d+i+ L 0 1 a for
l+i +íLi +  m+i +  mL i

I
«si

 1

2(m+1 +  m_j) ! for
l+i + l l i  +  m+i +  '»I'Li J

X

x =  0, (29)

where a' and /3' denote the angles between the detection plane and the plane 
perpendicular to z axis. From Eqs. (27) and (29) we have

2 X I
1+ i F  i l l  +  wi+i + » » l i

(30)

where X  =  1, 2, 3, ... is a positive integer. For the propagation distances deter­
mined by Eq. (30) the value of the contrast modulation term (Eq. (27)) is equal 
to ( - l ) ‘v.

We have performed numerical calculations of the above derived equations 
for various values of the grating spatial frequencies (25 and 40 1/mm) and 
tilt angles. From the results obtained the following conclusions have been 
formulated :

— Planes of constant spatial contrast modulation are parallel to the grating 
plane, i.e., a =  a ,  /3 =  /3'.

— Lines in the diffraction images are parallel to grating lines.
— Spatial period of the diffraction images detected in the planes of constant 

contrast modulation is equal to the object grating spatial period.
— Longitudinal separation distance z between the planes of constant 

modulation depends on the object tilt angles a and /3.
It follows from the above conclusions that the diffraction images in the 

planes of constant spatial contrast modulation (planes parallel to the object­
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grating plane) can be named as the self-images of the object grating under 
oblique illumination.

2.3. Fresnel diffraction field — special cases

After having presented a general solution (Bq. (22)) corresponding to the simul­
taneous grating tilt by the angles a and /3, let us give the special cases, when 
the tilt occurs in one direction only.

1. a =£ 0, /3 =  0.

Bow, the propagation directions of diffraction orders are given by Eq (17); 
the formerly introduced parameters describing the intensity distribution of 
the Fresnel field become:

F ig . 4. Sym bols used for t lie derivation of intensity distribution in the plane parallel to  the 
grating, the incidence plane o f illuminating beams is perpendicular to grating lines
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In this special case, another calculation procedure can be employed giving 
directly the intensity distribution in the plane parallel to the grating plane. 
The notation is shown in Pig. 4.

Similarly to Eq. (20) we can write

Z7' (3/, 2:) =  7 0exp jiftfz +  ysina] + -^-exp{ift[>eos0+1 + (y  — ¿l)sina+1]

4------exp{ifc[zcos0_i -f (y — ^)sina_!]}
2 (32)

where :

sina+1 =  sin a +  A/dN 
sina.j =  sin a — A/d| 
<9+1 =  a+1- a  
0_! =  a_j — a

(33)

z «= ¡?0/cosa 
A =  «„/tan a

(34)

Assuming as before, small values of diffraction angles (that is when the 
approximation cos0 =  1 — 0.5 sin2© can be used) and noting that sin0+1 =  Z+1 
and sin0_! =  i_n we can rewrite Eq. (32) in the form

ü'(y,z)  =  exp{tfc[> +  (y -Z l)s in a ]}  j[F « + T e ip {'

0 , 1) V i r A z , 1
- U - A ) - -

(35)

The intensity is calculated as

r ( y , z )  =  V \ + ~  +  2V0co&̂ y - A - ~ ( l \ 1- l 2_1)^

X
T z . ,, 1 7 2 2n r , zd , , ,, 1
[ u  11+1+ L l )

-1------ cos— -J 2 d
¡2y — 2A (i+1 ï_i)J

(36)

It follows that the intensity distribution has a spatial period d in the y direction. 
The contrast modulation in the whole observation plane is determined by the
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cosine term cos[2nz(l2+1 — )/4A]. For the observation distances

'2NX
ï+ I+ ï ’- l

(37)

the contrast factor equals ( — 1)^. This agrees with Eq. (30), where we have 
to put m+, =  m_1 =  0 for the case under discussion. Therefore, it follows that 
in the case /5 =  0 the results obtained by an indirect method, see Chap. 2.2 
and [1] (calculation of intensity distribution in the planes perpendicular to 
the illuminating beam and the subsequent derivation of the properties of dif­
fraction images in the planes parallel to grating plane) and the method just 
presented are identical. Certainly, the latter method is simpler and faster.

2 .  a — 0 , / 3 ^ 0 .

In this case propagation directions of diffraction orders are given by Eq. 
(16) and the parameters characterizing the Fresnel field intensity distribution
become :

tan to =  0, (38a)

d, =  d, (38b)

Po = (38c)

tana' =  0, (38d)

tan B =  ---------- ,
H Z2+ to2 ’

(38e)

NX
(38f)

l2 +  ma

where l =  |Z+1| =  JZ.,! and to =  to+1 =  m_1.
Unfortunately, in this special case we cannot perform the direct calculation 

of intensity distribution in the plane parallel to the grating plane, as in the case 
a 0, /3 =  0. This is due to the fact that the interfering diffraction orders do 
not lie in a single plane and the calculation model presented in Chap. 2.2 must 
be used. A  heuristic explanation of this case, based on the incoherent Moiré-ad­
dition of the two beam interference patterns has been presented in [1]. The 
results obtained coincide with Eq. (36) of the present paper.

3. Conclusions

Analytical expressions, describing the intensity distribution in the Fresnel 
diffraction field of a linear amplitude type diffraction grating illuminated by 
a plane spatially coherent beam, have been derived and discussed. General
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case of the tilt of grating normal in an arbitrary direction with respect to the 
illumination direction has been investigated. It has been found that (under usual 
approximations of relatively small diffraction angles of the object-gratings used 
for the self-imaging effect applications) the object-grating selfimages are found 
in the planes parallel to the grating plane. On the other hand, when the obser­
vation is conducted in the planes perpendicular to the illuminating beam direc­
tion the periodic bands of intensity contrast modulation are observed.

From the expressions corresponding to an arbitrary object tilt angle the 
formulae describing the special cases of unidirectional tilts have been derived. 
They are in full agreement with the expressions obtained before in a different 
way [1] and experimentally verified.

The analysis and its results can be easily extended to phase diffraction 
gratings as well as to two-dimensional amplitude and phase periodic structures. 
As it has been mentioned before [1] relatively simple analytical expressions 
describing the Fresnel field intensity patterns can be obtained for periodic 
structures generating three diffraction orders (three beam interference). This 
is due to the fact that there is no equality of angular separation between the 
adjacent diffraction orders and, consequently, there is no phase coincidence of 
all orders in the self-image planes. In the case of gratings with higher harmonics 
the numerical solution is required. However, we have performed many experi­
ments with square wave amplitude type diffraction grating and very close 
coincidence of the observed Fresnel field properties with the characteristics 
derived in this paper has been noted. This is because of missing the even 
orders in the square wave grating amplitude transmittance and the predomi­
nance of the first order diffraction beam.
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Явление самоизображения наклоненных линейных периодических предметов

Анализируется явление самоизображения косинусоидальной, амплитудной, линейной, дифракцион­
ной решетки, освещенной плоской волной. Направление падения светового пучка является от ­
личается от  направления нормали к плоскости решетки. Выведены формулы, описывающие 
общий случай одновременного наклона в плоскости вертикальной и горизонтальной по отношению 
к линии решетки. Эти формулы содержат описание особых случаев, анализированных в научной 
литературе.
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