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Heat-sinking process in light-emitting diodes
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In this paper, the heat spreading in the semi-infinite heat-sink of a device with a cylin-
drical symmetry (e.g., a light-emitting diode) is analysed. The formulae for the spread-
ing thermal resistances, the position-dependent and the mean resistances, are derived
for two cases of distributions of the heat flux flowing into the heat-sink: i) the uniform
heat flux density within the given circle and the zero heat flux outside it, and ii) the
Gaussian shape of the heat flux density.

1. Introduction

The performance of a light-emitting diode is affected by an inside temperature
rise which influences emission, modulation, carrier confinement, current-voltage
characteristic, reliability and so on. This temperature rise takes place not only
in a semiconductor volume but in a heat-sink (Fig. 1) as well.

The thermal sensitivity of a device, i.e., the temperature response to the sup-
plied heat flux Q is for the steady-state conditions usually described in terms
of a thermal resistance 0 defined as

0 = ATIQ [KAV] ®
where AT —temperature rise within a device.

Pig. 1. The light-emitting diode configu-
ration. S — semiconductor crystal, HS —
heat-sink

The thermal resistance QUED of a light-emitting diode may be divided into
two parts:

®L.LED = ®SC+ ®HS (2)

where 0Cand 0 5 are the thermal resistance of a semiconductor crystal and
the thermal spreading resistance of the heat-sink, respectively. The forme
f
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guantity has been calculated in paper [1] by means of the Green functions.
Now we consider the thermal spreading resistance of the heat-sink.

This work is arranged as follows: in Section 2 the simplified formulae (known
from the literature) for 645 are presented. Section 3 is devoted to the method
of determination of the effective radius ae of the heat flux flowing into the heat-
sink from a semiconductor crystal. The position-dependent thermal spreading
resistance <GHY(r) for a uniform heat flux is derived in Section 4. The analogous
resistance for the case of a position-dependent heat flux is analysed in Section 5.
The comparison of the results is given in Section 6.

All the derived formulae may be used for devices with cylindrical symmetry,
e.g., for light-emitting diodes with a surface emission.

2. Simplified formulae for the thermal spreading resistance
of the heat-sink in the case of devices with cylindrical symmetry

In a typical light-emitting diode, dimensions of the heat-sink are much greater
than those of the semiconductor crystal. Therefore the heat-sink is usually
treated as semi-infinite.

The generally known formula for the spreading thermal resistance of a semi-
infinite heat-sink, in the case of devices with cylindrical symmetry, is position-
independent and reads as follows [2]:

6T = ~Aa)"l 3)

where Xis the thermal conductivity of the heat-sink material. This formula
has been derived, assuming a steady heat flow from a circle of a radius a into
a half space of constant temperature. For estimative calculations, the radius ac
of the top contact is usually used in the Eq. (3)

Or N (4x)~l. @

The same, but without the assumption of constant temperature of a half
space, leads to another formula [3,4]:

ea = (nka)-1. ®)

For small circle, it is sometimes replaced by a hemisphere of the same ra-
dius a. This means that the material within the hemisphere is treated as a per-
fect conductor. Consequently, the heat flow is radial and the thermal spreading
resistance is expressed by [5]:

6B = (2nXa)-1 (©)

3. Effective heat flux flowing into the heat-sink

In the above formulae (3)-(6), it has been assumed that the heat flow from a cir-
cle of a radius a into a half space of the heat-sink is uniform. But the density
distribution gHY(r) of the heat flux flowing into the heat-sink is quite different.
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This distribution is influenced by two processes (Fig. 2): i) the current spreading
effect between the top contact and the p-n junction, and ii) the heat flux spread-
ing effect between the p-n junction and the heat-sink. As a result, the distri-
bution of qus(r) takes approximately the Gaussian shape [6].

Larr et al. [7] have solved a similar problem for the stripe-geometry lasers
by introducing the effective width of the heat flux flowing from a laser diode
crystal into its heat-sink. The analogous method for the case of light-emitting
diodes will be shown in this section.

P~n junction contact 0

XK —

0 & ae as r

Fig. 2. The current spreading effect and the heat flux spreading effect in a light-emitting
diode: light-emitting diode configuration with a location of both the above processes (a),
distribution of the heat flux density gj in the p-n junction plane (b), distribution of
the heat flux density gus in the plane of the semiconductor/metal heteroboundary (c),
effective density distribution gus °f the heat flux flowing into the heat-sink (d). ac, as
and ac — contact, structure and effective radii, respectively
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We look for the effective radius ae of the uniform heat flux (Fig. 2d) which
eventually gives in the heat-sink the same mean temperature increase (calculated
for points within the circle of radius a) as the real heat flux (Fig. 2c).

Let us add a thin layer of a thickness dt between the light-emitting diode
chip and its heat-sink. Then the increase in the thermal resistance 0 LED may be
expressed as follows:

A ]
LED - Mt (7)

On the other hand, assuming the uniform density distribution geof the heat
flux (Fig. 2d) flowing into the heat-sink from a circle of a radius ae, the above
presented increase in the thermal resistance may be written as

aa,
where  —thermal conductivity of the additional layer considered. Taking
both the Egs. (7) and (8) together, we obtain
ENLED\
ae m } (ga)
or
ae = lim inx.“l\/'leD}’ r (9b)

For more precise calculations the radius ac of the top contact in Egs. (4)-(6)
should be replaced by the effective radius ae.

4. The position-dependent thermal spreading resistance
of the heat-sink in the case of the uniform heat flux qus (r)

Let us consider a semi-infinite region z~ 0, r> 0, into which the uniform
heat flux of the density qeis flowing from a circle of the radius ae. The circle
is situated in the plane z = 0 (Fig. 3a). The remaining area of the plane z = 0,
i.c., for r > ag, is assumed to be thermally isolated. In this case, the heat spread-
ing is governed by the thermal conduction equation
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with the following boundary conditions:

T(r = 00) = 0, (11)

T[z = 00) =0, (12)
for re <0, ag

; dgT 20 \0 for r>a (13)

where T —temperature, and A—thermal conductivity of the heat-sink material.
Let us apply the Hankel transform of the temperature

©

He[T(r)I = V(a) = f rJ0(ar)T(r)dr (19
0

where J,, is the zero order Bessel function of the first kind.

Pig. 3. The flow of the heat flux gen-
erated in the active region of a light-
emitting diode into the semi-infinite
heat-sink: the uniform heat flux density
q(r) — ge within the circle of the radius
ae and the zero heat flux outside the
circle (a), the Gaussian shape of the
heat flux density (b)

The formulae (10)—(3) are then transformed into

dav
e —aV = 0, (15)
limF = 0, (16)

z—*00

= JA0a,,) 17

where the integral (Al) is taken from the Appendix, is the first order Bessel
function of the first kind.

The solution of the above mathematical problem may be presented in a
form

V(a,z) = N;l\ g - J {Gae)er°™. (18)

On the other hand, the solution of the Eg. (10), with the boundary conditions
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((H)-@3)), found from (18) by the inverse transformation

©

T(r,2) :% 0J0(or)V(o, 2)da, (19)

after an integration takes the following form [8]:

Ti(r,z=0) =-f-G (r) 20)
with
forr=20
I~(1/2, -1/2,1,rK)  for re <0 ae>
Q(r) = " 2jit for r = 21,

(1/2,1/2, 2, al/r2) for r> a

where is the hypergeometric function [9]. In the above calculations we have
used the integrals (A3), (A5) and (A6) from the Appendix. The hypergeometric
function F may be given in the form of a following series [9]:

_ r(c) r(a+n)r(b +n) zn
F(a,b, c; 2) F(a)r(b) | r(c+n) n\ (22)
where r is the gamma function, or simply by the expression
ab a(@a+1606+1) 2
F(atb, c\z) = | (c(c +)|)(|-2 )
a(a+l)(a+2)b(b + 1)(&+2) (22b)

oo+ )(c +2)I-2-3

The mean temperature within the circle of the radius aeis in turn equal to
/2 e
4i c(pj T1(r,z = O)rdr
4\] ctp\] rdr
0 O

Using the integral (A4) from the Appendix, we obtain finally the following
relation [2]:

8aege 24
™M X 24
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For the heat flux Q = 0.175 W, what corresponds to a current of 250 mA,
and the copper heat-sink (A = 400 W/mK), the temperature TX{r, z = 0) as
well as the mean temperature Tim are plotted in Fig. 4 for three values of the
radius ae (50 pm 75 pmand 100 ().

Pig. 4. The position-dependent temper-
ature increases in the semi-infinite cop-
per heat-sink for the uniform heat flux
density ge within the circle of the radius
ae. The curves have been plotted for the
heat flux Q = 0.175 W (which corre-
sponds to a current 250 mA) and for
three values of ae: 50"m, 75 ]im and 100
(lin. Tn — the moan temperature in-
side the circle. The lines denoted by sym-
bols in circles show the mean temperature
calculated (for ae — 50 p,m) with the
aid of the hitherto known formulae (3),
(5) and (6) — see subscripts

The resultant thermal spreading resistance, i.e., the position-dependent
resistance 0j(r) and the mean resistance @nl, obtained immediately from the
relations (20) and (24), respectively, take the following forms:

0i() = o\ &1, @)
8
O e (26)

5. The position-dependent thermal spreading resistance
of the heat-sink in the case of the Gaussian shape
of the heat flux gBS (r)

For more precise calculations the heat flux flowing into the heat-sink should
be assumed to be of position-dependent Gaussian shape (Fig. 3b) [6]:

fesW =£4 exp (27)
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in contrast to the previous section where a uniform heat flux through the circle
radius was considered. In Eqg. (27), q, may be determined by means of the
power balance (using the integral (A2) from the Appendix)

F
2\

Q=/#/ rroxp - 2N, 28)
giving

. Q

4= ntfll —exp(—r*fin)]  nbl (9)
where Q is the power of the heat source, rsis the radius of the diode structure
and the parameter b depends on the current spreading between the top con-
tact and the active region as well as on the heat flux spreading between the active
region and the heat-sink.

The problem reduces to solving the thermal conduction Eg. (10) with the
boundary conditions:

T(r = o00) = 0, (30)
T(z = o0) - 0, (31)
= QuexP| J (32)

After the Hankel transformation (14), the condition (32) takes the following
form:

dd\z/ . :TjexP(— H t— (33

which has been derived using the integral (A9) from the Appendix. Then the
solution of Eq. (15) with the boundary conditions (16) and (33) is given by

Va2 2% expl 14w —aj). 34

Substituting the above relation (34) into the inverse transformation formula
(19) and using the integral (A7) from the Appendix, we get the following expres-
sion for the temperature at the plane z —0 [10]:

TAr,z = 0) =*~"C(r), (35)
with

_ 1 r2\
) =ep 7o (36)
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where 10is the modified Bessel function of the zero order.

Using the integral (A8) from the Appendix, the mean temperature inside
the circle of the radius ac may be calculated by integrating (see Eg. (23)), to
give

T*2=-~pi>/(1/2,2, -a 2jb2) (37)

where M is the Rummer’s confluent hypergeometric function [11] which may
be expressed as follows:

z a@+l) z2 o(a+l)(a+2) z3

a
M(a, b, 2) = 1+y B(6+1) 2 b(b 1t)(b +2) 717

(38)

For the same heat flux Q = 0.175 W, as in the previous example, and the
copper heat-sink, the temperature T2(r,z = 0) and the mean temperatures
Tn2 are plotted in Fig. 5 for various values of the parameter 6.

Pig. 5. The position-dependent temperature
increases in the semi-infinite copper heat-
Rink for the Gaussian shape of the heat
flux denisty 2ns(r)- Solid, dashed and dot-
ted lines correspond to b = ae, b — 3/2 ae
and b = 2ae, respectively. The curves have
been calculated for the same heat flux
Q — 0.175 W as in the previous case (see
Pig. 4). In this figure the curve T”r, z — 0)
(small circles) for the uniform heat flux
density ge within the circle of the radius
ae is shown for comparison

The position-dependent thermal spreading resistance 02(r) and the mean
thermal resistance On2 of the semi-infinite heat-sink, obtained from the Egs.
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(35) and (37), respectively, may be expressed in the following forms:

<9)

©« = — —Jf(1/2, 2, (40)
2V,

6. Comparison of the models

Main results of the calculations for the standard construction of a light-emitting
diode and the heat flux Q —0.175 W are shown in Fig. 4 and Fig. 5. These
figures represent the respective temperature increase distributions in the semi-
infinite copper heat-sink, for the uniform heat flux density gewithin the circle
of the radius ae, and for the Gaussian shape of the heat flux density gHSY).

It is shown that within the circle the rise of temperature varies considerably,
e.g., for ae = 50gm (Fig. 4) it changes by about 1 K, whereas the total increase
is less than 3 K. The distribution of the temperature increase in the heat-sink
is a strong function of the radius ae, i.e., it depends to a large extent on two
phenomena in a light-emitting diode: the current-spreading effect between
the top contact and the active region as well as the heat flux spreading effect
between the active region (a heat source) and the heat-sink.

The assumption of the Gaussian shape of the heat flux density gm (r) flowing
into the heat-sink is more reasonable than that of the uniform heat flux density
within the circle of the radius ac or even than the assumption of the effective
uniform heat flux density ge within the circle of the radius ae. In the last case,
only the mean temperature within the circle is calculated exactly, whereas
the temperature distribution may be inaccurate. The influence of the param-
eter b, describing the Gaussian function (see Eq. (27)), on the distribution
of the temperature increase in the heat-sink is shown in Fig. 5.

A more general case of the laser beam induced temperature rise in a semi-
infinite solid has been analysed by Lax [12]. The solution for a general laser
intensity distribution is specified for the case of a Gaussian beam.

7. Conclusions

In this paper the exact formulae for the thermal spreading resistance of the
heat-sink in a light-emitting diode have been derived for two cases:

1) the position-dependent spreading resistance,

i) the mean spreading resistance.

The problem has been solved by means of the Hankel transform for two cases
of distributions gs3{r) of the heat flux flowing into the heat-sink:
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1) the uniform heat flux density within the given circle and the zero flux
outside it,

i) the Gaussian shape of the heat flux density.

The calculation method for the effective, uniform heat flux distribution
has been shown.

Appendix

The integrals useful in the analysis of the heat-sinking in light-emitting di-
odes [13]:

5521
Jocp+HIp(X)dx = Xp+lIp+1(X), (Al)
3.461.3
" e nl (A2)
| X ~X20X 2t P> o>
6.561.17
] dx raTey) . << u—dr
xu-a 2u-gagru+r 11|
r-¥5+2
(A3)
6.575.2
J oy X = Ar(n+m) , n+m >0
2n+rrr(\n + m+ 7} W_)_? r (m+ 1
(Ad)
6.574.2
J Jn(at)Jm(at)t~Idt
(AS)

—r+m +1+1j norono1 o1\ n—Fn‘l‘-ll'l‘lj

7 — Optica Applicata XIV/3/84
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6.574.1

u

J an(at amiotyt-tet

oty M r(n+1)
% A\ n+m—+1 n—m—|+1_; 9+ 1j 21
2 7 2
n+tm—+1>02 —1,0<a<b (Af
6.618.1
[00]
J* exp (—ax2)In(bx) dx
n> -1 (A7)
6.631.1
3 @rexp( —ax3In(bx)dx
0
In m 1\
or| j+m+1 1
2>+Halwi+ yr (i + 1) 2 » W 4a.).

a>0 m+w> —1, 6>0 (A8)

6.631.4

J XN p{ —ax)2) n{bx)dx = (03)3>+|'9XP|| 2V 5S> D>
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MpoLiecc TensooTBO/A B 3/EKTPOMIOMMHECLIEHTHBIX AM0aaX

B cTaTbe MpoussefeH aHa/M3 pacripedesieHnst TensoThl B KOPMyce MPUG0POB C LIMHAPUYECKONA CYMMe-
TpUeid, 0COBEHHO 3/IEKTPO/IIOMUHECLIEHTHbBIX AMOA0B C MOBEPXHOCTHOM 3muccreli. Ha ocHoBe 3Toro aqa-
M3a BbIBEfEHbI 3aBMCUMOCTY, OMpPEeAesisitolmMe TEPMUUECKOE COMPOTUB/IEHVE KOPryca: TepMUYecKoe
COMPOTUB/IEHVE, KOTOPOE 33aBMCUT OT TMOMIOXEHUS, a TaKKe CPefHee TEPMUYECKOe COMPOTMBIEHUWE, A/si
asyx C/ly4aeB: a) 04HOPOAHOIO TEM/I0BOro NMoToKa, MPOHMKAIOLEro B KOPMYC Yepes Kpyr C paauycom ae,
a Tarke 6) rayccoBoro pacrpeseneHnsi NI0THOCTM 3TOro NoToka. PelleHue ypasHeHVs! TeN0npoBOAHOCTU
noslyyeHo A/ist 060MX C/lyuaeB C MOMOLLbI0 NMpeobpa3oBaHus MaHkens. MpeacTasseH, KpoMe TOro, MeToj
onpeseneHns 3(EKTMBHOIO 04HOPOAHOMO pPacrpeae/ieHnst MAOTHOCTU MOLLHOCTU 06CYXKAAEMOro Te-
NI0BOr0 MOTOKA.

MepeBena Manro>kaTa Xengpux



