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In this paper a new type of a geodesic lens, of which axis of rotational symmetry is
parallel to the planar thin film waveguide has been proposed. In particular, the method
of evaluation of a parallel beam of rays passing through the particular type of a geo-
desic lens has been proposed and the results of numerical calculations have been pre-
sented. This lens is created by rotating the curve (generating curve) of the forms —f{v)
= o (I—Vv)112 where z — axis of symmetry (axis of revolution), v—normalized dis-
tance of surface point with the axis, o — constant factor.

1. Introduction

In the papers [1-6] the theoretical principles and practical realizations of geo-
desic lenses with axis perpendicular to the plane of waveguide have been examin-
ed. For this type of lenses the change of the beam width is not possible. This
follows from the principal formulae presented, for example, in [6].

Let a rotational surface be given by parametric equation t(u, v) (see Fig. 1):

V €O0S u
r vsinu (1)
Ne

where v —distance of surface point with the «-axis lying at the plane of wave-
guide, u —angle of rotation measured from positive direction of a?-axis, f(v) —
function of ~-parameter (the so-called generating curve [1]).

The trajectories of rays falling onto this surface and passing throught it
satisfy the system of differential equations
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where f'(v) and f"(v) are the first and second derivatives of f(v), respectively.
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The first square form of surface (1) (if both index of refraction and thickness
of guided film are constant) is written as follows:
<2 = 2dw2+ (1+/'2do2, 3)

where s — arc length. For the sake of simplicity, the index of refraction of
guided film has been assumed to be unity.
Moreover, according to the well known Clairaut's theorem we have

vsina = C, (4)
and from the first equation in (2), we obtain

- o ©)

where a —angle between the meridian line (line u —const) and the geodesic
line (the ray), C —constant.

Fig. 1. Geodesic lens: «-axis of symmetry, a? «-plane of waveguide, curve «-light ray

The light ray parallel to the «-axis (Fig. 1) falls on the geodesic lens at the
point u = 0, v = v0f and leaves that lens at the point u = a, v = v,,. The func-
tion f{v) can be chosen so that v,,Iv0be equal to the prescribed value and that
the exit ray be parallel to the «-axis.



Geodesic lens of rotational symmetry ... 191
2. Detailed formulae
We have examined, in particular, the geodesic lens created by rotation of the
generating curve f(v) of the forms
fi{v) = M I-fl)12 for 0< O, (6)
f2{v) = a2(l-v)12 for 2> O,

where axand a2 are constant factors and the values of parameter v satisfy the
inequality 0< v< 1.
In view of these assumptions the egs. (2) take the following form

du 2 du dv _
ds2 v ds ds
dv  4r1—v) 1du\? a\ L dv\2 )

Us2 ~ 4:(I-v)+a™\ds2} + 2(l-o0)[4(I-i?)+af] Ids’) = °’

fori —1, and i = 2.

In order to examine the course of light rays by solving the egs. (7), the values
of du/ds and dvjds at the points=0(w =0, ® =t f g should be calculated. This
can be done as follows: From (4) and (5) we obtain (for 8 = 0)

(du\ G sina0
ds)o ~ v V0 A

Assuming that the tangential component of a ray direction vector, with respect
to the lens boundary, preserves its value after refraction on line u = 0 (lens
boundary) we can write (see Fig. 1 and [6]):

a0 =50. )

Cosine of angle dOmay be evaluated as the inner product of the ray direction
vector LO{0, 0,1} and tangential vector to the lens boundary

i, o/}, (10)
© {i, o/;}
This yields
_ 1 _
sma,, = = smao, (11)
v'l+zr

By combining (8) and (11) we obtain the first initial condition

Idu\ 1
o VOVI+fo2
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therefore, in particular with respect to (6), we have

ldu\, _ 2/ I-vO0

13
Vds)o w0 X 4(1—\)+ ai - 13)
The second initial condition can be obtained from (3) and (13):
ldv\ /', (14)
Uur/o i+ /2"
in our case we have
ldvi _  2axX\—0 (15)

\dsjo  4:(I-vO)+al *

In order to determine the direction of a ray leaving a lens at the point u = 0,
Vv = vnwe can use the relations similar to (8) and (9), namely:

a, = a* (16)

du\ G sinart (17)

where anand are the angles between the ray and the lens boundary (line u = n)
before and after the refraction of the ray on line u = n, respectively, (Fig. 1).

The unit vector t, tangential to the line u —n can be expressed by the
formula similar to that for the vector t0 (1), i.e.

T Vitfam o)
and, in our case we have
(= VI~ (18)
Vi(i-v,,)+4 2 1’

x and z components of the vector t,, are sin 0 and cos 0, respectively, where the
angle 0 means the angle between vector tnan «-axis (Fig. 1).

This fact and relations (16) and (17) allow to determine the coordinates of
the unit direction vector Lnin x, y, z system:

L,x=cos sin0—sin cosO,
L* = (19)
L,, = coscf£cosO-fsina”sinO0.
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3. Numerical results

Numerical evaluations of the ray trajectories have been made for several values
of the coefficients axand a2. For ax = -1/2 ~3 the results have been illustrated
both graphically (Fig. 2) and numerically (Table 1). The results of the compu-
tations for ax = —|/3", a2 =1/2 Vs are presented in Fig. 3 and in Table 2.

Fig. 3. Top view of ray trajectories for lens with generating curve fx{v) = —Vz (1 —v)112

(for z< 0), and /2 = 72"’\3(1—V)J_|2 (forz> 0); 1-v0= 0.1, 2-v0= 0.2, 3-vQ= 0.3

4. Conclusions

A new type of geodesic lens has been presented. Collimated beam preserves
the collimation after passing through these lenses. Moreover, in second example
the beam changes its width. The beams leaving these lenses are uncorrected.
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Table 1. Results of computations Table 2. Results of computations for lens shown
for lens shown in Fig. 2 in Fig. 3

Number of vn Lre Number of

the ray the ray

in Fig. 2 in Fig. 3« v, 4 I'm

1 0.1 0.10331 0.999837 1 0.1 0.07762 0.77620 0.993866
2 0.2 0.19271 0.999946 2 0.2 0.15545 0.77727 0.998814
3 0.3 0.30181 0.999521 3 0.3 0.23584 0.78612 0.999639

In order to obtain the perfect geodesic lens with prescribed change of beam
width a suitable continuous change of the coefficient a{in the function f(v) should
be introduced. An alternative way is to inspect another form of the function
f(v). These problems will be considered in the next papers.
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[Ceope3nyeckas /inH3a C OCbl BpalieHUs CUMMETPUMN, napanneanoM HanpaB/1IEHNIO
pacnpocTpaHEHNA CBETa

MpefoXeH HOBbIA TN reofe3nyecKoli NIMH3bI, 0Cb BPaLLEHWS CMMETPUU KOTOPOW NapasnnenbHa nsoc-
KOCTW BOJIHOBOAA. B yacTHocTw, paspaboTaH MeTo/ nepecyéTa napasfieslbHOro nyyka syyeid yepes crie-
LManbHOro TuMna /IMH3Y, a Takoke NpYBeAeHbI pe3y/bTaTbl PacyéToB. Ta NMH3a CO3[aéTCA MOCPEACTBOM
BpaLleHna Kpmeoli Buga: r = /(y) = a(1—)12, rge r —ocb BpaLLeHns, Yy — HOpMasnin3oBaHHOe paccTo-
AIHME TOYKN KPUMBOWA OT OCW, & — MOCTOSIHHBIA KO3(PhULIEHT.



