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Integral diffraction efficiency of amplitude holograms

Tadeusz Lipowiecki

Technical University of Radom, Radom, Poland.

The problem of Integral Diffraction Efficiency (IDE) of holograms is discussed. It is
shown that IDE depends not only the exposure conditions in hologram processing,
but also on the statistical properties of the recorded information waves. By applica-
tion of an adequate large signal approximation of amplitude vs. exposure characte-
ristic Ta—H possibility of achieving maximum IDE is discussed. Experimental IDE
measurements of amplitude holograms of randomly diffusing objects are presented.

1. Introduction

The problem, how to achieve an efficient holograms of high quality, is not a new
one. There exists a lot of theoretical works in which the nonlinear properties
of recording media, the influence of the information to reference power density
ratios, and the course of other factors, which eventually can decide upon the
final quality parameters of holograms are discussed. Unfortunately, it is
difficult to find in this flood of literature some papers treating the influence of
the statistical properties of the registered information waves upon diffraction
efficiency of holograms.

This report concerns the problem, how the statistical properties of informa-
tion waves affect the diffraction efficiency of amplitude holograms and gives
some practical directions according to proper choice of exposure parameters
during processing of the amplitude holograms.

2. Diffraction grating with sinusoidal amplitude profile

Let us consider at first the most simple example: two coherent plane waves
with amplitudes ux and u2, wavelength Aand parallel electric vectors, propa-
gate and interfere in free space (fig. 1). A spatial stationary power density
distribution because of interference effects arising in the space can be described
in the plane 8 in the direction X, as

PE = poy [ul + ul+2uluZco8{2nfxx+<pliX, D

where zv —wave impedance of the free space,
412 — relative phase shift between the waves in the point x = 0,
fx — spatial frequency of interference fringes in the plane 8, equal to

sinag—sina2
fx = A (2)
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where axand a2are relative angles between propagation directions of the waves
and the normal vector to the plane S, respectively. In our case, the sign of a2
IS negative.

Fig. 1. Two interfering coherent plane
waves

If we reduce the distribution (1) with respect to the power density of the
wave %

and introduce the relative value of the amplitude u2

£= @
then we get a relative power density distribution in the plane S
p(x) —P(x)/P1= | + £2+ 2|cos(2nfxx + (f2). ®)

Suppose we have at our disposal an ideal linear medium which registers the
power density distributions and satisfies the following conditions:

Ta(H) = 1- — in the region 0< H < Hc W
- C .
Ta(H) =0 in the region H> Ec

Because of a linear relation between the exposition H (X) and the power density
P(x)

H(x) = P(X)t, O
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t being the exposure time, it is possible to determine such a value of t that the
“cut-off” value Hc would correspond to the defined values of power densities.

So, let us determine such a value of the exposure time which allows the best
use of the recording possibilities of our ideal medium. As can be seen from fig. 2,

the optimal conditions occur if Hc corresponds to the value of p{x) = 4. Now,
we can write the relation between Ta and p @)

Ta[] = ®)
Putting (5) into (8) we get finally
Taf) 1= —i COS(2*/*+7?,,). ()

Such a periodical structure is called a sinusoidal amplitude diffraction grating.
The diffraction on the sinusoidal amplitude structure occurs in O-order and
+1-st orders only. The oscillating component in the relation (9) is responsible
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for the power distribution into the +I-st orders of the diffracted waves. The
amplitude Ta of this oscillating component consists of two equal amplitudes,
responsible for the amplitudes of +1-st and -1-st order waves

dao

From this relation we can simply define the power diffraction efficiency of an
ideal amplitude grating with sinusoidal profile

V+i o= rj-i o= (EM)2 = £2 ab

If we assume the highest possible value of |max = 1, which corresponds to the
total utilization of the recording possibilities of the linear medium, we get
the maximal possible value of the diffraction efficiency, which can be obtained
in the above assumed ideal conditions

W = 1/16 = 6.25% a2

It is of interest in many publications the value (12) is considered to be as the
maximal possible for obtaining the value of diffraction efficiency of amplitude
holograms.

Let us look now at the situation infig. 1 from “holographic’ point of view.
We can treat the waves uxand u2as reference and information waves, respecti-
vely. The quantity |2 represents the relative power density of the information
wave. On the other hand, the power diffraction efficiency of such a sinusoidal
profile hologram depends linearly on the same value of 12 In conclusion we see
that there is a linear relation between the power of the information wave and
the power of the diffracted wave, provided that recording is linear.

3. Local and integral diffraction efficiencies

Let us consider one of the most typical examples of holographic records (fig. 3).
A surface of an object 0 illuminated by coherent radiation diffuses randomly
this radiation; hence every point of the surface may be treated as an elementary
source of a coherent spherical wave with random amplitude and phase. The
whole assembly of the elementary waves generates an information wave u,
which is not so homogeneous with respect to the amplitude and phase distribu-
tions, as in the case of plane or spherical waves. Power density distribution of
the information wave possesses characteristic speckle structure, in which
there exist zones both with much higher and much lower power densities than
the average power density of the wave. Statistical properties of the power
density distribution in coherent waves possessing speckle structure were tested
in details and published in [1]. If we neglect the influence of the limited spatial
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frequency spectrum of the speckle structure on the smallest dimension of
speckles, we can tell that the relative integral surface As of the hologram H,
illuminated by the relative power densities contained in the interval q p-fAp,
fulfils the relation [1]

e+eA
As o [1—exp(—Ap)lexp(—p), 13
where
e=PIP g (%))

P —Ilocal power density of the information wave in the hologram plane,
P& —average power density of the information wave in the hologram plane.

Fig. 3. A scheme of a holographic record
of arandomly scattering object: O — obje-
ct, H —hologram plane, u\ —illumina-
ting wave, u —information wave, U0
—reference wave

The relation (13) enables to answer at once the following exemplary ques-
tions : what part of the relative integral hologram surface is illuminated by the
information wave in two intervals of power densities, i.e. in 0-10 [XW/cm2
and 10-30 [iW/cm2 if the hologram plate is illuminated by randomly diffused
coherent wave with average power density equal to 10 [xXWW/cm2? For the above
data the corresponding values of pand Apare equal to 0,1 and 1, 3, respectively.
From the relation (13) we obtain at once the values of As equal to 63.2%and
31.8%.

Let us consider the realistic situation in the hologram plane, when we record
the information wave with high dynamics of amplitude changes, like in the
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case when the illuminating wave is scattered randomly by an object surface.
There will exist zones in the recording plane where local values of the relative
amplitude £ are higher than unity and nonlinear effects will appear. The situ-
ation like in fig. 2 is shown in fig. 4, but the possible values of £ taken into
consideration are higher. Becucse of f three regions can be distinguished:

Fig. 4. Interaction between chara-
cteristic Ta—H and the relative power
distribution in the hologram plane at
higher levels of signals2

1. The region, where 0< £< 1, i.e., as it was mentioned above, the linear
region of recording in which local power densities of the information wave
depend linearly on local diffraction efficiencies.

2. The region, where 1< £< 3, here there occur nonlinear effects, i.e. the
local values of the diffraction efficiency at first slightly increase with £, then
they tend to zero.

3. The region, where £>3; the recording does not occur and the corresponding
zones of the hologram represent black spots, limiting the effective hologram
aperture.

It is evident that each of the above regions corresponds to an appropriate
part of the hologram surface. Relative values of these parts depend not
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only on the exposure conditions, like the exposure time and the ratio M, hut
on the statistical properties of the information wave, especially on its power
density distribution.

Let us discuss the question which parameters affect the component of Tal
which decides upon the first order diffraction. As we can see from fig. 2, one of
these parameters is the slope of the characteristic Ta—H. This slope depends
on the relation between coordinates H and p{oc), and the latter, in turn, depends
on the product of the reference wave power density P0Oand the exposure time
te, i.e.

HO = P Qe. (15)

If we want to realize the conditions as in fig. 2, the value HOshould be chosen
in such a way that at the exposition with the reference wave only we ought
to get

Te(Ho= [Ta(H)f = 0.5625. (16)

Finally, we can treat the value HO as the first argument, which decides upon
the first-order diffraction amplitude component of the amplitude transmittance,
e TH.

Other parameter which affects the value of Tal is the relative amplitude
£ pf the information wave. In linear region Tai depends linearly on £, in nonli-
near region Ta decreases with £ tending to zero. The function Tai(HO, i) can
be written explicitely, if we choose the value HO and assume a mathematical
description of the characteristic Ta—H. The local value of the diffraction
efficiency of the hologram will be then

£) = [Tai(HO£)?. 17)

Now we must take intoaccount the statistical properties of the information
wave. If the function F(qg) describing the statistical power density distribution
of the information wave is known, then the relative integral surface of the
hologram, illuminated by the information wave in the range of relative power
density g g+ dQ, is

ds=F{QdQ (18)

Let us denote the value M by the ratio of the average power density of the
information wave Pav to the power density of the information wave PO

Jf=P av/PO. (19)
If we notice that

£2= (uluf = P/PO, @0)
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then we can write (14) as

e  =FIM 6D
Becuase

dg = ~Mm (22)
we get

ds=~F (?21M)k- 23)

Finally, the integral diffraction .efficiency for the amplitude hologram will
be given by the relation

oo

M) = — j [Tai(HO, F(PIM)idS(24)

4. Results of mathematical calculations of an ideal example

There were made mathematical calculations of an ideal example. The following
assumptions were made:

1. The recording medium is an ideal one and fulfils the condition (6).

2. The relation between coordinates H and p(x) obeys the condition shown
in figs. 2 and 4.

3. The information wave being produced by an ideal randomly scattering
object, the power density distribution of the wave fulfils the relation

ds/dg = F(g) = exp(—g). (25)

As an additional condition it has been assumed that the resolving power
of the recording medium does not limit the spatial frequency range.

At first the relative surface distribution of the hologram vs. the ratio M
and the relative amplitude | were calculated. The results are listed in table 1.

Eflble 1. Therelative distribution in percentages of the hologram surface vs. the ratio M and the relative amplitude
the information wave {

vog 0-1  1.0-12 1.2-1.4 1416 1.6-1.81.8-2.0 2.0-2.2 2.2-2.4 2420 2.6-2.8 2.8-3.0  1-3

0.0625  100.00

0.1111  99.988 0.011  0.001 0.012

02500 981170 1517 0.276 0.036 1.829
05000 86467 7.920 3.649 1387 0444 0.026 131426
06667  77.687 10781 6.246 3.137 1374 0527 0178 0.053 0.014 221310
08000 71350 121121 7.901 4553 2.334 1.068 0438 0098 0053 0.016 28.582
10000 63212 13.095 9.607 6.355 3.814 2085 1041 0514 0199 0.077 36787 QQ0L

1.2500  55.067 13.333 10.754 7.947 5412 3411 1995 1.085 0549 0.259 0.114 44.859 0.074
15000  48.691 13.031 11.226 8.922 6.608 4.587 2978 1.818 1.105 0.566 0.289 51.130 0.179
1.6000  46.474 12,869 11.281 9.186 6.990 4.991 3353 2123 1.270 0.718 0.384 53.165 ?Lﬁﬂi
2.0000  39.347 11.978 11.144 9.727 8.014 6.256 4.641 3.279 2.209 1.421 0.873 59.542

3.0000 28.323 9.799 9.830 9.444 8.654 7.565 6.440 5268 4.152 3.177 2.353 66.682 4.979
4.0000 22120 8112 8505 8535 8.243 7.698 6.968 6.127 5.241 4.366 3.546 67.339 10.540
6.0000 15380 5957 6.554 6.862 7.705 6.950 6.705 6.330 5.889 5337 4.750 63.039 22.313
8.0000 11.750 4728 5.257 5656 5917 6.045 6.046 5.932 5719 5425 5.066 55791 32.465
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The calculations of IDE were realized in two regions, separately: in the
whole linear region and in the subregions of nonlinear region. Taking account
of the 2-nd assumption we can treat the parameter HOas to be fixed (known),
and therefore the IDE may be considered as the function of the ratio M only.
The expression for IDE can be written as a sum t> two integrals

Vint(M) = 2) [Tai(Z)TexV(-2 I M )&
0

+ ~f/l fr (26)

The first integral corresponds to the linear region, the second —to the nonli-
near one. Introducing the variable (21) and the relation (10) we get the relation
for the partial IDE of the linear region

ee*P(-e) =~[I-(I+™)e*p(-~)] (27
It is worth to notice that

lim Vint,.,k = UmVint(M) = M/16. (28)
m-=o

M -*.0

As it may be seen from table 1, the integral relative surface of the nonlinear
region does not exceed 2 %even at the ratio M —0.25, and therefore the rela-
tion (28) represents a total IDE at sufficiently small values of the ratio M.
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The procedure of calculations of the partial IDE values in nonlinear region
is shown in outlines. Let us look at fig. 5, where the characteristic Ta—H is
approximated by the left branch of the m-order parabole

Ta= 1 L(He-Hy», if0<S <Hc

(29)
Ta= O, if H> Hc
The cut-off angle ft is
— 1+7?~Vc
ft = arccos of (30)

Applying the conventional Fourier procedure we can determine the first-order
diffraction component of the amplitude transmittance pulse Tap

(MW - T alTapp. (31)
In our case, corresponding to m = 1,
2ft —sin2# 22

°IPW = ji(l—cos#) ’

The value of Ta can be determined by substituting (1—)2 into normalized
eg. (29). In our case such normalization is obtained when Hc = 4, and Tavax = 1.
Finally

Tai(i) = Tapp(")al(h[#(f)]. (33)

Substituting (33) into the second integral of (26) and taking appropriate limits
of the integral, we get the expressions for the partial IDE-s in the subregions
of the nonlinear recording region. All numerical results are gathered in table 2.

Graphical representations of the results given in table 2 are shown in fig. 6.
The maximal value of the total IDE, equal to 4.20 % corresponds to Mot = 1.54.

Table 2. The distribution of the partial IDE-s in percentages ys. the ratio M and the relative amplitude I of the
information wave

m =1

\ | 0-1 1.0-1.21241414-161.6-1.81.8-2.02.0-2.22.2-2.42.1-2.6 2.6-2.8 2.8-3.0 1-3 0-3

0.0625 0.3906 0.3906
0.1111 0.6944 0.6944
0.2500 1.4194 0.1086 0.0190 0.0022 0.1298 1.5492
0.5000 1.8563 0.5668 0.2516 0.0841 0.0220 0.0009 0.9254 2.7817
0.6667 1.8424 0.7715 0.4306 0.1902 0.0680 0.0190 0.0041 0.0007 0.0001 1.4842 3.3266
0.8000 1.7768 0.8674 0.5447 0.2761 0.1155 0.0386 0.0102 0.0013 0.0003 1.8541 3.6309
1.0000 1.6515 0.9371 0.6623 0.3854 0.1888 0.0753 0.0242 0.0067 0.0011 0.0001 2.2810 3.9325
1.2500 1.4938 0.9541 0.7414 0.4819 0.2679 0.1231 0.0464 0.0141 0.0030 0.0003 2.6322 4.1260
1.5000 1.3580 0.9325 0.7739 0.5410 0.3271 0.1656 0.0693 0.0236 0.0060 0.0008 2.8398 4.1978
1.6000 1.3020 0.9209 0.7777 0.5570 0.3460 0.1802 0.0780 0.0276 0.0069 0.0010 2.8953 4.1973

2.0000 1.1275 0.8572 0.7682 0.5898 0.3967 0.2258 0.1079 0.0426 0.0120 0.0019 0.0001 3.0022 4.1297
3.0000 0.8352 0.7012 0.6777 0.5727 0.4284 0.2731 0.1498 0.0685 0.0226 0.0043 0.0001 2.8984 3.7363
4.0000 0.6625 0.5805 0.5863 0.5174 0.4081 0.2779 0.1620 0.0796 0.0285 0.0059 0.0002 2.6464 3.3089
6.0000 0.4682 0.4263 0.4518 0.4161 0.3814 0.2509 0.1559 0.0823 0.0320 0.0072 0.0002 2.2041 2.6723
8.0000 0.3596 0.3383 0.3624 0-3430 0.2929 0.2182 0.1406 0.0771 0.0311 0.0073 0.0003 1.8112 2.1708
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<otal integral diffraction

Fig. 6. Relation of the partial and total IDE-s vs. the ratio M by linear approximation
of the Ta—H characteristic: m = 1

.
2 £

00500600801 01502 03 040506 081 15 2 3 45S 810
ratio of power densities M
Fig. 7. Relation of the partial and total IDE-s vs. the ratio M by parabolic approximation
of the Ta—H characteristic: m = 2
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The calculations were performed for the approximation of the Ta—H cha-
racteristic at m = 2 and at the same normalization conditions, as in the case
m = 1. Then the IDE reaches its maximal value equal to 4.13 %at Mot = 1.00.
Graphical illustrations of the calculation results at m = 2 are shown in fig. 7.

5. Experimental IDE optimalization of amplitude holograms

Mathematical considerations presented in chapter 4 show the physical sense
of the phenomena which occur in the recording plane, but the calculated values
of IDE and M are related to the assumed idealistic shapes of Ta—H characte-
ristics. The real values of IDE-s and M ratios can be obtained only experimen-
tally. In this chapter the results of experimental IDE optimization of amplitude
holograms are presented.

In order to obtain high reproducibility of measurements and eliminate
outside influences, the following conditions were assumed:

1. The information wave was obtained by application of a scattering plate,
fulfilling the Lambert law.

2. The geometric configuration of the recording assembly assured the
condition, that the maximal space frequency of the recorder interference field
was at leat 10 times lower than the resolving power of the recording medium.

3. Special antishock and antivibration pneumatic suspension was applied.

4. Temperature and humidity in the laboratory room were stabilized.

5. Uniform conditions in processing of recording plates were strickly kept.

6. All the recording plates had the same serial production number.

As a recording medium the Agfa-Gevaert 10E75 plates were applied. As an
object a scattering glass plate limited by a 6 mm circular aperture was used.
In IDE measurement the reverse configuration of the reference wave was
applied and in the image plane of the object the integrating photosensitive
element was placed, its aperture being limited by the same 6 mm diaphragm.
Moreover, the ratio of the average power transmittance Teto the power trans-
mittance of a non-exposed plate Ted was measured.

a b e

Fig. 8. Dependences of hologram dfifraction efficiencies rj and relative power transmit-
tances Te/Te» vs. exposures H (arbitrary units), for following values of the ratio M: M
=1:2 (8, M=1:1(b), M=2:1 (c)
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w
v

Fig. 9. The diagram vs. the power density ratio M, composed of the values of jm& and
{Te/Te0)0pt, interpolated from seventeen diagrams like the ones presented in fig. 8

The results obtained for some values of the parameter M are shown in fig. 8.
The H coordinates in the diagrams are relative ones. The value of “wax and the
corresponding value (Tc/Td)gxt were determined from each of seventeen dia-
grams rj—E. These values were plotted vs. the ratio M —final diagrams are
shown in fig. 9. The maximum-maximorum of the 1j value is equal to 3.67 %
and occurs, when Mot = 0.7, the relative power transmittance (Tc/TeDgx
= 0.35. The results obtained are in excellent agreement with everyday hologra-
phic practice.
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WHTerpanbHbllii AMGPaKUMOHHBLIA KO3WMULMEHT MOME3HOro [elCTBUS aMMINTYAHbIX
ronorpaMm

B cTaTbe 06CY>XfeHbI MPO6/IEMbI, CBS3aHHbIE C WHTErpasibHbIM KO3(PMLMEHTOM MONME3HOTO [AeicTBUA
aMMIMTYAHBIX FoslorpaMm. JloKasaHo, YTo K.M.A. 3aBUCTY He TO/IbKO OT YC/I0BMIA SKCTIO3MLMM FO/10r pamMbl,
HO TaKke OT CTaTMCTMYECKMX CBOWCTB PErUCTPMPYEMOIi MH(hOPMAaLWOHHO BO/HbI [pUMEHSS COOTBe-
TCTBYHOLLYHO A5t 6OMbLUMX CUTHA/IOB annpPOKCUMALMED XapaKTepUcTMK Ta — A, 6bI0 JoKas3aHo Hamume
MaKCUMa/IbHOr0 3HaYeHUs1 UHTErpasibHOr0 AMGPaKUMOHHOIO KoathmUeHTa nosesHoro aeiicteus. Mpu-
BefleHbl 3KCMEPVMEHTa/IbHbIE Pe3y/ibTaTbl, KacaroLLMECS W3MEPEHWUIA MHTErpasibHoro AuhpakLMOHHOIo
Ko3thhMLMEHTA MOIE3HOMO AEMCTBMS aMNIUTYAHbIX NporpamMm Angy3HO paccemBatoLLmMX 06beKTOB, B Gy-
HKLUMW  YCTIOBUIA  3KCMO3WILWN.



