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Integral diffraction efficiency of amplitude holograms

T a d e u s z  L i p o w i e c k i

Technical University of Radom, Radom, Poland.

The problem of Integral Diffraction Efficiency (IDE) of holograms is discussed. It is 
shown that IDE depends not only the exposure conditions in hologram processing, 
but also on the statistical properties of the recorded information waves. By applica­
tion of an adequate large signal approximation of amplitude vs. exposure characte­
ristic Ta — H possibility of achieving maximum IDE is discussed. Experimental IDE 
measurements of amplitude holograms of randomly diffusing objects are presented.

1. Introduction

The problem, how to achieve an efficient holograms of high quality, is not a new 
one. There exists a lot of theoretical works in which the nonlinear properties 
of recording media, the influence of the information to reference power density 
ratios, and the course of other factors, which eventually can decide upon the 
final quality parameters of holograms are discussed. Unfortunately, it is 
difficult to find in this flood of literature some papers treating the influence of 
the statistical properties of the registered information waves upon diffraction 
efficiency of holograms.

This report concerns the problem, how the statistical properties of informa­
tion waves affect the diffraction efficiency of amplitude holograms and gives 
some practical directions according to proper choice of exposure parameters 
during processing of the amplitude holograms.

2. Diffraction grating with sinusoidal amplitude profile

Let us consider at first the most simple example: two coherent plane waves 
with amplitudes ux and u2, wavelength A and parallel electric vectors, propa­
gate and interfere in free space (fig. 1). A spatial stationary power density 
distribution because of interference effects arising in the space can be described 
in the plane 8 in the direction x, as

-P(®) = ~ ~  [ul + ul+2u1u2co8{2nfxx+<pli)~\,
AZV

(1)

where zv — wave impedance of the free space,
<p12 — relative phase shift between the waves in the point x =  0, 
fx — spatial frequency of interference fringes in the plane 8, equal to

f x  =
sin cq — sin a2

A (2)
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where ax and a2 are relative angles between propagation directions of the waves 
and the normal vector to the plane S, respectively. In our case, the sign of a2 
is negative.

Fig. 1. Two interfering coherent plane
waves

If we reduce the distribution (1) with respect to the power density of the 
wave %

and introduce the relative value of the amplitude u2

£ = (̂ ) 

then we get a relative power density distribution in the plane S

p(x) — P(x)/P1 = l  + £2 + 2|cos(2 nfxx +  (p12). (5)

Suppose we have at our disposal an ideal linear medium which registers the 
power density distributions and satisfies the following conditions:

Ta(H) =  1 -  —  in the region 0 < H < Hc
-“ c · W

Ta (H) = 0  in the region H > E c

Because of a linear relation between the exposition H (x) and the power density 
P(x)

H(x) =  P(x)t, (7)
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t being the exposure time, it is possible to determine such a value of t that the 
“cut-off” value Hc would correspond to the defined values of power densities. 
So, let us determine such a value of the exposure time which allows the best 
use of the recording possibilities of our ideal medium. As can be seen from fig. 2,

the optimal conditions occur if Hc corresponds to the value of p{x) = 4. Now, 
we can write the relation between Ta and p (a?)

Ta[f>{x)] = (8)4

Putting (5) into (8) we get finally

Ta(x,f) ■= —i  cos(2*/*+?„). (»)

Such a periodical structure is called a sinusoidal amplitude diffraction grating. 
The diffraction on the sinusoidal amplitude structure occurs in 0-order and 
±l-st orders only. The oscillating component in the relation (9) is responsible



212 T. Lipowiecki

for the power distribution into the ±l-st orders of the diffracted waves. The 
amplitude Ta of this oscillating component consists of two equal amplitudes, 
responsible for the amplitudes of +l-st and -1-st order waves

From this relation we can simply define the power diffraction efficiency of an 
ideal amplitude grating with sinusoidal profile

If we assume the highest possible value of | max = 1, which corresponds to the 
total utilization of the recording possibilities of the linear medium, we get 
the maximal possible value of the diffraction efficiency, which can be obtained 
in the above assumed ideal conditions

It is of interest in many publications the value (12) is considered to be as the 
maximal possible for obtaining the value of diffraction efficiency of amplitude 
holograms.

Let us look now at the situation in fig. 1 from “holographic” point of view. 
We can treat the waves ux and u2 as reference and information waves, respecti­
vely. The quantity | 2 represents the relative power density of the information 
wave. On the other hand, the power diffraction efficiency of such a sinusoidal 
profile hologram depends linearly on the same value of I2. In conclusion we see 
that there is a linear relation between the power of the information wave and 
the power of the diffracted wave, provided that recording is linear.

3. Local and integral diffraction efficiencies

Let us consider one of the most typical examples of holographic records (fig. 3). 
A surface of an object 0 illuminated by coherent radiation diffuses randomly 
this radiation; hence every point of the surface may be treated as an elementary 
source of a coherent spherical wave with random amplitude and phase. The 
whole assembly of the elementary waves generates an information wave u, 
which is not so homogeneous with respect to the amplitude and phase distribu­
tions, as in the case of plane or spherical waves. Power density distribution of 
the information wave possesses characteristic speckle structure, in which 
there exist zones both with much higher and much lower power densities than 
the average power density of the wave. Statistical properties of the power 
density distribution in coherent waves possessing speckle structure were tested 
in details and published in [1]. If we neglect the influence of the limited spatial

(10)

V + i  =  r j - i  =  ( £ M ) 2 =  £ 2 (11)

W  = 1/16 = 6.25% (12)
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frequency spectrum of the speckle structure on the smallest dimension of 
speckles, we can tell that the relative integral surface As of the hologram H, 
illuminated by the relative power densities contained in the interval q, p-f Ap, 
fulfils the relation [1]

As
e+eA

Q
[1—exp( —Ap)]exp( — p),

where

(13)

e = PIP av, (14)

P  — local power density of the information wave in the hologram plane, 
P&v — average power density of the information wave in the hologram plane.

Fig. 3. A scheme of a holographic record 
of a randomly scattering object : O — obje­
ct, H — hologram plane, u\ — illumina­
ting wave, u — information wave, u0 
— reference wave

The relation (13) enables to answer at once the following exemplary ques­
tions : what part of the relative integral hologram surface is illuminated by the 
information wave in two intervals of power densities, i.e. in 0-10 [xW/cm2 
and 10-30 [iW/cm2, if the hologram plate is illuminated by randomly diffused 
coherent wave with average power density equal to 10 [xW/cm2? For the above 
data the corresponding values of p and Ap are equal to 0,1 and 1, 3, respectively. 
From the relation (13) we obtain at once the values of As equal to 63.2 % and 
31.8%.

Let us consider the realistic situation in the hologram plane, when we record 
the information wave with high dynamics of amplitude changes, like in the
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case when the illuminating wave is scattered randomly by an object surface. 
There will exist zones in the recording plane where local values of the relative 
amplitude £ are higher than unity and nonlinear effects will appear. The situ­
ation like in fig. 2 is shown in fig. 4, but the possible values of £ taken into 
consideration are higher. Becucse of f three regions can be distinguished:

Fig. 4. Interaction between chara­
cteristic Ta — H and the relative power 
distribution in the hologram plane at 
higher levels of signals 1 2 3

1. The region, where 0 <  £ <  1, i.e., as it was mentioned above, the linear 
region of recording in which local power densities of the information wave 
depend linearly on local diffraction efficiencies.

2. The region, where 1 <  £ <  3, here there occur nonlinear effects, i.e. the 
local values of the diffraction efficiency at first slightly increase with £, then 
they tend to zero.

3. The region, where £>3; the recording does not occur and the corresponding 
zones of the hologram represent black spots, limiting the effective hologram 
aperture.

It is evident that each of the above regions corresponds to an appropriate 
part of the hologram surface. Relative values of these parts depend not
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only on the exposure conditions, like the exposure time and the ratio M, hut 
on the statistical properties of the information wave, especially on its power 
density distribution.

Let us discuss the question which parameters affect the component of Ta1 
which decides upon the first order diffraction. As we can see from fig. 2, one of 
these parameters is the slope of the characteristic Ta—H. This slope depends 
on the relation between coordinates H and p{oc), and the latter, in turn, depends 
on the product of the reference wave power density P0 and the exposure time 
te, i.e.

H0 = P 0te. (15)

If we want to realize the conditions as in fig. 2, the value H0 should be chosen 
in such a way that at the exposition with the reference wave only we ought 
to get

Te(H) o = [Ta(H0)f  = 0.5625. (16)

Finally, we can treat the value H0 as the first argument, which decides upon 
the first-order diffraction amplitude component of the amplitude transmittance,
i e· TH.

Other parameter which affects the value of Tai is the relative amplitude 
£ pf the information wave. In linear region Tai depends linearly on £, in nonli­
near region Tai decreases with £, tending to zero. The function Tai(H0, i) can 
be written explicitely, if we choose the value H0 and assume a mathematical 
description of the characteristic Ta—H. The local value of the diffraction 
efficiency of the hologram will be then

£) = [Tai(H0, £)?. (17)

Now we must take into account the statistical properties of the information
wave. If the function F(q) describing the statistical power density distribution 
of the information wave is known, then the relative integral surface of the 
hologram, illuminated by the information wave in the range of relative power 
density q, q +  dQ, is

d s = F { Q)dQ. (18)

Let us denote the value M by the ratio of the average power density of the 
information wave Pav to the power density of the information wave P0

J f = P av/P0. (19)

If we notice that

£2 = (ulu0f  = P/P0, (20)
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then we can write (14) as

e = FIM- (2i)

Becuase

dg = ~Mm ’ (22)
we get

ds = ~ F ( ? I M ) № -  (23)

Finally, the integral diffraction . efficiency for the amplitude hologram will 
be given by the relation

oo

M) = —  j  [Tai(H0, F (P IM) idS.(24)

4. Results of mathematical calculations of an ideal example

There were made mathematical calculations of an ideal example. The following 
assumptions were made:

1. The recording medium is an ideal one and fulfils the condition (6).
2. The relation between coordinates H and p(x) obeys the condition shown 

in figs. 2 and 4.
3. The information wave being produced by an ideal randomly scattering 

object, the power density distribution of the wave fulfils the relation

ds/dg = F(g) =  exp( — g). (25)

As an additional condition it has been assumed that the resolving power 
of the recording medium does not limit the spatial frequency range.

At first the relative surface distribution of the hologram vs. the ratio M 
and the relative amplitude |  were calculated. The results are listed in table 1.

Table 1. The relative distribution in percentages of the hologram surface vs. the ratio M  and the relative amplitude 
of the information wave {

\  £ 0-1 1.0-1.2 1.2-1.4 1.4—1.6 1.6-1.8 1.8-2.0 2.0-2.2 2.2-2.4 2.4-2.Ô 2.6-2.8 2.8-3.0 1-3

0.0625 100.00
0.1111 99.988 0.011 0.001 0.012
0.2500 98.170 1.517 0.276 0.036 1.829
0.5000 86.467 7.920 3.649 1.387 0.444 0.026 13.426
0.6667 77.687 10.781 6.246 3.137 1.374 0.527 0.178 0.053 0.014 22.310
0.8000 71.350 12.121 7.901 4.553 2.334 1.068 0.438 0.098 0.053 0.016 28.582
1.0000 63.212 13.095 9.607 6.355 3.814 2.085 1.041 0.514 0.199 0.077 36.787
1.2500 55.067 13.333 10.754 7.947 5.412 3.411 1.995 1.085 0.549 0.259 0.114 44.859
1.5000 48.691 13.031 11.226 8.922 6.608 4.587 2.978 1.818 1.105 0.566 0.289 51.130
1.6000 46.474 12.869 11.281 9.186 6.990 4.991 3.353 2.123 1.270 0.718 0.384 53.165
2.0000 39.347 11.978 11.144 9.727 8.014 6.256 4.641 3.279 2.209 1.421 0.873 59.542
3.0000 28.323 9.799 9.830 9.444 8.654 7.565 6.440 5.268 4.152 3.177 2.353 66.682
4.0000 22.120 8.112 8.505 8.535 8.243 7.698 6.968 6.127 5.241 4.366 3.546 67.339
6.0000 15.380 5.957 6.554 6.862 7.705 6.950 6.705 6.330 5.889 5.337 4.750 63.039
8.0000 11.750 4.728 5.257 5.656 5.917 6.045 6.046 5.932 5.719 5.425 5.066 55.791

0.001
0.074
0.179
0.3611.111
4.979

10.540
22.313
32.465
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The calculations of IDE were realized in two regions, separately: in the 
whole linear region and in the subregions of nonlinear region. Taking account 
of the 2-nd assumption we can treat the parameter H0 as to be fixed (known), 
and therefore the IDE may be considered as the function of the ratio M only. 
The expression for IDE can be written as a sum t>i two integrals

2 r
Vint(M) =  —  J [Tai(Z)TexV( - ? I M ) №

0

2 r
+  ~M J (26)

1

The first integral corresponds to the linear region, the second — to the nonli­
near one. Introducing the variable (21) and the relation (10) we get the relation 
for the partial IDE of the linear region

e e* P (-e )^  = ~ [ l - ( l + ^ ) e * p ( - ^ ) ] ·  (27) 

It is worth to notice that

lim Vint,., №  = Urn Vint(M) =  M /16. (28)
M -*·0 m - * 0

As it may be seen from table 1, the integral relative surface of the nonlinear 
region does not exceed 2 % even at the ratio M — 0.25, and therefore the rela­
tion (28) represents a total IDE at sufficiently small values of the ratio M.



218 T. Lipowiecki

The procedure of calculations of the partial IDE values in nonlinear region 
is shown in outlines. Let us look at fig. 5, where the characteristic Ta—H is 
approximated by the left branch of the m-order parabole

Ta = Î L (He-Hy»,

Ta = 0,

The cut-off angle ft is

ft = arccos 1 + ?~Vc
2£

if 0 <  S  < Hc 

if H > Hc
(29)

(30)

Applying the conventional Fourier procedure we can determine the first-order 
diffraction component of the amplitude transmittance pulse Tapp

«1 (m)W - T aJTapp. (31)

In our case, corresponding to m = 1,

2ft — sin 2#
°1(I>W = ji(1 —cos#) ’

(32)

The value of Ta can be determined by substituting (1 —I)2 into normalized 
eq. (29). In our case such normalization is obtained when Hc = 4, and Tamax = 1. 
Finally

Tai(i) =  Tapp( )̂a 1(I)[#(f)]. (33)

Substituting (33) into the second integral of (26) and taking appropriate limits 
of the integral, we get the expressions for the partial IDE-s in the subregions 
of the nonlinear recording region. All numerical results are gathered in table 2.

Graphical representations of the results given in table 2 are shown in fig. 6. 
The maximal value of the total IDE, equal to 4.20 % corresponds to Movt =  1.54.

Table 2. The distribution of the partial ID E -s in percentages ys. the ratio M and the relative amplitude I of the  
information wave

m  = 1

\  I 0-1 1.0-1.2 1.2—1.4 1.4—1.6 1.6-1.8 1.8-2.0 2.0-2.2 2.2-2.4 2.1-2.6 2.6-2.8 2.8-3.0 1-3 0-3

0.0625 0.3906 0.3906
0.1111 0.6944 0.6944
0.2500 1.4194 0.1086 0.0190 0.0022 0.1298 1.5492
0.5000 1.8563 0.5668 0.2516 0.0841 0.0220 0.0009 0.9254 2.7817
0.6667 1.8424 0.7715 0.4306 0.1902 0.0680 0.0190 0.0041 0.0007 0.0001 1.4842 3.3266
0.8000 1.7768 0.8674 0.5447 0.2761 0.1155 0.0386 0.0102 0.0013 0.0003 1.8541 3.6309
1.0000 1.6515 0.9371 0.6623 0.3854 0.1888 0.0753 0.0242 0.0067 0.0011 0.0001 2.2810 3.9325
1.2500 1.4938 0.9541 0.7414 0.4819 0.2679 0.1231 0.0464 0.0141 0.0030 0.0003 2.6322 4.1260
1.5000 1.3580 0.9325 0.7739 0.5410 0.3271 0.1656 0.0693 0.0236 0.0060 0.0008 2.8398 4.1978
1.6000 1.3020 0.9209 0.7777 0.5570 0.3460 0.1802 0.0780 0.0276 0.0069 0.0010 2.8953 4.1973
2.0000 1.1275 0.8572 0.7682 0.5898 0.3967 0.2258 0.1079 0.0426 0.0120 0.0019 0.0001 3.0022 4.1297
3.0000 0.8352 0.7012 0.6777 0.5727 0.4284 0.2731 0.1498 0.0685 0.0226 0.0043 0.0001 2.8984 3.7363
4.0000 0.6625 0.5805 0.5863 0.5174 0.4081 0.2779 0.1620 0.0796 0.0285 0.0059 0.0002 2.6464 3.3089
6.0000 0.4682 0.4263 0.4518 0.4161 0.3814 0.2509 0.1559 0.0823 0.0320 0.0072 0.0002 2.2041 2.6723
8.0000 0.3596 0.3383 0.3624 0-3430 0.2929 0.2182 0.1406 0.0771 0.0311 0.0073 0.0003 1.8112 2.1708
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Fig. 6. Relation of the partial and total IDE-s vs. the ratio M by linear approximation 
of the Ta — H characteristic: m = 1
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Fig. 7. Relation of the partial and total IDE-s vs. the ratio M by parabolic approximation 
of the Ta — H characteristic: m = 2
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The calculations were performed for the approximation of the Ta—H cha­
racteristic at m =  2 and at the same normalization conditions, as in the case 
m = 1. Then the IDE reaches its maximal value equal to 4.13 % at Movt = 1.00. 
Graphical illustrations of the calculation results at m = 2 are shown in fig. 7.

5. Experimental IDE optimalization of amplitude holograms

Mathematical considerations presented in chapter 4 show the physical sense 
of the phenomena which occur in the recording plane, but the calculated values 
of IDE and M are related to the assumed idealistic shapes of Ta—H characte­
ristics. The real values of IDE-s and M ratios can be obtained only experimen­
tally. In this chapter the results of experimental IDE optimization of amplitude 
holograms are presented.

In order to obtain high reproducibility of measurements and eliminate 
outside influences, the following conditions were assumed:

1. The information wave was obtained by application of a scattering plate, 
fulfilling the Lambert law.

2. The geometric configuration of the recording assembly assured the 
condition, that the maximal space frequency of the recorder interference field 
was at leat 10 times lower than the resolving power of the recording medium.

3. Special antishock and antivibration pneumatic suspension was applied.
4. Temperature and humidity in the laboratory room were stabilized.
5. Uniform conditions in processing of recording plates were strickly kept.
6. All the recording plates had the same serial production number.
As a recording medium the Agfa-Gevaert 10E75 plates were applied. As an 

object a scattering glass plate limited by a 6 mm circular aperture was used. 
In IDE measurement the reverse configuration of the reference wave was 
applied and in the image plane of the object the integrating photosensitive 
element was placed, its aperture being limited by the same 6 mm diaphragm. 
Moreover, the ratio of the average power transmittance Te to the power trans­
mittance of a non-exposed plate Te0 was measured.

a b e

Fig. 8. Dependences of hologram dfifraction efficiencies rj and relative power transmit­
tances Te/Te» vs. exposures H (arbitrary units), for following values of the ratio M: M 
=  1 :2  (a), M =  1 : 1 (b), M = 2 : 1  (c)
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Fig. 9. The diagram vs. the power density ratio M, composed of the values of rjm&x and 
{Te/Te0)0pt, interpolated from seventeen diagrams like the ones presented in fig. 8

The results obtained for some values of the parameter M are shown in fig. 8. 
The H coordinates in the diagrams are relative ones. The value of m̂ax and the 
corresponding value (Tc/Tc0)opt were determined from each of seventeen dia­
grams rj—E. These values were plotted vs. the ratio M — final diagrams are 
shown in fig. 9. The maximum-maximorum of the rj value is equal to 3.67 % 
and occurs, when Movt =  0.7, the relative power transmittance (Tc/Te0)opt 
= 0.35. The results obtained are in excellent agreement with everyday hologra­
phic practice.
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Интегральный дифракционный коэффициент полезного действия амплитудных 
голограмм

В статье обсуждены проблемы, связанные с интегральным коэффициентом полезного действия 
амплитудных голограмм. Доказано, что к.п.д. зависти не только от условий экспозиции голограммы, 
но также от статистических свойств регистрируемой информационной волны. Применяя соотве­
тствующую для больших сигналов аппроксимацию характеристики Та — Я, было доказано наличие 
максимального значения интегрального дифракционного коэффицента полезного действия. При­
ведены экспериментальные результаты, касающиеся измерений интегрального дифракционного 
коэффициента полезного действия амплитудных программ дифузно рассеивающих объектов, в фу­
нкции условий экспозиции.


