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Effect of a quadratic phase factor on the 
partially coherent far-field diffraction in the 
presence of primary astigmatism
A . K . Gupta, K . Singh

Department of Physics, Indian Institute of Technology, New Delhi-110029, India.

The influence of primary astigmatism has been investigated on the intensity 
distributions in the Fraunhofer diffraction patterns formed by an optical system  
with a circular aperture under partially coherent illumination when the mutual 
coherence function contains a spatially non-stationary quadratic phase term. 
Results are presented to illustrate the degrading effects of various amounts of 
astigmatism on the image quality for several values of the coherence interval 
and the phase parameter. Besinc form of correlation has been assumed for 
the mutual coherence function. The extent of improvement in the intensity 
distribution has been illustrated for non-uniformly illuminated aperture in case 
of typical apodising functions.

Introduction

It is now well known that the cases of complete coherence or incoherence 
normally do not occur in practice. Hence considerable significance is 
attached to the studies dealing with the diffraction in optical system 
under partially coherent illumination. Numerous investigations were 
carried out in the past [1-3] concerning the subject and we refer to a com
prehensive bibliography [4] for references.

Fraunhofer and Fresnel diffraction patterns have been investigated 
for partially space coherent illumination for aperture with different shapes, 
apodizing filters and aberrations. Defocussing and spherical aberration 
have received considerable attention. Off-axis aberrations, such as coma 
and astigmatism become of considerable importance while designing the 
optical systems for large field of view. Considerable work has been done 
in [5-15] concerning the evaluation of images of point, line, edge and 
infinitely periodic objects in the presence of primary astigmatism. Visual 
optical systems [16] have been treated recently. Images of bar objects 
have also been reported [17]. This analysis is tantamount to a study of 
effect on Fraunhofer diffraction patterns of partially coherent light with 
sine correlation. Besinc correlation is assumed for a circular source. We 
have, therefore, provided the results of the intensity distribution in the 
diffraction pattern under partially coherent illumination in the presence 
of primary astigmatism. The results for coma have already been reported 
[18].

In most of the studies, except a few [19-22], the illumination across 
the aperture is usually assumed to be real and spatially stationary. How
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ever, it is evident from the van Cittert-Zernike theorem [23] that a spatially 
non-stationary quadratic phase term appears in the complex degree of 
coherence for the field illuminated by an extended incoherent source. The 
effect of this quadratic phase term has been studied on the Fraunhofer 
[19], and Fraunhofer and Fresnel diffraction patterns [21, 22] for slit 
and circular apertures. It has been shown that the effect of phase on the 
diffraction patterns becomes quite significant in certain cases, especially 
when the source size becomes small. Recent results of investigations of 
Z a j ą c  [24] come out to be the same as those of S h o r e  [19] and A s a k u r a  
[21]. We have included the effect of phase term in the complex degree of 
coherence to calculate the irradiance in the Fraunhofer diffraction patterns 
of astigmatic circular aperture.

It is also well known that there are techniques for modifying the 
imaging properties of an optical system by manipulating its pupil function 
[25-28]. Optimum apodisers are used in optical instruments as filters 
that maximize the concentration of energy within a circle of arbitrary 
fixed radius concentric with the diffraction pattern. The design of optimum 
apodisers was initially based on the assumption that the diffracting 
aperture receives coherent illumination and is free from all aberrations. 
In practical situations, however, these ideal conditions are hardly achieved. 
S o m  and B i s w a s  [27] have shown that the performance of optimum 
apodisers in partially coherent illumination may be quite unexpected and 
contrary to their predicted performance. The presence of aberrations 
in optical systems also markedly influences the performance of apodisers. 
Results have been reported [29-31] on the improvement of the optical 
transfer function in the presence of defocussing and astigmatism. Recently, 
B i s w a s  [32] has investigated the influence of spherical aberration on the 
performance of apodisers. B i s w a s  and B o i v i n  [14] have studied the per
formance of optimum apodisers using Zernike-circle polynomials in the 
presence of primary astigmatism for coherent case. Our studies generalize 
some of these results in partially coherent light for the case of a system 
with astigmatism.

Theory

The calculation of the far field diffraction pattern of a plane aperture 
illuminated with quasi-monochromatic partially space-coherent radiation 
is facilitated by using the Fourier-transform relation [1, 19, 22]:

where A  is the area of the aperture, X is the mean wavelength and Tc 
— 2njX) B,  0, p  (a unit vector), and 8  are defined in fig. 1; y(S) is the

j  y (S) C0{S) exp (ikp-S sin d)d<r, (1)
a
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Fig. 1. Coordinate system and illustration of symbols used in various formulae

complex degree of coherence across the aperture, G0(S) is the autocorre
lation function of the aperture amplitude and a is the integration range 
of S. While deriving the eq. (1), the mutual coherence function across the 
aperture was assumed to he spatially stationary and to take the following 
form:

r ( S „ S , )  = I { S , ) ' n H S t) ' i ' y ( 8 , - S 1) = H 8 i)'*HS,)'i ‘ y { S ) . (2)

However, the van Cittert-Zernike theorem [23] states that the complex 
degree of coherence y(S1} S2) for the field illuminated by an extended 
incoherent quasi-monochromatic light source is usually spatially non 
stationary and takes the form

eiS"/Z(£)exp [ - S 2)]dZ

----------- j i w i z ---------------- ’ <3>
£

where
(4)

Slf S2, % and L are defined in fig. 1. Because of the spatially non-stationary 
quadratic phase term ei'F', eq. (1) cannot be directly evaluated. However, 
by some straight forward mathematical manipulation it is found [19, 22] 
that the quadratic phase factor is simply incorporated into the auto
correlation function of the source amplitude.

The complex degree of coherence can be written in the form

r (S19SM) = J ( S 1)J*(St)U(SM- S 1), (5)
where

J(S)  =exp(ifc|8|2/2X ), (5b)
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and

f7(S2- S i )  =  U(8) =
j /( { )e x p  -  A  {(S ,

(5c)

Substitution of eqs. (5a) and (5b) in (3) and insertion of resultant 
equation into the eq. (1), yield

J.cos20
I(P)  =

A2£ 2-J C'(S)t7(S)exp[ifc(£-Ssin0]d<r, ( 6 )

where

G'(S) = T  / <7)
In eq. (7) a' is the portion of the aperture to which Si is restricted in 
order that (S1+S)  lie on the aperture. For aperture radius a' > A and 
small diffraction angle, i.e. cos 6 & 1, and sin0 ^  0, diffraction of circular 
aperture, the eq. (6) becomes

[
/2 -i 2a' 2n

~ Y ~ \ J  e 'dg 'f  d&U{Q')C'{Q',0)exp[ivQ’co${&-y>)] ( 8)

under far field approximation. Here q' =  \S2 —8 X|, and v =  Jca' 0. Putting 
the normalized distance q' /a' — q, eq. (8) for normalized intensity is 
reduced to

2 In

I(v,  ip) =  — J J gdgd& 0 (g , <£)exp[£flecos(<£ — ip)].
71 o o L a G J

(9)

2 J1(ap)
Here -----------  =  U(q) is the besinc form of correlation given by

aQ
a quasi-monochromatic incoherent circular source, a =  k a' rf /L the 
number of correlation intervals contained in the aperture, r’ is the radius 
of the source.

The equation (9) will now be applied to calculate the far-field intensity 
distribution for the following cases:

i) In the presence of primary astigmatism when the quadratic phase 
term is neglected the auto-correlation function of aperture amplitude 
distribution is the incoherent transfer function for a system suffering from 
primary astigmatism. It has been calculated by D e  [ 6 ] ,  and is given by

a b

C(e, = [0(0, o r 1 J  J e x p U & J w ^ + i -
—a —b

—W dxdy, (10)
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W  is the aberration polynomial and in the present case is given by

W  =  W 20{x l+ y l )+ W 22y20, (11)

which — on the rotation of axes [6] — reduces to
W  =  W 20{x2+ y 2) + W 22{x*sm20 + x y s m 2 0 + y 2cos20) .  (12)

Substituting eq. (12) in eq. (10) we get

with

a b

C ( q , 0 ) =  [ 0 (0 , 0 )]- 1  J  J  e xp  [ i ( p x + q y ) ] d x d y
—  a — b

p  =  2 k Q [ W 2O +  W 22s i n 0 ] ,

q =  fce[TF22sin0],

a = V l - Q 2l ±,  b =  l / l  —2/2 —(0/2

(13)

(14)

(15)

(16)

TT20 and W22 here represent the amounts of defocussing and astigmatism, 
respectively for the mid focal plane Tf2o =  —1/2 W 22.

ii) In the presence of astigmatism , ut when the quadratic phase term 
is preserved, the eq. (7) becomes

a b

C{q, 0)  =  [0'(O, 0 )]-1 J jexip[i(YQOc+px+qy)]dxdy,  (17)
- a  - b

where Y =  ka'2 /2 L  is the phase parameter.
iii) To evaluate the modified intensity distribution, due to nonuniformly 

illuminated astigmatic circular aperture, the amplitude transmittances 
for the non-uniform pupil are assumed to be circularly symmetric and 
mathematically represented as:

(I ) / ( r )  = (1  -fif*), (18)
(I I ) /(r )  =  0.181 +0.426 ( 1 - r 2) +0.257 ( 1 - r 2)2 +0.136 ( 1 - r 2)3. (19)

For the case (I) the auto-correlation of the modified aperture amplitude 
distribution (quadratic phase factor in eq. (7) is neglected) is written 
[31] as

C ( e , & )  =[0(0 ,0)] -*  J

ej -/5i/2Jexp (20)

here determines the extent of non-uniformity of illumination.
Case (II) represents the optimum Straubel apodiser for the apodized 

interval 3.8317 <  v <  a. The auto-correlation of the aperture amplitude 
distribution can be derived in a straight forward manner like eq. (20).
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Results for coherent case have also been verified by evaluating the 
point spread function directly

1 2n
t(v,ip) = D \ f f  ex^[ivQ1co&(01 — yj)—Hc(W22Q21Gos2d1

o o

where D is a constant, (gu Qx) and (v, ip) are polar co-ordinates in aperture 
and image plane, respectively. W20 represents the plane of defocussing;

and for W2Q =  0, — -i- TT22, —W22 we obtain the intensity distribution
z

in the sagittal (Gaussian), mid focal and tangential focal planes, respec
tively.

Results and discussions

The equation (10) was first evaluated for the mid focal plane by using 20 
point Gauss quadrature method, the quadratic phase term being neglected. 
Results obtained agree with those of D e  [6]. This eq. (10) was then evalu
ated after the quadratic phase term was included. The results were obtained 
by a suitably manipulation of the aberration polynomial for the following 
two cases (i): when the tangential plane is towards the aperture plane (i.e. 
positive astigmatism), (ii) when the sagittal focal plane is towards the aper
ture (i.e. negative astigmatism). It is found that in the above two cases 
for certain combination of Y  and N  (e.g. N =  1.0, Y =  1.0) we get results 
for transfer function in tangential and sagittal planes. These agree with 
the corresponding results of K a p a n y  and B u r k e  [10]. The results for 
transfer function so obtained were fed into eq. (9) to evaluate the intensity 
distribution in mid focal plane for the above two cases by using 40-point 
Gauss quadrature method.

The figures 2-9 show the computed results along ip =  0 for the Fraunho
fer diffraction patterns for various combinations of the phase parameter Y  
and the coherence parameter a. Two values of the aberration coefficient 
TT22 =  NXln are taken with N  =  1.0 and 2.0. The curves for a =  0.0 
represent the case of point source illumination of circle aperture, so that 
the magnitude of the complex degree of coherence is unity and only the 
effect of quadratic phase factor is observed. The curve for a =  0 with 
Y =  0,0, and N — 1.0 (shown by dotted line in fig. 2) is in agreement with 
the results of E i e n h u i s  and N i j b o e r  [5]. Results were also obtained for 
aberration free case for different values of Y  and a and these agree with 
the results of S h o r e  [19].

It is clear from figs. 2-9 that, like in aberration free case, the main 
effect of the phase term is to reduce the central intensity and decrease 
the fringe contrast for small values of Y. As Y  increases beyond 3, the
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Fig. 2. Effect of different amounts of phase parameters on the intensity distribution 
in the far-field diffraction patterns. For case (i), i.e. when the tangentia focus is towards 

the aperture plane, for N =  1.0, y> =  0.0, a =  0.0

main beam splits and a minimum occurs at v = 0 .  The central minimum 
is due to the fact that contributions from the centre of the aperture and 
its edge are 180° out of phase. It is also seen that with the increase in a 
the effect of the phase term becomes less pronounced. It is also interesting 
to note that the effect of including the quadratic phase term is tantamount 
to obtaining the results in the plane drifted away from the mid focal 
plane by an amount corresponding to different values of N  and Y. For 
example the curves for N  = 1 .0  and Y = 1 .0  represent the intensity 
distribution in the tangential plane for various values of a (figs. 2-5). 
Other combinations of Y and N  represent the result for the plane between 
mid focal plane and the tangential plane (e.g. for N  =  2.0, Y =  1.0) or 
for planes beyond the tangential plane (e.g. for N  =  1.0, Y =  3.0). These 
results were also verified for the coherent case (i.e. a =  0.0.) by evaluating 
directly the point spread function in different planes.

The figures 10-17 show the results for the intensity distribution for 
case (ii), i.e. when the sagittal plane is towards the pupil plane. It is ob
served that the effect of the phase term on the trend of the curves is not
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Fig. 3. Same as fig. 2, but for a =  1.0

the same as discussed previously for case (i). Here, though the central 
intensity is decreased by the same amount, curves become sharper for 
different values of Y. This can be explained on the basis of the fact that 
in the present case we are moving away from the mid focal plane towards 
the sagittal plane and the curve for a =  0.0 with N =  1.0, and Y =  1.0 
represents the intensity distribution in the point image in the sagittal 
plane. Other combinations of Y  and N  represent the results for the planes 
between the mid focal plane and sagittal plane (e.g. N  =  2.0, and Y =  1.0) 
or beyond the sagittal plane (e.g. N =  1.0 and Y  =  3.0). For coherent 
case the results were again verified for different planes by evaluating 
directly the point spread function.

Therefore, it is concluded that the effect of including the phase term 
is to drift away from the mid plane and consequently decrease in the 
central intensity especially for large values of Y . The effect of the quadratic 
phase term becomes less important as the coherence decreases, i.e. a 
increases.

The figure 18 shows a comparative study of the intensity distribution 
in the presence of astigmatism without apodiser, with (1 —r2) ({) is taken 
to be unity) type apodiser and with optimum Straubel apodiser. Perform-



Fig. 4. Same as fig. 2, but for a =  2.0.

v

Fig. 5. Same as fig. 2, but for a =  4.0



Fig. 6. Same as fig. 2, but for N  =  2.0, a — 0.0

V

Fig. 7. Same as fig. 6, but for a =  1.0



Fig. 8. Same as fig. 6, but for a =  2.0

Fig. 9. Same as fig. 6, but for a =  4.0



Fig. 10. Same as fig. 2, but for case (ii), when the sagittal focus is towards the aperture
plane

Fig. 11. Same as fig. 10, but for a =  1.0



Fig. 12. Same as fig. 10, but for a =  2.0

Fig. 13. Same as fig. 10 but for a =  4.0



Fig. 14. Same as fig. 10 but for N  =  2.0, a =  0.0

Fig. 15. Same as fig. 14 but for a =  1.0



Fig. 16. Same as fig. 14, but for a =  2.0

Fig. 17. Same as fig. 14, but for a =  4.0
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i

v / k --------

Fig. 18. Modified intensity distribution for N  =  1.0, along y> — 0.0 due to (i) shaded 
aperture ( —), (ii) Straunel apodiser ( — · — · — ), (iii) uniform illumination ( — — — — )

ance of (1 — r2) type apodiser is slightly better as compared to that for 
Straubel apodiser. Our results for coherent case (i.e. a =  0.0) agree with 
those of B i s w a s  and B o i v i n  [ 1 4 ]  for various amounts of aberrations for 
Straubel apodiser. The effect of apodisation is less pronounced in the 
presence of aberration.
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Влияние коэффициента квадратной фазы
на дифракцию далёкого поля в частично когерентном свете
при наличии первичного астигматизма
Исследовано влияние первичного астигматизма на распределение интенсивности в дифрак
ционном спектре Фраунхофера в оптической системе с круговой диафрагмой при частично 
когезионном освещении, когда функция взаимной когерентности содержит член простран
ственно квадратной фазы. Приведены результаты, иллюстрирующие влияние деградации 
при различных значениях астигматизма на качество изображения для нескольких значений 
интервала когеренции, а также фазового параметра. Для функции взаимной когерентности 
принят вид корреляции типа Бесинк. Степень улучшения распределения интенсивности 
проиллюстрирован для неравномерно освещённых отверстий в случае типичных аподаза- 
ционных функций.


