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Time and space compression functions 
in two-dimensional description of the laser pulse 
propagation in nonlinear medium

Jan Badziak

S. Kaliski, Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland.

Starting with a nonlinear wave equation written in paraxial approximation, the time and 
space compression functions have been generalized to the case o f a medium with the complex 
refractive index. The general dependences allowing to analyze the time and space field 
distribution in the presence o f single- and multiphoton resonance interaction and the nonlinear 
radiation refraction. By taking advantage of the formulae obtained the influence of the non­
linear interaction upon the change in the field distribution has been analyzed for some cases 
of practical interest.

Introduction

The propagation of the light pulse in a nonlinear dielectric medium is described by 
the wave equation and the equations for the real and virtual parts of the refractive 
index of the medium. The analytical solution of the above system of equations, which 
would be necessary for a complete description of the field change, is impossible 
(even under considerable simplifications), and the numerical solution is by no means 
simple either. Under these circumstances any activity allowing to find new simplified 
methods for the analysis of changes in fundamental parameters of radiation in a me­
dium is of great importance.

In papers [1, 2] starting from the energy transport equations for electromagnetic 
fields the time and space compression functions have been introduced, which enable 
the analysis of the time and spatial changes in radiation intensity distribution in the 
medium with nonlinear virtual part of the refractive index. The next papers [3-8] prov­
ed the usefulness of these functions as applied to problems of nonlinear amplifi­
cation and absorption of strong laser pulses. A number of conclusions following 
from the analysis of compression function have been verified experimentally [5,8-10].

In the present paper we have started from the nonlinear wave equation written 
in paraxial approximation, and generalized the time and space compression functions 
to include the medium with nonlinear real and virtual parts of the refractive index. 
The effects of both single- and multiphoton resonance interaction as well as the 
influence of the nonlinear radiation refraction on the changes of the time and spatial 
field distribution in the medium have been analyzed.
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Model of a medium and the propagation equations

The light propagation in a dielectric medium is described by a nonlinear wave equa­
tion

rot rot is =  —
1 d2

V I 2
(sE )~

4Tip d£
( 1)

where: E  — electric field vector, e — dielectric permittivity depending, in general,
« .. , 47ip dE

on E, c — vacuum light velocity, —------------phenomenological term describing
c2 dt

the linear nonresonant losses in the medium [11], p — constant term of these losses. 
Let us choose the coordinate system, in which z-axis direction is consistent with the 
main direction of light wave propagation, and let us put

£  — J_ E*e~i(kz~at\
2 2

where: E =  E(r, t) — complex slowly varying (as compared with ei(kz~mt)), field ampli­

tude, oj — central frequency of field vibrations, k  =  —  ]/e0, e0 — real part of di-
c

electric permittivity independent of E.

Let us assume that

e =  £(<  E2 > ), A a > A ± , \d.\ < c0, rP ~ Y  T > A ± > (2)

where: <  E2 >  — value of E 2 averaged over the wave period, A — wavelength, T  — 
period of light vibrations, <5e =  £—£0, A ± and A {] — characteristic dimension of

changes in E  in directions perpendicular and parallel to z-axis, respectively, rp — char-

acteristic dimension for changes in E  as a function of time. Let us assume also that 
the characteristic dimension of the time and spatial “nonuniformity” of the medium
is great if compared with A ± , A {1 and rp, respectively. Under the above assumptions

->
\EZ\ \El I, and the equation for the transversal components of E  vector may be
reduced to the form [12]

A , E_l ^ 1 + 2  ik
/d E ± i a£x \
\ dz v dt J

de -*■ -*■
-\~k2—  E, +  ikgE, — 0, (3)

where:
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c 4np

From the fact that in an isotropic medium the equations for Ex and Ey, resulting 
from (3), are the same it follows that if the field in the z =  z0 plane has one defi­
nite polarization for all t this polarization does not suffer from any changes in the 
medium. In particular, the plane-polarized wave preserves its polarization state. 
The complete description of such a wave in the medium is reduced to the equation

IdE  1 dE\ de
A ±E+2ik  —  + -----— \ + k 2—  E+ikgE  = 0 ,  (4)

\ d z  v d t ) e0

where E =  Ex, and the x-axis is chosen in accordance with the electric vector vibra­
tion direction.

Writting de in the form

<5e =  de'+ide"

the equation (4) may be written as follows

IdE  1 dE\ „ de
A ±E+2ik  —  +  -  —  ) + k 2 —  E  =  ikK(\E\2)E, (5)

\d z  v dt ) e0
where

K(\E\2) =  - ( * - 7 -  + ?)·

The function K(\E\2) will be called the amplification function of the medium*. 
By substituting

£((, z, r) =  A(t, z, r)e, k (7)

where r — radius-vector in the plane perpendicular to the z-axis for the axially-sym- 
metrical system, or r =  x  for the system symmetric with respect to y-, z-plane, the 
equation (5) may be written for the real amplitude A and the eikonal W, separately, 
in an axially-symmetric or a symmetric system with respect to the x-, y-plane. From 
(5) and (7) we obtain

dA 1 8A dA dW 1
dz v dt ^  dr dr ^  2

k 2A
A , A .

A A ^  — — K(A2)A ,
2i

(8)

(9)

* In the case when de" > 0  for all r, t the function K  will be called the absorption function of 
the medium.

3 — Optica A pplicata X/2
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where:
d2 ( a —1 d 

~dr2 +  ~r dir*

and a — 2 for the axially-symmetric system or a =  1 for the system symmetric with 
respect to y-, z-plane.

It is convenient to reduce the equations (8) and (9) to those for eikonal W and the
c

light intensity ( / = ---- A2) for the case when
8?r

de' A l A 1 X2 
e0 ^  k 2A 4n 2 A 2±

These equations have the form

( 10)

dl
dz

dxp 1 dxp ( 1 ld W \2 dri
dz v dt n 2 \ d r j «0 ’

1 d l dl dxp 
^  v dt ^  dr dr

ILAxp =  K (I)I.

( 11)

( 12)

In these equations the electric permittivity has been replaced by the refractive 
index in accordance with the relationship: e =  n2, 80 — n^, ds' =  2n0dn'.

For the paraxial rays, i.e. those satisfying r A ± , the equation for the light 
intensity (and analogically the equation (9)) takes the form:

dl 1 dl
—  + IA ±W »  K(1)L (13)

dz v dt

In the case of radiation with plane, cylindric or spherical wave front we obtain 
from (13)*:

dl
dz

1 81 a
v dt z

(14)

where a -- 0, 1, 2 for plane, cylindric and spherical wave, respectively.
The field equations formulated above may be conveniently analyzed when ex-

z d
pressed in variables r, z, r, where x — t ----- .I n  these variables the operator------ \-

v dz

H------ — is transformed in to— , and consequently the equations (11) and (12)
v dt dz

take the form
d^{r, z, r) dn'

dz

dl(r, z, t) 
dz

1 I d ^ y
2 \ i r )  ’

=  m i -
81 dW 
dr dr

- I A ±W.

(15.)

( 16)

* For the cylindric or spherical wave W = where the point z =  0 is the convergence point

for rays.
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From (16) it is possible to get a clear interpretation of K. This is namely a relative 
rate of changes in light intensity (field amplitude) at an arbitrary point of the beam 
cross-section, caused by both the resonance (Raman, etc.) interaction of the radiation

If the eikonal W does not depend upon the time (both explicitly and implicitly), 
then, by introducing the function

(where g(r, z, x) — the radiation energy density (in I/cm2)), which passed through 
the given point of the medium at the time r —r 0) and integrating (16) with respect to 
r, we obtain

The function Ke will be called the energy amplification function of the medium. 
The equation (17) may be employed to describe the changes in the energy radiation 
density for the case when Ke — Ke($, r).

Now, we want to discuss the model of the medium and the equations describing 
the interaction of the radiation and the matter.

Consider the matter of refractive index ri =  ri0-{-dri, containing L classes of non­
interacting multilevel active centres*. Two energy levels, between which there occurs 
a resonant m-photon transition stimulated by the laser radiation of a> frequency, 
will be denoted by a and b. Among the L  classes of active centres the following sub­
classes will be distinguished: L x classes, for which the change of populations of 
a, b  levels occurs due to a single-photon process {O f & a, where Qax is the transi­
tion frequency at the midpoint of the active centre line from the L x class), L 2 classes, 
in which this change occurs due to a two-photon process (O f  2a>), and — gener­
ally — Lm classes, in which this change occurs due to an m-photon process {Q°nf 
mco, where m =  1, 2 , . . . ,  M, and L 1+ L 2+  ... -\-LM — L). Let us assume that

where: the index “/m” numbers the /- th class included in Lm group, A at is spectral

* i.e. the atoms, ions, and the molecules introduced to the host material o f refractive index n . 
In general, it may be a set o f media o f refractive indices n'k .

T

d £ (r ,z ,r )  dg dW
dz 8 dr dr

(17)

where
T
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width of the laser pulse, — width of the uniform transition line, — prob­
ability of m-photon stimulated transition averaged over the period, — cross­
relaxation time of the dipol transition. Under the above assumptions the resonant 
interaction of the pulse with the medium is of incoherent nature [16], and the equa­
tion for difference in population density of the a and b states may be represented in 
the form [1, 2]:

dt
Nlm- N l

Tlm
+ slmalmNlmr  =  0, (18)

m =  1 ,2 ,.. . ,  M, l =  1, 2 , . . . ,  LOT,

under the two-level approximation; where: Nlm — effective difference of the popula­
tion density of a and b states, Nelm — difference in population density at the thermo­
dynamic equilibrium state for /  =  o , r /w — effective relaxation time, slm — parame­
ters depending upon the laser action scheme (in the two-level scheme slmha> — 2), 
almIm~x — cross-section for the m-photon transition.

The amplification function K  for the medium may be defined basing on the energy 
conservation law. In the model considered this function is given by the expression 
[1,2]:

M Lm

K =  ' Z Z ma'"N*»im~ ' - e ·  0 9 )
w = l  / = 1

where Nlm >  0 for the inverse population of a and b states. In this expression the term 
attributed to the spontaneous transitions is neglected (as being small).

The explicit form of the energy amplification function Ke may be determined 
for the case of single-photon nonstationary interaction at ■f, < T,m [2]:

K‘ = 2 a' T [ l ~ exp( ~ M ~ e’ (20)
where

ai =  * <̂ / =  (si ian) X-

The complete description of the pulse propagation in the considered medium 
requires additionally the formulation of an equation describing the dependence of 
nonlinear part of the refractive index bri on the light intensity. This equation has 
different form depending upon the physical phenomena (like the molecule orienta­
tion, electrostriction, molecule libration, polarization of the electron shell, and so on 
[13], which are the effect of the dependence «'(/)). For short radiation pulses (of nano- 
and subnanosecond duration) the dominant effect in the majority of the media used 
in the laser technique is the orientational or electron Kerr effect [12]. In the case of 
the orientational Kerr effect the equation for bn has the form [13]:

d(bn)
dt

bn _  1

^ K e rr  ^ K e rr
n2I, (21)

where: TKerr — time of Kerr effect stabilization in the medium, n2 — constant
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characteristic of given material. For the electron Kerr effect, in the face of the fact 
that TKerr =  10_15j  [12, 13], the equation for <5ri has the simple form [13]:

bn =  n2I. (22)
The equation for bn has the form (22) also for orientational Kerr effect, if

"pXr> ^  ^ K e rr  ·

Change in the time distribution o f the field in the medium.
Time compression function
We shall write the equation for the light intensity (16) in the general form

dl(r, z, t)

where
dz

F — K-

=  IF[I(r, z, t), r, z, t], 

1 d l dW
—A , W.

I  dr dr x

(23)

(24)

The effective length t p of the radiation pulse is defined by the relations 

zp(r, z) =  r 2(r, z)—r ^ r ,  z),

I[r, z, Ti (r, z)] =  I[r, z, t2(r, z)] =  Ih(r, z),
0

(25)

where
h ( r> z) =  I(r> z> rh)> b > \ ,  and rh, r l t r 2

are the respective points at the time maximum and the front and back pulse sides. 
Let us introduce the function

T  =
1 dr„

and put
tp dz ’

(26)

dl{r, z\ r)
dr

dl(r, z, r)
dt

1 h,(r,z)
b i(r,z) Tp(r, z) ’

1 h ( r>z)
b2(r, z) r . ( r ,z ) ’

(27)

where , <S2 >  0. By differentiating (25) with respect to z and taking advantage of 
(23), (26), (27) we obtain

T==~£~ ta> r’ Z) ~ F h> Ti > r> zj J +

+  T„, r, 2> r, 2 j j . (28)

The function T  will be called the time compression function. This function defines
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the relative rate of changes in the pulse duration during the propagation process 
across the medium. In accordance with the definition (26) a shortening (compression) 
of the pulse occurs for T  >  0, its elongation (decompression) being stated for T  <  0. 
The coefficients and d2 defined in (27) will be called the slopes of the front and 
back pulse sides, respectively. For a monotonie function K  they are usually slow- 
varying functions if compared with Ih(z) and rp(z), respectively.

From the expression (28) it follows that the change in time distribution of the 
field in the medium is, in general, different for different points of the transversal 
distribution.^ For the sake of simplicity we shall neglect, hereafter, the dependence 
upon r, z, assuming that this dependence is considered at a definite point of the 
(r, z)-system.

By substituting (24) into (28) we obtain

T  =  Tx+Typ, (29)
where:

T K  =  - y  [* № , /*, r, ) ]  +  ■ Y[*(/„ , T * )-x (· !  /„, r2) ] ,  (30)

\  i j m h , r k
' - t H dr

m i . ,  r t ) s A b
dr

, ,  ,

—  ~Tr—

i 4 > T \
4 -  /,„ r ^ - A L P ( J h, r j j ,  (31)

6 =  ~ 1  dh  
h  ^

The function TK describes the change in the time distribution of the field due to 
nonlinear resonant (Raman-type, and others) interaction with the matter, while 
the function T y describes the change of this distribution due to the nonlinear refrac­
tion and diffraction of the radiation. We want to discuss some general conclusions 
following from the time compression function. We shall assume further that b =  2, 
i.e. we shall analyse the changes in the pulse duration measured at its half-height 
points.

Change in the time field distribution due to the resonant 
interaction

In the case of nonstationarity interaction, as may be seen from (30), the direction and 
rate of change in pulse duration strongly depend on both the slope of the pulse sides 
and the pulse symmetry (ratio dl ld2). The sufficient condition for the pulse compres­
sion to occur (T  >  0) in an amplifying medium {K > 0) is 61 <4 62 (the front side of 
the pulse being much steeper than its back side). This condition is not a necessary one.
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For the nonstationary interaction with the absorbing medium the condition b  ̂ b 2 
is sufficient for the pulse elongation. The symmetric pulse takes in the medium an 
asymmetric shape.

If the function K  does not depend explicitly on time (the case of quasi-stationary 
interaction or low singal) the function TK takes the form

TK =  [*(/*)-*(*/„)]. (32)

The sufficient conditions for pulse compression and for elongation are dK/dl > 0, 
and dKjdl <  0, respectively. The direction of rp changes does not depend upon the 
pulse symmetry. By taking advantage of the definitions of coefficients <5X, b2 it may 
be pointed out that also the rate of rp changes depends weakly upon the pulse sym­
metry. From (32) it follows, moreover, that the symmetric pulse remains symmetric 
in the medium. In the uniform medium, when the dependence K(r) is not explicit 
and the radiation divergence is low, the relation between the pulse length and the top 
light intensity Ih is determined by the formula

where r° =  r (z =  z0), or in accordance with (31)

r  - r ”exp H
K(ih) - m i h)

W h )
dl,

\

(33)

(34)

where <5 — average value of the function ^[b^ (Ih)-\-d2(Q] within the considered 
interval of Ih*.

By substituting (19) into (30) and assuming q #  g(t), we obtain a general expres­
sion for the function TK in the multicomponent medium

b M m r
Tk =  ~  £  ^  *>)+

m — 1 / = 1  ^

+  T  2K ~' 2  (35>_________  tw= 1 /=1
* Precisely speaking, the formula (34) defines the relation rp (Ih) within the interval in which the 

function K(Ih) is monotonic and does not change the sign. In general case

M

' f +,)
T„ -  r“exp

[ i> f t

- 2 * ·
71=0 ,(7l)

K(Ih) - K \ / 2 l h)

IhK(Ih)
d l (340

holds, where: l [n), l[n+1) — limits of the interval in which the function K  is monotonie and o f con-h n
stant sign. Additionally, if K  <  0, then /("+1) <  l[n) .H h
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where

film =

Particular cases of the relations (35) and (34) have been exploited in papers 
[3-8] to analyze time distribution of the field in single-, two- and three-component 
media for both single- and two-photon transitions. The analysis of these dependences, 
together with the analysis of the medium amplification function allowed to obtain 
the fundamental qualitative information concerning the changes in the time distri­
bution of the field in the cases discussed, as well as some important quantitative 
relations. The results obtained in this way are consistent with the results of both the 
numerical solutions of the respective propagation equations and the experimental 
examinations [5, 8, 10].

As an example we shall discuss the change of pulse duration due to m-photon 
interaction in a single-component medium for the low signal case. From (35) we 
obtain

t k =  (i (36)

where — moimN{m. In this case the change in the pulse duration occurs only 
for m >  1, its relative rate being proportional to the m-th power of the peak light 
intensity. The pulse compression occurs in the medium with the population inver­
sion.

By substituting the amplification function for a low signal K — $\m into
the formula (34) we obtain the dependence of the pulse duration upon the light 
intensity

K M T - ' - q

f i m t f - ' - e

1 —  2 
m — 1

(37)

If, in turn, we insert to this formula the expression for Ih(z), which may be easily 
obtained from the formula (14) for P\m, q =  const. [2], and a =  0, we obtain the 
following dependence for the pulse duration upon the path travelled in the medium

_
8e1 — (/Oyw-ijj__e<xi-/n)(z-z0)j
Q h

l - 2 1~ m 
m—\ '

(38)

1
In the case of (/°)w 1 >  q (amplifying medium) for z -> zK =» z0-\---- In x

Q

x ~og~7rovw-i----- , rp -> 0. Further, in the case of <  0 (absorbing medium)
P i m ( h )  ~ Q

or 0 <  < Q (medium with population inversion but with losses higher
than amplification) we have for z->  oo:

K m W r - ' - Q m — 1
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This relation may be also obtained immediately from (37).
We shall shortly discuss one more conclusion following from (34). Let us put 

Lm — 1 for m — p, n, and Lm =  0 for m =  p, n. The function TK for low signal takes 
the form

TK =  [ ( i - 2 ' - 0 / V r '+ ( 1 - 2 '- w r  ']· (39)

If fielp/?]„ <  0, the change in pulse duration results from two opposite processes: 
compression and recompression. The expression (39) allows to simply distinguish 
which of these processes dominates. For instance, if p > n, the process conected 
with p-photon interaction dominates when

(1—2*-")/?f„1

Change in time distribution of the field as a result 
of nonlinear refraction

The influence of nonlinear refraction upon the change of time distribution of the 
field will be illustrated by an example of a medium with dri =  n2 7. In this case from 
(31) we obtain

7 W - ^1+^2 I W ( \ Q  1
2 l L S dr J

+  A 1_ m i h) - A 1 'f'(/„)· (40)

This expression describes the change in pulse duration at an arbitrary point r of the 
cross-sectional distribution in the beam. We restrict ourselves to determining the 
changes in xp on the beam axis (at the point r =  0), where the function T v  takes the 
form

T v =  ^ ^ [ A LW (\lh) - A L!P(4)]. (41)

In accordance with [14], in the presence of the following boundary conditions

(r, W, z =  0) =  0,

7(r, r, z =  0) =  7°(r)

the eikonal W is determined by the expression

== (42)
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where 93(0) =  0. By substituting (42) into (41) we obtain

where

zfh

['-(iflM i)]
zfh

r0 Vrip

V n2 iL

(43)

is the length of the selffocussing path for the top (in time) light intensity, I°m =  I  
(r =  0, r  =  rh, z — 0). Since from the definition of the time compression function 
it follows that

(44)

where rp =  rp(z =  0), then by introducing to this formula the expression (43) we 
obtain the dependence of the pulse duration on the beam axis upon the path in the 
medium

(45)

It may be seen that with the increase of z  the pulse duration on the beam axis 
decreases monotonically for z <  zfh, and for z - r  zfh, rp -» 0*. The result obtained 
is due to “nonlinear aberration” of the radiation, i.e. due to the focussing of the 
radiation corresponding to different moments r  at different points on the z-axis. 
It is worth noting that for r >  0 the dependence rp(z) will be, in general, other than 
that on the beam axis. By taking advantage of the complete function defined 
by formula (40), it may be shown that time compression of the field distribution will

occur for these points of the transversal distribution, for which r <  —— r„(z),

where 2rp(z) is the beam aperture at the point z**. For r >  ——
V2

rp(z) the time distri­

bution of the field will be broadened.
From the formula (45) it follows that for quasi-stationary nonlinear refraction 

the time distribution of the field is subject to essential changes for the values of z 
close to zfh. For example, if z — \  zfh, then rp =  (~-)drp, and since for typical 
time distributions of the field (like Gaussian, Lorentzian, exponential, and so on)

A 1 A
* The singularity at the point z  =  Zfh results from the assumption that bn >  ——-— ,K

i.e. that the diffraction is neglected.
** The dependence rp (z) will be defined in the next section.



Time and space compression functions . . . 131

<5 ~  1, then rp ~  -\ x°p. For z < ± zfh the changes in the time distribution of the 
field due to quasi-stationary nonlinear refraction are usually low when compared 
with the changes caused by resonant interaction.

Change i n the spatial distribution of the field in the medium.
Space compression function
The general relations describing the changes in spatial (transversal) field distribution 
in the medium may be found in a way analogical to that for the case of time compres­
sion. In the axially-symmetrical systems or systems symmetrical with respect to the 
plane passing through the z-axis the effective width of the space distribution rp may 
be determined by the relation

[I [r , z, rp(r , z)] =  i  Im(r , z), (46)

where Im(r , z) =  7(r, z ,r  =  0) — light intensity at the maximum of the spatial distri­
bution, b >  1. Let us introduce the function

S  =  -
1 dr_£_

dz
and assume

dl(r, z, r)
Jr

1
y (r , z) r J r , z) ’

(47)

(48)

where y >  0 — slope of the distribution. By manipulations analogical to those used 
in the previous chapter we obtain the expression

c, z) - F rB, (49)

The function S  will be called the space compression function. It defines the relative rate 
of changes in spatial distribution width during the radiation propagation through the 
medium. In accordance with (47) for S  >  0 the distribution compression occurs, 
while for S  < 0 we observe some broadening (recompression) of the distribution.

From the expression (49) it follows that, in general, the change in the spatial 
distribution is different at different moments. In the sequel we shall omit the depend­
ence upon r, z, keeping simultaneously in mind the above conclusion.

By substituting (24) into (49) we obtain

The function

s * =  j [

(50)

(51)

describes the changes in the transversal field distribution due to resonant interaction 
with the matter. These changes, as it may be seen, result from the nonlinearity of
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the interaction and nonuniformity of the active centre distribution in the plane 
perpendicular to the z-axis. The function

J  ( ^ ± n ,- A n = o ) -
i d v

cr
(52)

describes the changes in the transversal field distribution caused by nonlinear refrac­
tion and the radiation diffraction.

Now, we shall discuss some conclusions following from the functions Sk and S y  
Similarly as it was in the case in the previous section we will assume that b =  2.

Change In the spatial distribution of the field as a result 
of resonant interaction

Let us assume that the medium is uniform and the function does not depend explic­
itly upon the time. From (51) we obtain the expression

S * = y [ * ( 4 , ) - - * ( y 4 , ) ]  (53)

analogical to the expression (32) for the function of time compression TK. Hence, 
it follows that, in the case considered, the changes in spatial field distribution occur 
analogically to those for time distribution. All the conclusions and dependences obtai­
ned in the previous section for the case of quasi-stationary interaction and low signals 
may be used to describe the spatial changes in distribution provided that h* TP> TK 
and 6t -\-S2 in these relations will be changed to Im,r p, SK and y, respectively. In 
particular, the following general formulae are valid

where r°p — rp(z =  z0), y — average value of y(Im). Such a symmetry of time and 
spatial distributions does not appear in the case of nonstationary interaction or of 
a nonuniform medium.

The general expression for the function SK in the multicomponent medium has 
the form

/ 1  /„ , /·,)]. (56)
n =  1 / = 1  \  f J

In the quasi-stationary case of «-photon interaction, for the single-component me­
dium with nonuniform distribution of active centres we obtain

S  _ y f - , r ( U r =  ° > 2 W 1
* 2 L 1 + C  2”+ / > ; ! ’

(57)
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where: Pm =  -j=-, f i j f )  =  m A W i / U - 1, ( i.  =
*l n

For the low signal we have, in turn,

^  =  - j  №»('· =  0 ) - 2 ‘- ' ' W f 1 · (58)

From (57) and (58) it follows that the nonuniform distribution of the active centres 
with the maximum on the z-axis (i.e. if |N eln(r =  0)| >  |Ari„(rp)|) is the agent leading 
to field distribution compression in the case of population inversion. In contrast to 
this the same nonuniform distribution for normal population acts as a factor causing 
the broadening of the field distribution. Based on the formula (58) the detailed dis­
cussion of the changes in spatial field distribution in a two-photon medium with 
parabolic distribution of the active centres has been given in [3].

In the limiting case rp Tlm the function Sk in a single-component uniform medi­
um takes the form

Sk =  y /(* >  '  =  =  0 ) C J -

—21- ”e x p [-2 -" z„(T>r =  r„)/4J > , (59

where lhm is a light intensity at time-spaced of the field and the functions /  and %n 
define the relations

f{r, z, r) =
I(r, z, r)

hir*z)
T

Xn(r, Z, r) -  slnaln f  f n(r, z, r')drf.
— OO

From (59) it follows that the direction of changes in rp at a given moment r  depends 
upon the sing of pein, the value of Ihm, and the time shape of the pulse, being independ­
ent of the shape of the spatial distribution. The latter effects only the rate of chan­
ges rp (via y). The formula (59) shows the coupling between the time and space field 
distributions under nonstationary interaction conditions. This allows to obtain in 
concrete cases some important qualitative information concerning the process 
of spatial distribution changes in the medium.

Change of the spatial distribution ol the field due to diffraction 
and nonlinear refraction

We shall analyse the changes in spatial distribution of the field in the medium, for 
the case when particular solutions for the eikonal may be written in the form

W =
2u (z, t)

+<p(z, r). (60)
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This case includes, in particular, the propagation of both the Gaussian beam in a lin­
ear uniform medium [15] and the spherical wave in a nonlinear medium with 
dri =  n21 [14] which will be discussed below.

By substituting (60) into (52) we obtain

S,?  =
1

u(z, r) * (61)

The function S w determines the curvature of the wavefront at the point z  and the 
moment r. Taking account of the fact that from the definition of the function S

we obtain

Z

rp =  r°exp [ -  J  S w(z')dz']
zo

(62)

(63)

The formula (63) determines the relation between the width of spatial distribution 
and the wavefront curvature 1/w for the radiation.

For the case of Gaussian beam in vacuum or in a linear uniform medium, at 
z0 =  0, we have [15]

u(z) =  z

where 2a0 — aperture diameter (at the height I J e 2) at the point z — 0. By the 
substitution of this expression to (63) we obtain the known formula describing the 
change in the transversal distribution width of the Gaussian beam during propagation

In a nonlinear medium, with dri — n21 for a beam of radiation fulfilling the 
boundary conditions

u(z =  0) =  oo, <p{z =  0) =  0. /(/·,z =  0) =  7 ° ( l - l l j ,  

we have the following form [14]

where

z/  =
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The substitution of this expression to the formula (63) yields

t64)

Due to the fact that, in general, 7° (and by the same means zf ) is a function of r, 
different points r  of the time distribution of radiation are focussed at different points 
on the z-axis. From (64) it follows also that for values of z several times less than zf  
the changes in spatial field distribution due to nonlinear refraction are very small; 
they become significant first in the close vicinity of zf . By using the functions Sk 
and S w it may be also pointed out that the changes of rp caused by diffraction in the 
region of strong nonlinearity are usually small in comparison with the changes con­
nected with resonant interaction for the case of quasi-Gaussian beam of diver­
gence dp < 10-3 rad and of the ftelmIm~ 1 values interesting for praxis. Under such 
conditions the type of changes in spatial distribution is determined by the dependence 
K(I, r), the right choice of which creates the possibility of suitable shaping of this 
distribution.

The space compression function, introduced above, describes the changes in 
spatial field distribution at the definite point r  on the axis of local time. The changes 
integrated over time, i.e. the changes of energy distribution in the radiation beam are 
of interest in a number of cases. In these cases it is usefull to introduce the “ener­
getic” function of space compression:

J_  dr*_
re dz ’

(65)

where re is an effective width of the space distribution of energy defined by the relation

g[zy re(z)] =  — S’J z ) , (66)

in which (z) =  <f(z, r — 0) — energy density at the maximum distribution.
If the change in radiation energy density in the medium is described by the equa­

tions (17) and Ke =  KE (<g, r), then the function Se is given by the expression, which 
may be obtained from (50) by changing K, Im,rp, y, to Ke, S m, rs, ye, respectively, 
where

Ve
*m (?) I I " 1
r.(z) L dr | J  '

In the multicomponent medium with the energetic amplification function given by 
(20), at W =  const, we obtain

s . =  -  y  ^  « i ^ r 1[ l+ e x p ( - Z /) -2 e x p ( - - j */)]« (67)

where Xt — — Fr om the expression (67), it may be seen that in the amplifying
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medium (ax >  0) the single-photon nonstationary saturation leads to a broadening 
of energy distribution, while in the absorbing medium it causes some compression of 
this distribution. There exists an optimal value of energy density at the distribution 
maximum S m ^  2.5 S \, at which the change in distribution occurs at the highest 
rate. In the limiting case of infinitely great and infinitesimally small values the radia­
tion propagates without any change of energy distribution.

Concluding remarks

In the present paper the time and space compression functions have been generalized 
to include the case when the light propagation in a medium with nonlinear complex 
refractive index is described by the wave equation with paraxial approximation. The 
general relations formulated in the paper allow to perform the analysis of time and 
space distributions of the field due to resonant single- and multiphoton interaction 
and to nonlinear radiation refraction as well. By taking advantage of the obtained 
relations, the influence of nonlinear interaction upon the change in the field distri­
bution has been analysed for some practically interesting cases.

The relations given in this paper allow to obtain the fundamental qualitative 
information about the process of field changes, as well as to get a number of impor­
tant quantitative relations from simple algebraic formulae without necessity of solv­
ing the respective differential equations. Thus, by simple means, they enable to 
obtain the picture of the phenomenon and to carry out the proper programming of 
both the experiments and numerical calculations. It seems that the compression func­
tions introduced in this paper can be used to describe also other (nonelectromagnet- 
ic) kind of fields, provided that their changes are describable by equations analogical 
to (23).
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Функции временного и пространственного уплотнения 
в двумерном описании распространения импульса лазера 
в нелинейной среде

Исходя из нелинейного волнового уравнения в параксьяльной аппроксимации, были обо- 
бещены функции временного и пространственного уплотнения в случае среды с нелиней­
ным комплексным коэффициентом преломления. Сформулированы общие зависимости, 
дающие возможность анализа изменений временного и пространственного распределения 
поля в результате резонансного, одно- и многофотонного взаимодействия, а также нелиней­
ной рефракции излучения. Пользуясь полученными зависимостями проанализировано вли­
яние нелинейного вбздействия на изменение распределения поля в некоторых практичес­
ки интересных случаях.

4 — Optica A pplicata Х/2


