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Impulse response of coherent optical system
of image multiplication by spatial sampling
filtration

Andrzej Kalestyaski

Institute of Physics, Warsaw Technical University, Warsaw, Poland.

Impulse response and transfer function of coherent optical system for image
multiplication by spatial sampling filtration are presented. A means for ma-
tching lens aperture with filter dimensions is found. In the experimental part
a multiplication of 3-D objects is shown, and the influence of spatial sampling
filter dimensions on images fidelity discussed.

Introduction

Image multiplication by sampling the spatial frequencies consists in
placing a suitable mask at the frequency plane of the optical system [1-5].
The masks are commonly black screens with holes spaced periodically.
Holes transmittance tc(xf, yf) is identical across the whole mask. Light
field, which realises here the Fourier image of the object is diffracted on
the mask and becomes periodic. The filtration is manifested distinctly
in the irradiance distribution of the multiple images. The samplying of
spatial frequency space must preserve the information content in the Fourier
image and prevent the overlapping of the multiple images in the exit
plane of the optical system. For the right choise of proper sampling dis-
tances in the filtering mask we can employ the Wittaker-Shannon
sampling theorem [6, 7] in the frequency domain.

Image multiplication by sampling spatial frequencies can be obtained
in an optical system which consists of two lenses Lx and Lz. The object
is placed at the focal distance fx before the lens Lx. The mask is placed
in focal plane of the lens Lx, while the second lens Lz behind the mask, is
distanced by /2 from the latter. Multiplication can be also performed in
single lens optical system. The object is then placed at the distance d0> fx
from the lens [3]. The last method is useful for multiplication of 3-D
objects with smaller depth (see fig. 1). In the remainder we shall deal
with a multiplying optical system shown in fig. 1.

Theoretical results have been confirmed by image multiplication of
3-D objects obtained experimentally.

Light field in the image plane of, obtained by spatial filtration
using the spatial mask with sampling holes distributed periodically at
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>
distances d = (dx, dy) within a rectangular lattice is described as follow:

Uim@0d, M) - 1 1 b,(X,£TAu, Y(ImJ4, nAY) (1)

Fig. 1. Arrangement of an optical coherent system for image multiplications of 3-D
object

where :

${{{xTNx., yixtnAM) —singular image of multiplied optical signal
. at every node of the rectangular lattice,
T(TNX, nlyY) —the Fourier transform of the sampling element trans-

mittance in the sampling spatial filter,
tc{xf, yf)—xf, yf — coordinates in the Fourier plane of the optical
system.

IT(mAXi, nAy.)RRis here the weighting factor of irradiance of the multi-
ple images. The images lie at the nodes the AX, Ay. of the lattice, which

is an inverse one to the lattice of samples in the spatial filter. Filter trans-
mittance is here

e

Vf) = 200 3T 2 o (®/ETnx,’VFirnAvhi )
m n

where 0 —convolution symbol.

Impulse response

In linear approximation impulse response of multiplying optical system
can be given by

@<, ¥r,MolYo) = 2 Tk Y’ NkAVi) K @<+ YYTky X0y Yo) (3)
K

where Tdenotes summation of all the multiple images, hkis impulsé response
of the system for fc-th image. When the samples in samplying spatial

filter are approximated by <§ then the weighting factor f(m AN NAY) = 1,
(Xg, yO —input plane, xi} y{ —output plane).
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In this case, for a diffraction limited system including a lens and a spa-
tial filter eq. (3) in geometrical optics approximation takes the form [9]:

Vi, Vo) = Xk Vik>®o> Vo)
= MO{Xi+Mxo, y{+My0Q®
® y{-nAv)
k
= H d(xizmAX+Mx0,yiznAVi+MyO0) 4
m n
where :

®k = yik = (yixnkAy.),

M = djd0Ois images magnification,

(A, Iy = is translation vector of the lattice of multiple images.

For physically realised optical system we must include the finite extent
of the lens and the filter. PL{x,y) and PF{xf1yf) being the respective
pupil functions of the lens and filter, where x, y denote the coordinates
at the thin lens plane. The transmittance of the spatial filter may now
be written as:

*(®/> V) « £ 21 d(af+ mA* >VftnAyx). (5)
m n

Diffraction effects caused by finite dimensions of used lens and spatial
filter will disclose in every fc-th image, they affect the partial impulse
response hk. Our purpose is to find fik for optical system with limited
bounds.

The image is assumed to be at the distance dt behind the lens in the
Fresnel diffraction zone. In paraxial approximation, when assuming that
the lens equation 1/d0+1/di—Iff = 0 is valid we can [9] represent the
impulse response fik

- ﬁPA y)p'(* x

Xexp  ios '[9+ MxOX+ (yik+ MyO)Z]i dxdy. 6

el

The finite extent of the filter can be represented mathematically by
projecting the pupil function of the filter onto the lens, which yields an
effective pupil function, denotes by

< W
g Y
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where :

oy di=f
di
dj~f
=y

Denoting x by — and y by ;drl the equation (6) takes the form

+0
K(xiki Vile, Vo) @M fj PL(UIX, Miy)PF(("di-f)x 1°{di-f)y) X

0o

xexp{—iZn[[xik+ Mx0Q)x + {yik+ My Qy~}dxdy. (7)
In the geometrical optics approximation [9], for A->0, either PL(x,y) or

* [ di-f .d{-f\

is equal to unity for all the values of x, y. Then the partial impulse
response becomes

K (xikj Viki xo, Vo) = d{xik+ Mx0, yik+MyQ0),

according to eg. (4). We have assumed that the coherent multiplying
system is isoplanar:

h i xik, Vik>@oi o) = K(xik~x0>Vik—V0)
for every T= 1,2, ... .
By inserting x0= —Mx0, y0= —MyO0 into eqg. (7) and denoting
hk = M~1-fik we may write:

*E(»<*> Va) oc fj PL(A,X, Miy)PF(X(di-f)X, X(dt—f)y)x

X exp{A HU- ®) + - yOYI}8)

Thus, impulse response hk{xik, yik) is a Fourier transform of the effective
aperture PdXx, y) of the multiplying optical system:

M®*> yik) = #r{Pett(x,y)}
=NPEMIEM a)Hdt-fii)}, )
where & { } —denotes Fourier transformation operator.
From eq. (9) we have also
hfak, vit) = & {PL}  {PF}.(10)

Using the egs. (9) and (10) we can define the coherent transfer function
as

ak@fx,fv) = & {K) = 1 {pl} {p"}} =pL pF, day



Impulse response of coherent ... 19

i.e. as a product of a lens pupil function PL and filter pupil functions PF
projected onto the lens plane x,y, fx, fvbeing spatial frequencies. Assuming
circular lens apertures of the both lens and filter with the respective
radii B and rF chosen so that the projection of rF onto the lens plane X, y
be equal B we have:

. PL(xV) = y) = circ-"-, (12)

where
CIrCx2+ y2{(1 for r2= x2+y2< B2,
B 10 for r2=x2+y2>B.

Under this assumptions impulse response hk(xik,yik) k =1,2,3,...,
takes the form

B 2] x(2nQkB
hk{@ik, \ac) (_Q ) (13)
6ik
where:
Qk =®ik + yk,
k=12, ...

Further we want look for such dimensions of spatial filter for which
the spatial frequencies cutoff does not restrict the spectrum transmitted
through the lens. It means that frequency cutoff fOF = r~/21” of the
filter must be equal to that of the lens fOL = B /2A [9], where

—~T7TrF? an)
ai~J

and rF is the projection of sampling filter radius rF on the lens plane

X,Y.
Assuming that foF = foL and foF = rFJ2X(di—f) we obtain finally

<15)

The relationship (15) gives us an indication how to match the spatial
filter to the lens dimensions, and vice versa.

Experimental

The possibility of image multiplication a single lens L x arrangement has
been previously shown [3]. A 2-D object, coherently illuminated is placed
at the distance d0> fx before the lens the sampling mask being placed
in the Fourier plane of the objective lens L xat the focal distance f x. Such
optical arrangement is useful for 3-D object multiplication (fig. 1). Let
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the depth of 3-D luminous object along the «-axis be AdO. The Fourier
spectrum of the object realized in the focal plane of the lens is:

do+wad0

Of(xf, yf) @ &{U0{x0,y0,2)}dz0
do
do+Ado

I
~(«1)y'* 1 F(xf,yf, 00)exPp ~jj (Vf+ V)

where

F{xf, yf, z0) =&r{t0{x0, 2g z0)} - Fourier transform of the object
light field,
& { } —Fourier operator, and z0 parameter.

tJO(x0, y0, zOy is defined for every zOe [(dO+ AdO)—d(0]. The function
€ 0(x0, y0, z0) represents the 3-D optical signal

d*+~0
~N(«o,yo™0o)= [  #(#<» Vo, *o)d»o 17
do

given at the input of the optical system, at the distance dOto the lens Lx.
For every z0e [(dO+ AdQ —d(] we have

F(Xf,yf,ZO) = \]\>(/*!/”!»«)' (18)

At the Fourier plane &y, yf the objective lens we place a sampling
mask with transmittance

*®,2) 0 £ Oo{xftxmAxf ,yf£nAyf). (19)
The light field tJf{xf, yf) immediately behind the filter is:
V1+i*ny!) = Vf'(®f:yf)tf{Xf: yf) oc
d+-4D

7 N@®>y«0)i(®[+»il®/, yitnAyf)x  (20)

m n do
A ~
epr t)|d*
In geometrical optics approximation the light field €im(xif yt, dt)
in the image xt, at the distance d{ behind the lens is given by

yif dj - Gim(xi £ mAXi, yi£nAM) 1)

m n

m n
where Jf is magnification.
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Optical signal /S(x0, y0, z0) given at the input, and defined by eq. (17)
has been multiplicated at the output of the optical system:

$im0*0 3/0%) = 2 2® (XitmA*i'yinAW)- (22)

Spatial distances between multiple images Ax. = lM, zL. =
Xf 1 Aoy 1
fM depend on the depth of the object AdO or the image Ad{
A

The gampling constants Axf, Ayf of the filter are matched to the.object
dimensions in the way stated in previous papers [3-5]. The matching
condition follow from the sampling theorem in the spatial frequency
domain

Ag< V A< (23)
i J)*0 VB D

where TIXg, D\gare dimensions of a rectangle circumscribing the greatest
crossection of the 3-D object (fig. 2). Sampling of the Fourier spectrum
of 3-D object results in multiplication in all images planes of the 3-D
image. Impulse response and coherent transfer function for multiplication
remain valid.

A schematic diagram of a model experiment is shown in fig. 3. At the
input of the optical system two transparents are placed at the respective
distances dQL and d@ from the lens. In our experiment this distance was
intentionally large: AdQ2 = 250 mm.

Fig. 4 presents the Fourier image of the composite object at focal
plane of the lens Lx. The same image after sampling by the inserted
filter is shown in fig. 5. Multiplicated images of the object in the sharp
focus image plane of the nearer transparent, and in the sharp image plane
of the second transparent are shown in figs. 6a and 6b, respectively.
Multiple images of both objects are mutually shifted, being separated
at the input by the distance dx0, dyO.

Fig. 7 shows multiple images of a 3-D objects. In this case the dimen-
sions given by radius rF = 6 mm of the sampling spatial filter were matched
(according to the eq. (15)) to the lens aperture radius B = 17 mm and
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Lens

Fig. 3. Schematic diagram of a model experiment : 3-D object consists of two trans-

parent, placed at distances d0L and d® from the lens (coherent illumination). In reality

the first pattern, placed nearer the lens Li is a small transparent regular hexagon.

It is distinctly in fig. 6a. The second pattern, placed after first one is a hexagonal
line inscribed into a square. It is seen distinctly in fig. 6b

Fig. 4. Fourier image of this com- Fig. 5. The same as in fig. 4 after
posite object at focal plane of the sampling by the inserted filter
lens L

focal distance fx = 360 mm. The image was formed at the distance @ —
= 540 mm.

The same object multiplicated by the use of a filter which does not
fulfill the condition (15) is shown in fig. 8. The filter aperture radius
rF = 3 mm was too small compared to the above mentioned optical setup.
Consequently, we can observed decreased fidelity of images and bluring
of the details.

The filter used in the experiments had circular sampling holes of
10 jxm radius spaced by the distances A = AX¥ = AM =50 xm The
weighting factor (see egs. (1) and (2)

ki, vi)I2 gkr0 (24)
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Fig. 7. Multiple images of a 3-D object.
Dimensions of the sampling filter were
matched according to the eq. (15)
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Fig. 8. The same as in fig. 7 3-D objects
is multiplied by the use of a filter
which does not fulfill the eq. (15)

determines the observed intensity distribution of the images, where

&K= (M*4*)2+ K ~)2

is identic for

z{e 1(d{+ Adt)—d{].
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MMnynbcHas XxapaKTepucTUKa KOFepeHTHOW OMTUYECKOW CUCTEMbI, My/bTUMIMKA-
TUBHO YBenMuMBawLleli u306paxeHue 6Gnarogapsi NpPo6HON (UAbTPaUMM MNpPOCTPaH-
CTBEHHbIX 4acToT

Pa6oTa MOCBsilLEHa BOMPOCY HaxXOXAEHUS! UMMY/IbCHOW XapaKTepUCTMKU OMTUYECKON CUCTEMbI
KOTePEHTHOro CBeTa, 06/1afaroLLieli CBOMCTBOM MY/bTUM/IMKATUBHOTO YBEIMUEHUS M306PaXKeHMS
6narogaps NPo6HOMY (HMILTPOBAHMIO MPOCTPAHCTBEHHBIX YaCTOT CMeKTpa (ypbe OMTUYECKOrO
CUrHasna, BO36Y)XAEHHOIO Ha BXOfe. HalijeHo ycnoBue cOrfacoBaHusi pasMepoB OMTWMYECKUX KO-
JIeHbEB U (MNbTPa, Tak YTOGbI YceueHre Mosochbl MPOCTPAHCTBEHHbBIX YacToT (UILTPOM He orpa-
HUYMBA/IO YacToT, MepefaBaeMbIX OMTUYECKUMU KO/eHbsSIMU. OMbITHash YacTb MOCBsLUEHA My/lb-
TUN/IMKATUBHOMY YBENIMYEHWIO W306PaXKEHWNIA TPEXMEPHBLIX O6BLEKTOB C MOMOLLBI0 Ha3BaHHOM
CUCTEMbI; B HEll SMMUPUYECKM MPOUIIOCTPUPOBAHbI TakKe Pesy/ibTaTbl TEOPETUUECKMX PAcCyd-
[eHUIA.



