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Diffraction of a cylindrical electromagnetic wave 
by a dielectric half-plane

Shahid N isar Ahmad

Botany Department, University of Agriculture, Faisalabad, Pakistan.

An electromagnetic diffraction of a cylindrical wave (emanating from a line source) by a dielectric 
half-plane is investigated. The problem is solved using integral transforms, the Wiener—Hopf 
technique and asymptotic approximations. The factorizations of kernel functions are accomplished. 
It is observed that the reflected waves cease to exist if the angle of incidence takes up the value 
tan-1 ( l¡n\ where n represents the refractive index of the material of the half-plane under 
consideration.

1. Introduction

Over the years there has been continuing interest in diffraction problems involving 
dielectric half-planes. An interesting problem was considered by Rawlins [1], who 
derived a set of approximate boundary conditions for the absorption and utilized 
them to study the problem of diffraction of an acoustically penetrable or an 
electrically dielectric half-plane. Leppington [2] extended this analysis and derived 
a new set of approximate boundary conditions at the surface of a dielectric slab of 
small thickness surrounded by a different dielectric medium. These boundary 
conditions differ from the ones already used in the existing literature in the sense that 
they contain second order derivatives of the unknown potential function which are 
absent in boundary conditions of an absorption type. Electromagnetic problems 
have been considered by many authors [3] — [13] by using boundary conditions of 
different form.

However, it appears that no attempt has been made so far to discuss the 
electromagnetic diffraction of a cylindrical wave with these new boundary conditions 
by a dielectric half-plane. The problem is solved by using Jones method [14]. 
Detailed calculations are carried out for the determination of the reflected wave and 
the diffracted far field is presented, taking advantage of a modified saddle point 
method [15].

2. Formulation of the problem

We consider the scattering of an electromagnetic cylindrical wave by a dielectric 
half-plane of dielectric constant el and permeability fi occupying the region 
-  oo <  x  <  0, y =  0 of the xy-plane (z-axis along the edge) which is supposed
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to be another dielectric medium of dielectric constant e2 and the same permeability 
pi (for simplicity), as shown in the Figure. A time-harmonic cylindrical electromag­
netic wave of potential & falls on the half-plane x  < 0 with the understanding that 
the incident electromagnetic fields are given by

Et =  Recurl(0,0,Xj)e-tot,
Ht =  — Re icoe2 (0,0, Xi) e ~itot.

It is required to determine the scattered potential x, where x~Xi = Xd, and xd 
denoting the total potential, under a set of boundary conditions oh the two surfaces 
of the half- plane to be described shortly as appropriate edge conditions and the 
radiation condition of outgoing waves at infinity. We shall drop the time-dependent 
factor e~icot and the symbol Re throughout We consider a line source of unit 
strength located at the position (x0, y0), >  0· Thus, the field equation in the
presence of a source satisfies the inhomogeneous wave equation [16]

[ j ^ + ^ 2 + f c 2Jx(x,jO =  &(x-Xo)&(y-yo) (!)

where

k2 — (D2tie2. (la)

In Equation (la), k has a small positive imaginary part which has been introduced to 
ensure the convergence (regularity) of the Fourier transform integrals defined 
subsequently (Eq. (10)). On the dielectric plate, we have the boundary conditions [2]

M = f c 0 - i ) ( x ; + z , - )

[Xy] =  M l-e)(x£+X^c)
y — 0, for x <  0, ( 2)

where the suffixes represent partial derivatives, e =  e2/s1, h (« l)  being a very small 
thickness of the half-plane under consideration. The symbol [x] represents the jump 
(x+ ~x~), where x + and x~ are limiting values of the function x(x,y) as y approaches 
zero from above and from below, respectively. Also, the conditions of continuity of 
X and xy for x >  0 give
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X(*,0+) =  x(x,0~) j  

X,(*.0+) =  x,(x,0") J

Now, in a situation where the solution of Maxwell's equations may not be 
unique, the problem arises when the configuration contains geometrical singularities, 
such as sharp edges. The additional physical condition needed here, known as the 
edge condition, is supplied by the requirement that the electromagnetic energy stored 
in any finite neighbourhood of the edge must be finite

f(6|E|2+ /i|H |2) d ^ - 0  (3a)

as the volume V contracts to the neighbourhood of the edge. Thus, from Eq. (3a) one 
may deduce that in the neighbourhood of the edges, none of the field components 
(electric, magnetic) should grow more rapidly than r~ 1+t with t > 0 as 
r =  (x2+ y2)1/2 -> 0. Thus following Meixner [17], the edge conditions [14], [18] for 
unique solution (local properties) on the field that invoke the appropriate physical 
constraint of finite energy near the edges of the boundary discontinuities are given by

z(x,0)~0(x2'2)

dx(x,0)/dy ~  0 (x -1'2), a2x (x ,0 W  ~  0(x-‘'2).
as x -* 0 +. (3b)

Finally, the scattered field must satisfy the radiation conditions in the limit 
(x2+ y 2)1/2-> oo.

A solution of Eq. (1) can be written in the form [14], [21]

X(x> y) =  Xifo y)+ y) (4)

where x2 is the solution of inhomogeneous wave equation (1), that corresponds to the 
incident wave and xd is the diffracted field corresponding to the solution of the 
homogeneous wave equation (1). Thus xt and xd satisfy the following equations:

( ^ 2+ ^ 2+ k 2)xi(x,y) =  <5(x-x0)<5(y-y0), (5)

/  d2 d2 \
( ^ + 3 ^ + k2)xA*,y) = 0, (6)

We notice that Eq. (5) is valid at (x0,y0) and Eq. (6) is satisfied everywhere except 
at (x0,yo). Now using Eq. (4) in Eqs. (2) and (3) we have

Xd(x»0+) -  x,(x,0 ") ~  ^  ldXd(x>0+)/dy+ 5xa(x,0 ~)/dy]

= 2h 0  ■- l^ x ^ O y a y , (x < 0),

dxd{x,0+)/dy-dxd{x,0~)/dy -  h(l -  e) [â2xd(x,0+)/âx2 + d2xd(x,0-)/âx2]

(7)
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=  2f c ( l ( x < 0 X (8)

Zj (x . 0 + ) =  X/ x ,0 ~ )  J

^ ( x , O +)/5y  =  5Z<l(x ,O -)/0 y J
(9)

3. Solution of the problem

Now, we define the Fourier transform *P{s,y) of xd(x, y) as [14]

' P ( s , y ) =  S  = ¥ + ( * , y ) + Y _ ( s , y ) ,  ( 1 0 )
- o o

where:

f+ fey) =  S x /x .y je^d x ,
0

V -fay) = { x A ^ e ^ d x .
—  o o

In Equation (10), the transform parameter is taken as s. We recall that for 
analytic convenience k is assumed to be complex and has a small positive imagin­
ary part, so that the transform W exists and is analytic in the strip 
—Im K c lm s  < Im(KcosS0) of the complex s plane, while the transforms W+ 
and W_ are analytic in the overlapping half-planes Ims >  —Imk and 
Ims < Im(kcosS0), respectively. The decomposition (10) is common in other field 
theories as well, Fourier optics [19], [20]. The solution of Eq. (5) can be written in 
a straightforward manner as

00

--- -------------{ k 2 _ s 2) m -----------------d s  =  — — [ ( x — x 0 ) 2 + ( y — y 0 ) 2 ] 1 / 2 ) ·  ( 1 1 )

Making change of variables x0 =  r0 sin30, y0 = r0 cos50, (0 <  90 < n) in Eq. (11) 
and letting r0 -+ oo, as well as taking advantage of the asymptotic form for the 
Hankel function, we obtain

Xi =  &«-««**■*.+**»*·), (12)

where

b 1  / _ ? _ ei(fcr0-*/4)
4iyj nkr0

(13)

On taking the Fourier transform of Eq. (6) we have
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£ i 'P(.s,y)-y*'P(s,y) = 0 

where

(14)

y2 = (s2—k2) (15)

and that branch of the square root is understood for which y = —ik for s =  0. The 
solution of Eq. (14) satisfying the radiation condition is given by

yfcy) =
[A l (s)e-yyy y> o,

y <0, (16)

Application of the Fourier transform to Eqs. (7)—(9), along with (16), results in the 
following relations:

!P(s,0+)—!P(s,0")—h !P 'M +) +  !P 'M -)]+ P +(5)

2khb(l/e—l)sinS0 
(s—kcos&0)

r (s ,0 +) - r ( s ,0 ') - / i ( l - £ ) [ s 2 nS'O +H s2 W ) ] + Q +(s)

_  2ikzbh(l—c) cos2 50 
(s—k cosS0)

(17)

(18)

A 1- A 2 = !P(s,0+)-ÎP (s ,0 -)=  !P_(s,0+)-iP _ (s ,0 -) =  F_(s), (19)

and

-y (A t + A2) =  !P'(s,0+) - r ( s ,0 - ) .

=  ¥"_(*,0+)-!P'_(s,O '),

=  G_(i) (20)
where:

p +w
- “ ( H i dx

,isx dx

Q+(S) =  2h(l -« ) |  a2^ ' 0) etodx.

(21)

Using Eq. (16) in Eqs. (17) and (18) and eliminating A i + A2 and A 1—A 2 with the 
help of Eqs. (19) and (20) we arrive at the following Wiener—Hopf functional 
equations:

l +yfc( i - l ) ] f _ +p+
2kh(l/e— l)bsind0 

(s—fcsin90)
(22)
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Using Equations (19) and (20), the unknowns At and A2 are given by

A '  = \ [ F- - - y G- ]  A* = - \ [ F- + -yG- ]

(23)

(24)

For the solution of Wiener—Hopf functional equations (22) and (23) we make the 
following factorizations:

/ » - ! + *
( H -

M / - M

g(s) = = g+(s)g_(s)

(25)

The explicit expressions of f ±(s) and g (s) are given in the Appendix. Now, 
substituting Eqs. (25) in Eqs. (22) and (23) and then using extended form of 
Liouville’s theorem [14] in the resulting expressions, we have:

2kh(l/e-l)sm & 0b

and

G-(s)

(s —k cos S0) f + (k cos S0) /_  (s)’

2ik2bh(i—e)cos2S0 
(s-kcos90) g+(kcos90) g_(s)’

(26)

(27)

After using Eqs. (26), (27) and (24) in Eq. (16) and the Fourier inversion formula on x, 
we arrive at the result

Xi(x,y)
k h ( i - £)b jr  e -y\y\-isx 1f  kcos2S0

( sin90 ̂
|ysgn(y)-|

2711 J| (s—kcos90)y |
oo

L9 -{s)g+(kcos$0) f-{s )f+(kcos90) J

(28)

The form (28) immediately gives that for x >  0,

Xd(x.0) =
kh(l—e)b f t 

2ni J y(s

,-isx k cos29r
k cosS0) g~(s)g+(kcosS0)

d s,

obtained by deforming the contour for the other terms in the lower half-plane. Now 
for complete scattered field x we note that details of the split functions f ± and g± are 
required, while if our interest is just to calculate the reflection coefficient this can be 
avoided. We find that for x < 0, the reflected wave as given by

RF = R b e - W (2 9 )
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can be calculated from Eq. (28) by deforming the contour in the upper half-plane, 
when the pole s = k cos#0 is captured, and we obtain the reflection coefficient R  as

R = _____________ ikh(l -  e) (cos2 S0 -  sin2 y e ) ______________
l — ikh(l—e)(sm280+ECOs290)/(Esm90)—k2h2( l—E)2cosz $0/e' '

In order to determine the diffracted field we proceed as follows. Changing s to —s in 
Eq. (28) we express xd(x,y) in the form

Xt(x,y)~  2)t. J (s _ sj ( kz _ s2y/2 ds>
—  00

where

sB= kcosQn,

and

B(s) =  —ikh(l—E)
kcos29.

s2)112 sgn(y)

9+(s)9+(k cos S0) /+ (s)/+ (k cos S0)

Thus following R a w l i n s  [21], after substituting x =  rcosS, y = rsinS, 
(—n < 3 < n \  we obtain the diffracted far field for large kr as

L· i(k r+ n /4)

Xd(r,fy =  — rr-r~ D±(kcos&),
y jln k r

(31)

where

j) (kcosS) M i-« )
cosS+cosS0

(  j
ksinS

kcos2Sf
g+(kcos8)g+ (k  cos S0)

+

. _ /sinS0\
j

f + kcos S) /+ (k cos S0) 

cosS-f cosS,

2ie iF ( ie u . (31a)

(31b)

and Fresnel function

F{Q) = e~iQlje itldti
a

D+ and D_ hold for 0 <  S <  n and - tc <  S <  0, respectively.
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4. Discussion

The principal result obtained in this paper, Eq. (31) gives the diffracted field of 
a cylindrical wave from the edge x =  0. It is worth noting that the field decays down 
exponentially (via k) and strength of the field dies down as I/^ /tq. Further, the field is 
found to be strongly dependent upon the frequency. In addition, the problem 
discussed here takes into account the material properties and thickness of the 
dielectric half-plane. It may be that in practice it is more convenient to measure the 
reflection coefficient for a half-plane (rather than determining the material proper­
ties). Expression for the reflection coefficient is obtained. Of particular interest is the 
possibility of not obtaining in Eq. (30) any reflection at a particular angle. This 
happens when the numerator is zero. For this case

cos2 S0 =  sin2 SJe, (33)

or

<90 = tan V /2) =  tan l (k/ki) =  tan 1(l/n),

with ki =  nk (n being the refractive index of the half-plane under consideration). At 
this angle, which is called the Brewster angle, there is no reflected wave when the 
incident wave is parallel (or vertically) polarized. In this case, E is parallel to the 
plane of incidence and H  is parallel to the reflecting surface. If the incident wave is 
not entirely parallel polarized, there will be some reflection, but the reflected wave 
will be entirely of perpendicular (or horizontal) polarization. In this case, the electric 
vector E is perpendicular to the plane of incidence and parallel to the reflecting 
surface and there is no corresponding Brewster angle for this polarization.

From Equation (33)

sin2#0 = 1/(1+e1e j1).

If e2 > ei» then the right-hand side of this equation is less than unity for all possible 
values of the permittivities and therefore there is always an angle of incidence 
(Brewster angle) which produces no reflected wave for this polarization (when the 
magnetic field is parallel to the boundary). For light in air incident on the surface of 
water (er =  81) the angle is 83.7°. Even at angles away from the Brewster angle it is to 
be expected that the reflection coefficients will differ for the different polarizations. If 
the incident radiation contains equal proportions of both polarizations, then the 
reflected radiation will be partially polarized. This phenomenon is exploited by 
photographers who use polarizing filters to cut down the intensity of light reflected 
off water. It is also employed in the output windows of gas lasers to ensure that the 
light emitted is polarized. Examples of the practical applications of phenomena have 
been drawn from optics. It is important to remember that they apply equally to the 
remainder of the electromagnetic spectrum. A major use of the presented analysis is 
related to the feeding and matching of antennas and arrays. Further, it is interesting 
also to note that the presently determined reflection coefficient is different from 
that obtained for line source in [1], and this difference can be attributed to our



Diffraction o f  a cylindrical electromagnetic wave ... 79

modeling the the problem through a different set of boundary conditions on the 
scatterer. The plane wave results can also be obtained as a special case of this 
problem by taking the source at infinity.

Appendix

In this Appendix, we shall obtain approximate expressions for the factors f ± and g±. 
Writing

g(s) = (s2-fc2) ' ‘'V (s). 

and

As)
(s2- ^ ) 1'2

e
m

with

•(sH is2- * 2)1'2- ^ 2 ]
>, [ e 0 =  H I

*(s) =  e(s2—k2)~1,2+E0)

we find that as /1 -> 0,

9+(s)~ 1
2e0s2

tan - f c l
1/2

+s
(s2- ^ 2)1'2 ~  |_fc+sj

(Al)

We must note that these forms of the factors are nonuniform when either s is close 
to ±k  or when |s| is large. But for the purpose of computing the diffracted far 
field with the help of Eq. (32), the expressions (Al) are useful except when s is near 
±k. When s is near ±k, then adopting Leppington’s analysis, we obtain the 
following results.

Near s = k:

9+(s)~  1, g_(s) ~  (s—k)~1,2[(s—k)ilz—£0(2)“ 1/2(i)3/2 '

/ +(s)~ 1, / . ( s )~ l+ ^ (2 fc )2'2(s-fc)1'2 j  ’ (A2)

and near s = —k (change s to —sin the above and use ( )1/2 =  —i(ic—s)l/2):

U s )  ~  1, U s )  ~  (s+fc)-1/2[(s+k)1'2- e ," 2(2)-1'2e0(i:)3'2]

/.(s) ~  1, / +(s) ~  l+ ^ e - '* '2(2/c)l '2(s+fe)1'2 
e

(A3)
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