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Poincare sphere in the optics of anisotropic media

F. Ratajczyk, P. K urzynowski

Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, 
Poland.

In the paper, the various ways of application of the Poincare sphere to the polarization optics and 
the optics of anisotropic media proposed in the literature have been reviewed and enriched. The 
considerations do not include ellipsometry being reduced to the most elementary case of 
transmitting and reflection of polarized light at the border of the isotropic media.

1. Introduction
The main advantage offered by Poincare sphere to the polarization optics and the 
optics of anisotropic media is the possibility of obtaining quick approximate results 
useful for preliminary calculations when designing the polarization devices and for 
the course changes of the polarization state of the light in optical polarization 
systems. These operations are usually made in mind. Sometimes some easy auxiliary 
calculations appear necessary which do not exceed the possibilities of a simple 
calculator equipped with trigonometric functions.

2. Poincare sphere

The vectors of the electric field strength E of a polarized plane electromagnetic wave 
are distributed along the normal to the wavefront so that their ends create a helix 
of equation

Ex = mx cos (oot—kz — Sx),
Ey = my cos (tot— kz — 5y),

where: Ex,Ey — Cartesian components of the vector E, mx, my — real amplitudes 

of the component vectors Ex, Ey, to = — (T — period), t — time, k =  —
i A

(A — wavelength), z — distance in the direction normal to the wavefront, 5X, 5y 
— initial phases (for t =  0, and z =  0) of the component Ex, Ey.

This helix passing through the plane z = const creates a trace of equations:

Ex =  mx cos tot,

Ey =  mycos(tot+<5) ( i)
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where <5 = 3X—3y, in the latter called the polarization state ellipse, shown in Fig. 1. 
Besides the physical quantities already defined some other are visible, namely:

— azimuth a — the angle subtended by the great axis of the polarization state 
ellipse with the x-axis of die coordinate system,

— P — diagonal angle defined as P =  arctan — ,
mx

— 3 — ellipticity angle defined as 3 =  arctan -  (a, b — great and small
a

respective half-axes of the ellipse).

Fig. 1. Ellipse of the light polarization state

The intensity and the light polarization state can be, among others, described by 
the Stokes vector and the Poincare sphere. The Stokes vector appears in two 
variants: as functions of a, 3, i.e., [S(a,3)] and ft, 3, i.e., [S(/i,<5)]. This gives

'  I ~ '  I ' ~ I

[S(a,3)] = M pIM u p/cos23cos2a
C pICu p i  cos23sin2a

. s  . L p is u _ _ p isin23

■ I ■ '  / " I  “

IS iP M  =
M PIM U pi cosip
C p ic u p i sin ip  cos <5
S _ L  PISU _ p/sin2/?sin<5 _

(2)

(3)

where I denotes the light intensity, p — degree of polarization, M, C, S — the 
Cartesian coordinates of the end of the vector pi, the direction of which is 
determined by the spherical coordinates 2a, 23 (Fig. 2), or the coordinates 2/?, <5 
(Fig. 3). In Figure 3, the vector p i creates the angle 2/? with the axis M  and 3 is the
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Fig. 2. Assignment of the point (2a, 29) to the Stokes vector [S(a, 5)] of the polarization state and to the 
associated vector pi of the intensity of the polarized part of the light. The scalar value of the intensity of 
the unpolarized part of the light is put on the prolongation of the vector pi

Fig. 3. Assignment of the point (2/J, 5) to the Stokes vector [S(/?, 5)] of the light polarization and to the 
connected vector pi of the intensity of the polarized light. The scalar value of the intensity of the 
unpolarized light is put on the prolongation of the vector pi

angle between the equator plane containing the axes M  and C and the plane 
determined by the axis M and the vector pi. M u, Cu, Su are the Cartesian coordinates 
of the unity Poincare sphere, i.e., that of unity radius. The name Poincare sphere is of 
historical character. The coordinates M, C, S describe the sphere of radius pi equal 
to the intensity of the polarized part of the light beam. When several light beams are 
superposed or if a light beam passes through any medium or is subject to reflection 
pi is not constant. Therefore the sphere radius should be assumed arbitrary, for 
instance, equal to unity and the values of I  and pi can be laid along the direction 2a, 
23 (or equivalently 2/7, J). This direction hits the sphere surface at a point to which 
the polarization state a, 3 (or equivalently /7, <5) should be prescribed. In addition to 
the intensity and the polarization state of the light also the Stokes vectors of the 
eigenwaves of the birefringent media and polarizers may be localized on the Poincare 
sphere, the values 1 = 1  and p = 1 being arbitrarily prescribed to them. This is an 
additional argument for assuming the standard radius of the sphere equal to unity. It 
should be added that the Stokes vector of the polarization state of the light is 
a peculiar vector. Its components M, C, S added vectorially to each other are equal 
to the intensity p i of the polarized part of the light beam, which is a scalar quantity. 
The vectorial character has its state of polarization. The scalar product of the unitary 
components M ul, Cul, Sul and Mu2, Cu2, Su2 of two different polarization states [S J  
and [S2] is equal to die cosine of the angle c between the vectors. The first 
’’component” I  of the Stokes vector is the sum of the intensities of the polarized and
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unpolarized parts of the light and is not a vector. It cannot be vectorially added 
neither multiplied scalarly* or vectorially with components M, C, S. It is only for the 
sake of convenience that it will be presented here graphically as a scalar overlapping 
with the vector pi and having a common origine with the latter in the centre of the 
Poincare sphere.

On the equator of the sphere the linear polarization states of different azimuths 
are located while at the poles — the circular polarization states. The more general 
elliptic polarization states of different ellipticity & and equal azimuths a are located 
on the meridians while those of equal ellipticities and different azimuths — on the 
parallels. The dextrorotatory states of polarization occupy the northern hemisphere 
while the laevorotatory ones are placed on the southern hemisphere.

3. Generalized Malus law

A partially polarized light beam of intensity I 0 and the degree of polarization p0 and 
defined by the Stokes vector [Sq] =  |70,Af0,C0,5 0], (Fig. 4), passes through 
a birefringent medium. The components of the first Stokes eigenvector [S'] of the 
latter are: 1, M, C, S and the energetic transmission of the faster and slower 
eigenwaves are and t2, respectively.

The light intensity I  after passing through the medium is determined by the 
Malus law [1]

I  =  0.510(t+ +p0t~ cos c) (4)

Fig. 4. Light of intensity I0 and the polarization degrees p0 defined by Stokes vector [S0] passes through 
the dichroic medium of Stokes vector [S], c — central angle between the vectors [S] and [S0]

* In the sense of scalar product of vectors.
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where: f+ — tt + t2; t~ — — r2J
tl — power transmission coefficient of the first (faster) eigenwave, 
t2 — power transmission coefficient of the second (slower) eigenwave, 
cos c =  (MMu0 + CCu0 + SSu0),
c — angular distance of the vectors [5] and [S0] joined by an arc of the great 

circle on the Poincare sphere.
The degree of polarization of the light emerging from the medium is 

_  (l-Po)t~  + p 0(t+ + r  cosc)
t++p0t~cosc ' * ^

The intensity of the light passing through an arbitrary dichroic birefringent 
medium [5] is the same for all the polarization states [S0] equally distant from the 
point [S].

4. Intensities of the eigenwaves in a birefringent medium

A partially polarized light wave defined by the Stokes vector [S0] is incident on 
a birefringent medium (or a polarizer), the Stokes vector of the first (faster) eigenwave 
of which is denoted by [Sx], (Fig. 5), and that of the other (slower) by [S2].

The vectors [S0], [Sx] and [S2] he on the Poincare sphere on the common great 
circle. The angular distance between [S0] and [S J  amounts to c.

The intensities of both eigenwaves diminish in the medium. At the beginning of 
the medium they amount to [2]:

Fig. 5. Partially polarized light determined by the Stokes vector [S0] falls onto a birefringent dichroic 
medium the eigenwaves of which are described by the vectors [S,] and [S J, c — central angle between 
the vector [S0] and the first eigenvector of the medium [S J
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h  =  0.5/0( l+ p 0cosc),
I 2 =  0,570( l - p 0cosc), (6)

while at the end respectively 

I t = 0 .5 t1/ 0( l+ p 0cosc),
I 2 =  0.5t2I o(l p0cosc). (7)

5. Change of the light polarization state 
while passing through a birefringent medium

Let a medium be given the eigenwaves of which are described by the Stokes vectors 
[S J  and [S2], (Fig. 6). A partially polarized light beam described by the Stokes 
vector [S0] hits the medium. Our goal is to determine the state of polarization [S'], 
intensity and the degree of polarization of the light after leaving the medium.

Fig. 6. Partially polarized light described by the Stokes vector [S0] falls onto the dichroic medium the first 
eigenwave of which is described by the vector [S J  distant by an angle c from [S0]. After having passed 
through the medium which introduced the phase shift y between the eigenwaves the polarization state [S], 
[S<], or [S>] of the light emerging lies on the arc of the great circle creating the angle y with the arc [S0], 
[S J. When the medium is not dichroic the distance of the vector [S] from [S J  of the emerging light is the 
same as that of the incident light. In the dichroic media it is less (for tx > or greater (tj < t2); b0, b>, b< 
— chords

The procedure is as follows.
1. The first eigenvector [S J  of the medium and the vector [S0] of the polarization 

state of the incident light should be joined by the due arc of the great circle.
2. The arc of the great circle rotates on the Poincare sphere around the point [S J  

by the angle y of the mutual shift of phases of two eigenwaves of the birefringent 
medium.
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3. The vector of the end polarization state IS] lies on the rotated arc and creates 
with the point [Sx] a chord of length [3]

+ t cosc 9

where: b0 is the length of the chord between the initial points [Sx] and [S0], and c is 
the central angle between those points:

+  r  =  tl - t 2.

Practical indication

In the case of nondichroic medium, (Fig. 7), (ti = t2, b = b0) the point of the 
compasses can be located in the point [Sj], the pencil on the point [S0] and an arc of 
angle y should be drawn clockwise.

Fig. 7. The same as in Fig. 6, but for the nondichroic medium

In the case of dichroic medium the compasses opening should be set to the value 
b (see Eq. (8)) and an arc of angle y should be drawn starting with the beginning of 
the arc passing through [Sx] and [S0]. The emerging light intensity should be 
calculated from the generalized Malus law (4) while its degree of polarization — from 
the formula (5).

6. Measurement principle for the light polarization state

The state of polarization [S0] = /(a 0,£0,p0, / 0) of the light beam must be examined. 
For this purpose [4], this beam is transmitted successively through the three real 
polarizers [Si], [_S2] and [S3], (Fig. 8), measuring each time the light intensity J,
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Fig. 8. Light of unknown both the state of polarization [S0] and the degree of polarization passes through 
the polarizer [S J , then through [S2] and finally through [S3]. The intensity of light transmitted through 
these polarizers allow to calculate the state and degree of polarization as well as the intensity IQ of the 
light examined

of the transmitted light (i =  1, 2, 3). From the generalized Malus law [1]

2Ji =  Joi*i+ +t» (-M o Mi Ą~ Cq Cj SqŜ ).

In other words, (see formula (4))

2Ii = I 0i(t^-i-p0tr cos cf). 

where: cf — angle between [S0] and [SJ, 

cos ci =  Af  u0 M 14* Cu0 C, 4* Su0 Sj.

After some substitutions

where: t+ =  t14-t2> =  t1 — t2.
For the polarizers: a linear one of azimuth = 0 ([SJ), a linear one of azimuth 

a2 =  45° ([S2)] and circular dextrorotatory ([53]) the equality (4) after some 
manipulations takes the form

A i =  p0cos230cos2a0,
A 2 = p0cos2£0sin2a0,
A 3 = p0 sin250. (9)

The magnitudes determining the state of polarization of the light under study are 
finally calculated from the relations:
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Po =  y / M + A l  +  A l,

S0 =  0.5 arcsin

a0 = O J a r c e o s ^ - ^ - ) .  (10)

For: A2 > 0 , 0° < a0 < 90°,
A2 < 0, —90° <  a0 <  0°.

7. Polarizing features of a nondichroic medium

There exist several methods of measurement of the birefringence medium polarizing 
features, the basis of which being the measurement of the change of polarization state 
due to passage of light through this medium. In the most frequent case when the 
medium is not dichroic an approximate result may be found graphically on the 
Poincare sphere (Fig. 9), while the exact one can be calculated from relations 
presented in [5].

Fig. 9. Light [SJ after passing through a nondichroic medium [S J  has the polarization state [S^]. The 
light of different state of polarization [Sfc] after passing through the same medium has the polarization 
state [S|J. The two points of intersection of the great circles of which one passes perpendicularly through 
the middle of the arc [SJ, [SJ and the other being that of [Sb], [S'b], determine the Stokes vectors [S J  
and [S2] of the eigenwaves of the medium. The angle y in both cases is the same

In order to find the states of polarization [S J  and [S2] of the two eigenwaves of 
the medium the latter must be illuminated with the light of polarization state [S J 
which after passing through this medium has the polarization state [5„]. Next, the 
same medium should be illuminated with the light of polarization state [Sfc], which



264 F. Ratajczyk, P. K urzynowski

after passing through the medium gets the polarization state [5J,]. In the Poincare 
sphere two great circles are to be drawn. One perpendicularly to the arc [S J, [5„] 
and passing through its centre and the other perpendicular to the arc [S6], [S*]. Both 
intersection points of the great circles determine the vectors [S J  and [S2] of the two 
eigenwaves of the medium. Which of these two intersection points corresponds to the 
first eigenwave, should be determined by an additional measurement (made, for 
instance, with a polariscope equipped with a phase plate).

The calculations based on the above reasoning lead to the relationships 
determining the state of polarization of the eigenwaves of the medium [5].

The components M lf Clt St of the sought eigenvector [S J  of the examined 
medium are:

M-4 1 + s„„-sm 
c - c

- 2 LM(Mua- M m.)(Cm- C ua.)

1 + S . . - S UOf /  _

- 1/2

Ci — —M i Lm/Lc,

S i = - [ M i i M ^ M ^  + C i iC ^ - C ^ m S u a - S ^ ) ,  
y =  arccos[(coscfla.-c o s 2clfl)/sin2c1J ,

where:

Lc = ( C ^ - C ^ - i C ^ - C ^ i S ^ - S ^ / i S u a - S J ,
COScM. = M uaM m, +  C^C^. + SuaSua., Caa; cosclfl = Af1Mllfl + C1CIla + S1S1M.

From the first eigenvector calculated in this way the properties of the medium 
can be determined:

Si =  O.SarcsinSi, =  arccos(M1/cos2S1).

If Ci > 0, then 0° < at < 90°, if Cx < 0, then 0° > ax > -90°

where the indices a and b refer to the polarization states of the testing beams while 
a' and b' — to the corresponding states of polarization of the transmitted beams. 

The second set of results corresponding to the point [S2] on the sphere is

a 2 = &i + 90, S2 = - S i ,  y2 =  360° —

As already mentioned without additional measurement it cannot be decided 
which set of results refers to the first (i.e., faster) eigenwave.

8. Phase superposition principle for birefringent medium

Let an elliptically birefringent dichroic medium [S(a, $)] be given (Fig. 10) of the 
phase difference y of the eigenwaves. A linearly polarized light beam described by
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Fig. 10. Linearly polarized light [S] passes through an elliptically birefringent medium [S(a, 9)] of azimuth 
greater by 45°. The polarization state [S'] of the light transmitted can be obtained by using a replacement 
polarizing system composed of a linear phase plate [S0] of the same azimuth a as that of the elliptic 
medium and of a phase difference y, and a right-circular phase plate [S90] with a phase difference ye

Fig. 11. The same as in Fig. 10, but for nondichroic medium

Stokes vector [S’] of azimuth less by 45° than that of the medium [S (a, 3)] falls onto 
this medium and consequently is transformed to the polarization state [S']. In order 
to obtain the same final polarization state [S'] for the linearly polarized incident 
wave [S] as that produced by the medium, it can be replaced by two phase plates: 
a linear one [S0] of the same azimuth as that of [S(a, 5)] and phase difference of 
phase y, and a right circular one [S90] of phase difference yc. Both phase differences 
are defined by the formulae [6]:

siny, =  sin25cos2B+cos 2Ssin2B siny,
• /sn cos2Stanye = sm 2S tany-ta^ s?

h tc = 2 ’

tan2B =  ^
*.■

Besides, the relation called superposition principle is fulfilled

(U )

cosy, cosyc = cosy sin2£.

In a particular case when the ellipticity birefringent medium is not dichroic, 
B =  45°, the above formulae simplify to the form [7]
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siny, =  cos 25 siny, 
tanyc = sin 25 tany,

h ~
cosy, cos yc =  cosy. (12)

This case is illustrated in Fig. 11. The linearly polarized light defined by the 
Stokes vector [S] is incident on the medium of the first vector [S(a, 5)] with the 
phase difference y the azimuth of which is by 45° greater than that of the incident 
light. At the exit of the medium the light has the polarization state [S']. The same 
state of polarization [S'] is obtained when the light [S] passes first through the linear 
plate [S0] with the phase difference y, and next through the right circular plate [S90] 
with the phase difference yc.

9. Polarization state of superposition of mutually incoherent light beams 
partially polarized

Two light beams of polarization states [Si] and [S2] are given, (Fig. 12). The total 
intensity of light of these beams are and J2, while the intensities of the polarized 
parts of these beams are p1I l and p2I 2, respectively. Both these beams superimpose.

Fig. 12. When light-beam polarization state [S J  is superimposed on a light beam of polarization state 
[S2] and both the beams are mutually incoherent, the resultant state of polarization [5] is determined by 
the intersection point of Poincare sphere with the resultant intensity vector pi being the vectorial sum of 
the component intensities p1I1 and p2I2- The total intensity of light is equal to the scalar sum of intensities 
of both beams

What is the polarization state of the superposition? In the literature [8], the 
following answer is presented:

— The intensity of the polarized part of the resultant beam is a vectorial sum of
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the polarized parts of the component beams. The intersection point of this vector 
and the Poincare sphere determines the resultant polarization state of the super­
posed beams.

— The intensity I  of the resultant beam is equal to the sum of intensites of the 
component beams

I  = I i+ I 2- (13)
The degree of polarization of the resultant beam is

= yJpVl + p lI l  +  lPiPzh1! cosc , %P -  • (14J

The angle made by the resultant vector [5] and the component beam vector [5X] 
amounts to

ci =  arctan
/  p2I 2smc \

(15)

— The ellipse (coordinates 2a, 23) of the resultant state of polarization [5], in 
other words, the point of intersection of the Poincare sphere by the resultant vector 
is determined graphically or analytically from the cosine law of spherical trigonome­
try:

cosa =  cosh cosc +sinb sine cosd (16)
where: b = 90 — 23lt 

a = 90—232,
c — central angle of the arc [S J, [S2] of the great circle, 
d — angle between the arc c and meridian b passing through the point [SA]. 

The formula (16) is applicable twice. First, from the triangle [SA], B, [S2] the 
angle d is calculated, next the value a' is calculated from the triangle [S J , B, [S]. The 
angle 2Act1 can be calculated from the sine law

sine! _  sina' 
sm2Act1 sind’

Finally, the new polarization state is determined by

2a = 2a1 +  2da1,
23 =  90 —a'.

The above suggestions concerning the analytical calculations create a kind of 
completion of the literature data.

10. Polarization state of the superposition 
of mutually coherent polarized light beams

Two mutually coherent monochromatic light beams of intensities Ą and I2 and the 
Stokes vectors of the polarization light [S J  and [S2] lie on the Poincare sphere in
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mutual angular distance c [9]. The mutual phase shifts A of both beams are 
determined by the addition of Jones vectors of both waves

J  = J l + J 2eu . (17)

The relative intensity ratio of both beams is determined by the parameter

The resultant polarization state is determined for two fundamental cases of 
interference:

1. When the ratio of the relative beam intensities is constant (ji = const), but 
their mutual phase shift A changes.

2. When the phase shift A is constant but the parameter fi changes.
The polarization state [S] of the light beam creatad due to superposition of two 

mutually coherent light beams [S J  and [S J  is expressed graphically in easiest way 
on an auxiliary primed Poincare sphere M \ C, S' superimposed on the primary one 
so that its equator passes through the points [S J  and [S J  and its zero meridian 
divides the arc [S J ,  [S J  into two halves. The point [S2] should have a negative 
“geographic length”, and [S J  — positive.

In the primed system, the Stokes vector [S'] of the polarization state ocurring 
due to superposition of two mutually coherent light beams is calculated from the 
formula

1

cos 2a' +  sin2 fi cos A 
l +  cos2a' sin2/zcosd

[S'] =  J
sin2a'cos2/x 

1 + cos2a' sin2/x cosd

sin2a'sin2/zsind 
1 + cos2a' sinlfi cosd

(19)

10.1. Case of fi = const, A — changing
The polarization states [S'] of the beam, being the result of interference of two 
coherent beams (Fig. 13) of polarization states [S J  and [S2] and the constant 
relative intensity defined by the parameter fi and of changing value of the phase shift 
A are positioned on the circle of the Poincare sphere. In the primed sphere, the centre 
0 #t(2a)t, 2 ^ )  of this circle lies on the great circle joining the vectors [S J  and [S2] of 
the interfering beams in the point of coordinates

2ajt =  arctan
cos ii

2s; =  o (20)
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Fig. 13. Mutually coherent light beams of polarization states [S J  and [S2], distant from each other by 
angle c, interfere with one another. When the ratio of the light intensities of both beams is constant 
(/i = const), the resultant states of polarization [S'] for different phase shifts A between the beams lie on 
circle of angular radius p^ and the center O^. When the phase difference A is constant and the ratio of 
intensities of the interfering beams is changing, the Stokes vectors [S'] of the resultant polarization state 
lie on the arc spread between [SA] (beginning) and [S2] (end) of the angular radius pA and the centre 0 A

where: c — angular distance of the states [S J  and [S2] of the component beams, 

cose =  MuiM ul +  CuL Cu2 + Sul Su 2- 

The central angle of its radius is

=  arctan ̂ tan2 psin (21)

The polarization states appearing for different phase shifts A are distributed along 
this circle both on the primed and nonprimed spheres.

10.2. Case of A = const, p — changing
The polarization states [S'] of the beam resulting from the interference of two 
coherent beams of polarization states [S J  and [S2] shifted in phase by A but having 
changeable values of the relative intensity (p parameter) are positioned on the 
Poincare sphere on the arc of the circle drawn in anticlockwise direction from [Sx] 
to [S2]. On the primed sphere the centre Oa(2cla, 2&a) of this circle has the 
coordinates:

2z 'a =  0,
c

2$'a = ctand sin-. (22)
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The central angle of its radius is

Pa = arctan
tan(c/2)

sind (23)

This arc determines the polarization states for different values fi of both 
component beams both on the primed and nonprimed spheres.

11. Change of the polarization state of the light 
at the border of dielectric isotropic media

The light falling at the border between the of isotropic dielectrics of refractive indices 
nl and n2 is of polarization state determined by: the diagonal angle ft (i — incident), 
the phase difference ft, the formula analogical to (1) and also Stokes matrix of type 
(3). In Figure 14, this is represented by the point (2ft, ft), denoted as [ft]. The real 
amplitudes and mLof the components E)( and ELof the electric vector E of the 
incident wave (reflected and refracted waves) are respectively parallel (||) and 
perpendicular (X) to the incidence plane; ft^>t = arctan(m1/m|)i r t.

11.1. Passing through the border of media
During passing through a border surface both amplitudes of the above mentioned 
two components change in accordance with the Fresnel formulae but no phase 
difference appears between them. The state of polarization is determined by:

*r=*l.
tan ft =  cos (cp -  \]/) tan ft (24)

where: q> — incidence angle, iJ/ — refracting angle.

Fig. 14. Change of the polarization state [ft] of incident light after the refraction [ft] and reflection [ft] 
from the border of the media
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0 < cos{(p — if/) <  1, thus the Stokes vector [SJ, (Fig. 14,) lies on the same great 
circle of the Poincare sphere as [SJ, but closer than [SJ to the origin of the 
coordinate system.

11.2. Reflection of the light at the media border
The change of the diagonal angle is defined by the formula

tanft.= cos (q> — \f/) 
cos(<p +  i/r) tan ft, (25)

and the angle 5r = <5f—A (A — phase jump during reflection). From the Fresnel 
formulae it follows that:

— The angle A amounts to n, for n1 < n2 and 0 < q> < and is equal to zero 
for q> > (pbr.

— The angle A amounts to n for zij >  n2 and 0 < q> < (plim, and is equal to zero 
for (pbr< (p<  (plim and for q> > ę lim

tan
A
2

cos<pv/sin2<p — n2 
sin2<p

where: ę ^  -  Brewster angle, (pUm — limiting angle, n = n2/nL (nL — refraction index 
of the medium of incident and reflected light, n2 — refraction index of the medium of 
transmitted light).

For the metals, A is different from zero in the whole range of ę. In order to 
determine the state of polarization of the reflected wave (Fig. 14), first we denote the 
point [5] on the arc 0 [S J, and next we turn it around the axis M  by the angle A in 
the clockwise direction to the point [SJ.
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