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Analysis of the optical properties of thin films 
using the transmission line method

A. J. Abu El-Haija*

Physics Department, A1 Al-Bayt University, Mafraq, Jordan.

A method of applying the transmission line matrix (TLM) technique to calculate the optical 
properties of dielectric and conducting thin films is described. The method offers a powerful 
alternative to the characteristic matrix technique. The obtained values of the reflectivity R, and 
transmissivity T, for standard cases compared remarkably with their values that are well 
established by other techniques. The advantages of the present method reside in the successful 
replacement of the film (dielectric or absorbing) by transmission line segments in a model that 
exemplifies the thin film effectively without the need of working with matrices whose elements are 
generally complex. This TLM technique enables a much easier treatment of the optical properties 
of ideal periodic structures, perturbed multilayer structures and superlattices.

1. Introduction
The calculation of the optical properties of thin films and multilayer structures has 
advanced tremendously in the last two decades. The intense attention which this 
problem acquired has stemmed from the high state of perfection attained in the 
fabrication of thin films, multilayer structures and superlattices and in the profound 
progress achieved in the measurement and calculation of their optical properties, as 
well. The thoeretical computation of these properties, however, has demonstrated 
increasing interest in applying the characteristic matrix technique which will be 
abbreviated here as CMT. The CMT method has proved to be efficient and very 
general, particularly after the development of a successful computer program for 
handling conducting thin films and multilayer systems that consist of arbitrary 
dielectric conducting individual layers utilizing the CMT [1], [2]. Adequate 
acquaintance with the CMT technique can be achieved by referring to the above 
references and those originally reported at the early initiation and progress of this 
method [3] —[5]. The present paper exposes a new method known as the 
Transmission Line Matrix (TLM) method for utilization in problems of thin films 
and multilayer systems. Therefore, the context of this article will be mainly devoted 
to the TLM basic theory revealing the features that made its adoption to thin films 
possible. In this work, the potential and capacity of the TLM in treating inhomo­
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geneous waveguide problem are utilized. The method evolved in the seventies [6], 
[7] and has been effectively extended in few years to offer numerical solutions for 
electromagnetic wave propagation [8], diffusion problems [9], [10], and first order 
rate equations [11]. The technique uses open circuited stubs of variable characteris­
tic impedance at each node in the matrix, thereby providing an analog for 
a dielectric. This makes it possible to calculate 2-dimensional scattering problems 
using the TLM. Accordingly, the adoption of the TLM, which is a time domain 
technique, to calculate the optical properties of a semi-infinite homogeneous 
dielectric material is at the present of no basic difficulty. However, the adoption of 
this method to calculate the optical properties of thin films (dielectric and absorbing), 
as presented here, is the purpose of the present article with the intention to boost the 
capacity of the method so that one can calculate and analyze the optical properties 
of periodic layer systems and arbitrary multilayer structures, an aspect which to the 
best of the author’s knowledge has not been handled fully yet As a matter of fact, the 
method provides a rather practical efficient way of computing the optical properties 
of ideal and non-ideal superlattices using the TLM on a personal computer. This 
would offer further enhancement of the problem of superlattices previously handled 
by the author [1], [2], [12]. Moreover, the waveform in the three regions — I, II and 
HI, representing media of incidence, film and ambient, respectively, has been 
calculated and plotted. The changes in the wave number in regions II and III 
correspond very well with the analytic solution of the problem.

The present paper as it stands here serves two purposes. It introduces the method 
with all its basic theory, derivations and nomenclature and validates its legitimacy 
through presenting a few examples as calculated via this TLM method; these are 
sketched and analyzed in Sec. 4. An algorithm appropriate for such cases is 
developed and full analogy between corresponding terms in electromagnetic theory 
and TLM is made in the next section.

2. Theory

2.1. Dielectric interface

Consider a plane electromagnetic wave propagating in the X  direction and incident 
on an interface extending in the Y-Z plane, as shown in Fig. 1. Maxwell’s curl 
equations for the electric field Ey and magnetic field Hz give:

8HZ dEi 
8x “  Cl 8t (1)

and

(2)

where ex and are the medium permittivity and permeability, respectively.
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Y

Fig. 1. Schematic representation of the incident, reflected and transmitted electric and magnetic field 
amplitudes at the interface between two media. Those amplitudes are denoted by the subscripts i, r 
and t, respectively

Combining the above two equations yields the wave equation

(3)
Sx2 ~  V \  dt2 ’ W

with =  l / V £i/i i being the wave velocity in medium 1. If (iL =  1, then the 
refractive index

where U0 denotes the wave velocity in free space and erl is the relative permeability 
of the medium of incidence, medium 1. The general solution to the above wave 
equation in medium 1 takes the form

E1 =  +  (4)

where the first term represents the incident wave on the interface and the second 
term represents the reflected wave from the interface. The reflection coefficient p12, 
obtained from the continuity of the field components tangential to the interface, is 
given by
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Ei («i ~ n 2)
(5)Pil  E, (r.1 + n2)-

Defining the wave impedance Zm in medium m by

E E
(6)

it can be shown that

„ (Z2- Z i )  
pl2 (z2+zty (7)

The electric field in the second medium is given by

E2 =  o) =  ( l + p 12)E.e^-"2*/Uo). (8)

The transmission coefficient t 12, defined as t 12 =  EJElt can be expressed in the form

2 Z,
T 12 —

2nx
(Z2 +  Z i) (nt +  n2) =  \ + p 12 - (9)

The reflectivity R and transmissivity T, representing the average power reflected from 
and transmitted across the interface, are given by:

R ~ Ef/Zl ~  P‘2'

T = E}/Z, - 2 t2T 12> ( 10)
EjfZt nL

and these are related to each other through the principle of energy conservation or 

R +  T =  1. (11)

22. Thin film

The analysis of the reflection and the transmission of a plane wave by a thin 
dielectric or absorbing film is well established and is almost a textbook material [13]. 
Therefore, efforts will be made to avoid all unnecessary details and derivations. 
However, establishing the TLM as a new tool for computing the optical properties of 
thin films seems impossible without laying down the essential elements of the 
procedure and comparing them with their counterparts in electromagnetic theory 
and the characteristic matrix method. This bit of discomfort is unavoidable if 
a smooth transfer to the new method is required. On the computational level, the 
characteristic matrix technique represents a thin film by a matrix which contains all 
parameters pertinent to the film, such as thickness, refractive index, which is 
generally complex, and the incident wavelength. The method enables calculation of 
the reflection and transmission coefficients at the boundaries of the film (Fig. 2). In 
notations frequently used by scientists with an engineering background, an equi-
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Fig. 2. Schematic representation of a thin dielectric film of thickness h and refractive index n2. The 
intensity of the incident e.m. wave is taken as unity

valent approach is made through introducing the term known as the equivalent wave 
impedance Z£ encountered by the plane wave at the boundary, and this is given by

z  = z  Z 3+ ;Z 2tan(l2Ji) 
E 2 Z 2+;'Z3tanO?Jj)

( 12)

where h represents the film thickness and /J2 is the wave number in the film defined as

(13)

The reflection coefficient of the film which has a complex value indicating an 
amplitude and phase changes is given by

P12 —
Z g - Z i
Z£+ Z j

The reflectivity R and the transmissivity T  are then obtained from

R - Zę — Z  i 
Z£+ Z 1’

(14)

T =  1 - R . (15)
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23.  Absorbing medium

For an absorbing medium, however, a plane wave propagating in the X  direction 
with its dielectric field polarized in the Y direction, the electric field Ey gets 
attenuated along the X  direction due to the conductivity of the medium a which 
appears in Maxwell's curl equations as follows:

dHz dEy
dx £ dt

dE1 _ dHz
dx

"y*

Combining the above equations gives

d2E,
dx2

=  Efi
d2E„ dE,

(16)

(17)

(18)

For sinusoidal time varying fields, Ey and Hz relate to each other through the 
following:

dJ h
dx

dEy
dx

=  -(jCDE +  (j)Ey,

which may also be combined giving

d2E
? =jcDfi((T+ja)E)Ey =  y2E

(19)

(20)
dx2 

where

y =  yjjcofi(<T +  jcoE) =  ja)y/fie(l —jc/cjs)112. (21)

For a good dielectric cx/cos < 0 .1  and the r.h.s. of Eq. (21), the latter can be expanded 
as follows:

1 =;“^ ( 1- £ +8̂ ? +- )  = +7 + -)
where

cos

Keeping only the first two terms, y becomes

X
y = W / iE( l ~ 2  1-

Thus writing y in the general complex form

(22)

(23)
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(24)

(25)

(26)

(27)

(28)

The solution to Equation (24) can equally be expressed in terms of a complex index 
of refraction

y = « +;&
with

a =  P =  a) /̂fiE.

The solution to Equation (20) can be written in the form 

Ey = 

giving

U _  ffLp-*xpJ(a*-Px)
‘ ~ z $

where Z$ represents the complex wave impedance which is now given by

n* =  n ^- jn ^ .

That is,

Ey — Ele}<a(‘t~n*x,u °) =  Eie~m',mXfUoe^at~ean,;x,û .

Comparing Equations (26) and (30) results in the following equivalence:

(29)

(30)

(31)

Algebraic manipulation of Equations (31) gives for non-magnetic materials (jir =  1): 

**re =  V^r> (32a)

(32b)

b» = V ^(1-;{/2). (32c)

3. The TLM method

3.1. Basic Transmission Line Theory

In their efforts to introduce a numerical solution for two dimensional scattering 
problems, Johns and Beurle initiated the representation of Maxwell’s equations by 
the transmission line matrix method. The basic idea in the model comes from the
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transmission line consisting of two parallel conductors separated by a dielectric 
material. The conductors may be parallel wires or coaxial cylinders. This physical 
arrangement leads to an inductance Ld and capacitance Cd between the conductors 
distributed over the length of the line. A transmission line segment of length Ax can 
be represented by the equivalent lumped circuit of Fig. 3. Basic transmission line

i Ax_ | Ax
L d 2 " L d 2

0000'----- -----W ----- o

—I— CdAx

o------------------- ------------------- o

Fig. 3. Transmission line segment of length Ax and an equivalent lumped circuit

theory shows that the voltage and current variations along the line may be described 
by a wave equation. The speed of the wave is related to the inductance and 
capacitance per unit length Ld and Cd, respectively, through the relation

U0 =  1 / V h C d. (33)

The voltage wave may reflect at the end of the line if the load impedance Z L is not 
matched with the transmission line characteristic impedance Z 0 which is equal to 
y/ L d/Cd. Denoting the reflection coefficient by p at the load, it can be shown that

p =  (ZL- Z 0)/(ZL +  Z 0) =  (Y0-  Yj)/{Y0 +  y j  (34)

where Y0 =  \fZ0 and YL =  1/ZL represent the admittance of the line and the load, 
respectively. The relationship between the incident, reflected and transmitted 
voltages and currents at the load is summarized in Fig. 4. The equivalent impedance 
ZE of a transmission line segment of length Ax and characteristic impedance Z 0 
connected to a load ZL is given by
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(1 + p) Vj

Fig. 4. Reflection and transmission of voltage and current pulses at mismatched load impedance Z L

ZL+ j Z 0ta.n(JiAx)
E Z °Z 0+ ;Z LtanO?Jx) 1 '

where /i =  (o/U0 — In/L Transmission line theory also shows that an open circuited 
transmission line (ZL -► oo) of finite length (a stub) has a capacitive impedance 
(ZE =  1/jcoQ that depends on the length and characteristic impedance of the stub 
(ZJ. When ZL -*■ oo, the equivalent impedance ZE of the open circuited stub takes the 
form

Z E =  1/jcoC =  ZJjtsin(fiAx). (36)

For small angles tan(fiAx) ^  fłAx =  coAx/U and the stub capacitance C becomes

C =  At/Zs = A tY s (37)

where Ya is the stub characteristic admittance and A is the time taken by a voltage 
wave to travel along the stub length. The voltage wave reflects at the open circuited 
end of the stub with p =  + 1 .

3.2. Discrete model of a loss free space

3.2.1. The TLM structure

The propagation space may be quantized into equally spaced scattering zones 
(nodes). Each node is modelled by a junction of an ideal transmission line segment of
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b

Fig. 5. TLM mode that represents a length Ax  of a loss free medium (a), and an equivalent lumped 
circuit (b)

length Ax and characteristic impedance Z 0 and an open circuit stub of length Ax/2 
and characteristic impedance Za. The stub is connected to the midpoint of the 
transmission line segment as shown in Fig. 5a. If the voltage pulse travels along the 
line and the stub at the same speed, then

Ax
At v w

Z q — and

Ax 1
j f Zo =  c ;

(38)

The lumped capacitance at the node due to the transmission line only is

_ . At 
CjAx — ——.

Similarly, the lumped capacitance at the node due to the stub is
r  Ax _  At/ 2
c'T  = "z7

(39)

(40)
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where Ca represents the distributed capacitance of the stub. If the transmission line 
admittance Y0 =  1/Z0 is taken as unity and the stub admittance Ya is normalized to 
that of the line, then CJCd =  Ya and the total lumped capacitance at the node 
becomes

C . Y + c t Ax =  CJLYJ2+l)Ax. (41)

The equivalent lumped circuit of the transmission line and the stub is shown in Fig. 
5b. Analysis of the equivalent circuit gives the following relationship between the 
voltage and current in the line:

dV
dx

dx
- C d(l +  Y J 2 ) - .

(42)

(43)

Combining the above equation gives

SjV J _ d 2V 
dx2 ~  U2 dt2

(44)

where U =  l / y/LdCd(l +  YJ2) and represents the velocity of the voltage wave in the 
periodic structure of transmission lines and stubs. The wave velocity in a transmis­
sion line segment is U0 =  1 !y/LdCd. Therefore, the additional capacitance at the 
node due to the stub results in a slower wave in the structure with 
U =  UQ/yJ\  +  YJ2. A comparison between Eqs. (42)—(44) and (1)—(3) yields the 
following equivalence between the voltages and currents in the line and the electric 
and magnetic fields of Maxwell’s equations:

K s  Ey,
I =  Hz,
Cd — eo>
L>d =  Vo*
(l +  Ys/2) =  er. (45)

Thus the voltage in the matrix models the electric field in the medium and the stub 
admittance models a loss free medium with a refractive index n such that

Y, — 2(n2 — 1). (46)

3.2.2. Scattering algorithm

Time is also quantized in TLM. The electric field Ey is represented by a train of 
discrete voltage impulses at dt-seconds’ interval. The amplitude of the voltage 
impulses corresponds to the electric field value at the corresponding time interval. 
The numerical solution to the TLM model is based on the scattering of voltage 
impulses at the node due to mismatch of impedances. Let kVlL represent the
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voltage pulse incident at node N  from the left branch at the k-th time interval as 
shown in Fig. 5a. The load impedance encountered by kV[ is the parallel 
combination of Za and Z 0 or the load admittance YL =  1 +  Yr  Therefore, the 
reflection coefficient from the left-hand side of the node pL is given by

Pl =
1 ~ Y l
1+ yl

-n
2 + y /

(47)

The reflected voltage pulse pLkV*L travels Ax meters through the left branch to 
become incident on the right-hand side of node (N  — 1). Similarly, the transmitted

2
voltage pulse (1 +  pL)kV[ =  travels along the right branch to become

Z-r i  a
incident on node (N +1) after At seconds. The voltage pulse transmitted to the stub,

2
which has the value -— travels to the open circuited end in At/2 seconds 

2 +  Ya
where it reflects back to become incident on the same node after another At/2 
seconds. A similar analysis applies to the voltage pulses incident from the right 
kV[ and the stub kVlM due to the scattering at the previous time interval. The 
principle of superposition combines the effect of the voltage pulses incident from the 
three branches to give

t K

<Nrs1 X*
1

2 — Y. 2Y- X l2 +YS 8 8

2 2 Ya- 2 X .

(48)

An alternative representation to the above matrix may be given in terms of the node 
voltage A, where

A =  ~ ( ,v k + t H +  y, X ) .  (49)

and
, n  =  A -X * .

=  (50)

the values kV[ and t Vl represent the scattered voltage pulses into the correspon­
ding branches. The voltage pulses incident on the node at iteration interval 1 are 
those scattered from neighbouring ones and the stub at iteration interval k, or.

l+ i^(W ) =  ^ ( W - l ) ,  (51)
. + i t f W  =  *U(N).

Equations (50) and (51) are generally called the scattering and connection algorithms, 
respectively.
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3.2.3. Ooter boundary conditions

The TLM may only represent a limited length in space. Therefore, the outer 
transmission line segments are terminated by ZL and Z R which represent the 
characteristic wave impedances of the media that lie on the left- and right-hand sides 
of the mesh, respectively. The mesh is excited with a voltage source Es through the 
impedance ZL as shown in Fig. 6; Es represents a sinusoidal source of electric field 
and is given by

E3 =  E^smQnUt/X).  (52)

E S VL
XL—  —JL - ------ Ax------"  H —

In discrete time and space t =  kAt and U =  Ax/At, therefore 

kE* =  Emaxsm(2nkAx/X). (53)

The voltage pulse launched by the source at iteration interval k combines with the 
pulse reflected to the left from the first node kV[ to give the new incident pulse on the 
first node from the left at the next iteration interval. The voltage pulse k+lV[ may be 
obtained by pulse analysis using the superposition principle and the reflection 
coefficient encountered by each incident pulse to give

t  r i

k + in
Z l- Z q 2Z0
zL+z0* L zL+z0A (54)

If the medium on the left-hand side is free space, then ZL =  Z0 and

»+i VL =  A  (55)

Similar treatment on the right boundary gives the voltage incident from the left 
branch of the last node as
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(56)

where nR is the refractive index of the medium on the right-hand side of the mesh.

33. TLM model of an absorbing medium

The complex refractive index n*, which represents losses in the medium due to the 
conductivity term in Maxwell’s equations, may be represented in TLM by adding 
a shunt resistor R at the node, as shown in Fig. 7. The stub admittance Ya and

, Ax , Ax
Ld ~  Ld“2~
'0000''------- --------------------

Fig. 7. TLM node that stands for a length Ax of a lossy medium and the equivalent lumped circuit

the resistor conductance G =  l/R are normalized to the basic transmission line 
characteristic admittance Y0 which is taken as unity. Voltage and current analysis of 
the equivalent circuit gives

d l flV
- =  - C 4(1+ Y / 2 ) - - 9 jK

s v _  s i
dx ^d 8t ’

(57)

(58)
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where gd =  G/Ax represents the distributed conductance at the node. Combining the 
above equations gives

d2V _
dx2 ~

d2V dV 
LdCd{ l + Y J 2 ) - ^ + L dgd- . (59)

Comparing Equations (57) —(59) with Equations (16)—(18) yields the following 
equivalence

V = E r  I =  Hzt

Cd —  e o> A i  —  A*o> ( 6 0 )

( l + y 2/2) =  er, gd =  a.

Thus the voltage wave in the TLM structure represents the electric field in the lossy 
medium. For correct modeling of the absorbing medium, the real and imaginary 
parts of the refractive index n* must be mapped into the appropriate values of G and 
Ys in the TLM structure. Using Eq. (32), er and a may be expressed in terms of nIC and

as:

a =  2w£0nrenim, (61a)

=  nfc. (61b)

Replacing a by gd and e0 by Cd in Eqs. (61) yields:

gd =  2 coCdnienim, (62)

G
Ax

4kAx  _
(63)

Ax
Equations (38) give —  Cd =  1 for a unit line admittance. Therefore,

G = 47tT Cd”re”im' (64)
Also, upon replacing er by {1 +  YJ2) in Eq. (61b) we obtain

y, = 2(nr2e- l ) .  (65)

Equations (64) and (65) map the complex refractive index into a stub admittance Ys 
and resistor conductance G at an arbitrary node in the TLM space. The scattering 
algorithm described by Eqs. (49)—(51) is now modified to take account of the shunt 
resistor and takes the general form

^ = 2 ^ | r 5 (‘F* + ‘ KL+y‘ *Fi)’ (66>

and
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kn = ^ - * n ,  (67)

ky[ =  A - kv la.

4. Results and discussion

The presentation of results starts with the illustration of the propagation of 
electromagnetic radiation in a thin dielectric film (Fig. 8). For this purpose a one­
dimensional TLM model of length 240 A l is set up in the computer. The model is

Fig. 8. Illustration of the amplitude of the electric field of an electromagnetic wave in the media of 
incidence, a dielectric film of n =  2.0 and medium of transmittance (last medium). The media are 1, 2 and 
3, respectively

divided into three regions of lengths 80 A l , 70Al and 90Al which represent free space, 
a dielectric film and a substrate, respectively. Their refractive indices nlt n2 and n3 are 
assigned the values 1, 2 and 1.5, respectively. The value of the substrate index of 
refraction being 1.5 corresponds to quartz near X «  5000 A which is widely used in 
the deposition of thin films. Therefore, from Eq. (65) the stub admittance Ya for all 
nodes in the corresponding regions are 0, 6 and 2.5, respectively. The substrate is 
assumed to stretch from the right boundary of the model to oo. Accordingly, the

reflection coefficient of the right boundary pR = ------ - =  —0.2. The TLM structurel + n3
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is excited from the left branch of the first node where free space is assumed to stretch 
from — oo to the first node. The excitation is represented by a voltage source with 
peak value of 100 V and wavelength X =  40Al. The model is solved for 500 iterations 
that correspond to 12.5 cycles. The plot sketched in Fig. 8 displays the node voltage 
versus position after 500 iterations and manifests the continuity of the electric field

(node voltage) at the two surfaces of the dielectric. It also shows that — =  — =  X.
n2 n3

As a next step the reflectivity of a dielectric thin film is calculated. Here a stub 
loaded one dimensional TLM model of 200 nodes is used to represent such a film of 
refractive index n2 and thickness h. The film is mounted on a substrate of refractive 
index n3 =  1.5. A source of electromagnetic radiation of wavelength X =  80Al in free 
space (nA =  1) is represented by a sinusoidal voltage source which excites the TLM 
structure through the first node as given by Eq. (55). The reflectivity of the film is 
measured for various values of n2 and h. The film is assigned a value for n2 by 
choosing the corresponding value for the stub admittance Ys for all nodes that 
represent the film according to Eq. (46). Initially, the film is located between nodes 
101 and 110 (h =  10J /). The thickness of the film is increased in steps of Al and the 
mesh is solved for 500 iterations for each set of values of n2 and h. The voltage 
waveform at any point in region I which corresponds to free space is the sum of the 
electric field components due to the wave incident on the film and that reflected from 
the film. If the sinusoidal signal A8l(k) denotes the voltage waveform (electric field) at 
node 81, then the incident electric field component is in phase and equals the source 
signal. This is so since the distance between them is one full wavelength. The 
waveform f(k) which corresponds to the reflected field component is given by

, ... „ . /2nkAl\
/(*0 = * 8 # )—EmiSinf—jj— I- (68)

By taking/maxto represent the peak value of the sinusoidal signal f{k) for the last 100 
iterations, the reflectivity and, accordingly, the transmissivity of the film are obtained 
from the relationship

(69)

Figure 9 shows the reflectivity patterns obtained using the TLM method for n2 =  1.5, 
1.7, 2 and 2.5. The theoretical curves are obtained from Eqs. (12)—(15). These curves 
were found identical to curves computed for films of identical indices of refraction 
using the transfer matrix technique. For the sake of comparison and clarity, 
calculations executed by both methods are displayed on each curve.

The last example handled by the method in this article is the calculation of the 
reflectivity and transmissivity of an absorbing film. To accomplish this for a thin 
absorbing film, the TLM setup of 200 nodes described earlier is used to measure the 
reflectivity and transmissivity of the film. The complex refractive index n\ of the film 
is modelled by a stub admittance Ys and resistor conductance G for all nodes that
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Optical thickness, nh
Fig. 9. Calculation of the reflectivity R  versus the optical thickness of thin dielectric films of refractive
indices 1.5,1.7, 2.0 and 25. □ — values obtained by the TLM method, and ------values obtained by the
CMT technique

represent the film according to Eqs. (72) and (73). The film is initially located between 
nodes 101 and 110 (h =  10d/). The thickness of the film is increased in steps of Al 
and the mesh is solved for 500 iterations for each set of the values of h, nIC and n^. 
The reflectivity is measured in a fashion similar to that described in the previous 
section. The transmissivity, however, is measured by analyzing the voltage waveform 
g(k) for a node in the substrate such as node 160. If gmax represents the peak value 
for the last 100 iterations of the sinusoidal signal g(k), then:

A = l - T - R  (70)

where A is the absorptivity of the film. Figure 10 shows the reflectivity pattern for an 
absorbing thin film with nx =  1, nre =  2, n3 =  1.5, and n^  =  0, 0.1 and 0.2. The 
transmissivity of the film is shown in Fig. 11 for the same values on nL, nf and n3. 
From the layout of the theory and algorithm of this model, it can be considered as 
a time domain method that can accommodate the physical problem after being 
"translated” into an appropriate electrical network of elements that correspond to 
the full features of the original problem. Once this is accomplished the burden is 
removed from the physicist to the machine which can be a personal computer
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Optical thickness, nreh

Fig. 10. Calculation of the reflectivity R  versus the optical thickness nrth for two absorbing thin films 
whose indices of refraction are n =  2.0+0.1./, 2 .0+0.2 j displaced simultaneously with a thin dielectric film 
of n = nre = 2.0

Optical thickness, nreh

Fig. 11. Calculation of the transmissivity T  versus the optical thickness nnh for two absorbing thin films 
whose indices of refraction are the same as in Fig. 10
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that is available almost to every worker in the field. The simplicity of the TLM  
algorithm enables easy implementation on a personal computer using any high level 
language (Turbo Pascal in this case). The characteristic method technique adopted 
earlier by the author, on the other hand, requires manipulation of matrices whose 
elements are complex numbers, which restricts the use of computer language to 
Fortran. Moreover and equally important is to mention that accuracy of the results 
is not at all hampered by this model. As a matter of fact, a greater accuracy can 
always be obtained by using a finer mesh. The only requirements from the PC are 
more memory and time, both of which are available in today’s powerful personal 
computers.

In conclusion, an efficient computational method for calculating the optical 
properties of thin films regardless of thickness, material and range of wavelengths has 
been established. This method does not only compete with other methods such as the 
CMT but also allows possible replacement of such methods when dealing with 
multilayer systems and superlattices. This is due to the attractive advantage of 
avoiding the use of any complex quantities when dealing with absorbing layers as 
part of the constituents of a layer system, a cumbersome practice that is u n a v o id ­
able in the other methods. In addition to this, the interface between two different 
layers in multilayer structures can be accounted for by representing it by a corres­
ponding stub in the picked equivalent network. The choice of the impedance of the 
stub corresponds to a certain composite of the material (nrc and nim that stand for the 
index of refraction and extinction coefficients widely referred to as n and k, 
respectively). Thus a series of values for this impedance for a certain interface should 
provide the investigator with the possible optical properties of the system. Among 
these results, those nearest to the experimental ones can be chosen. This would then 
be a tool to assign the most accurate optical constants that could correspond to the 
empirical results. Achieving this by coupling the technique with an optimization 
routine that varies the physical and geometrical parameters of the optical system 
under study can also serve to arrive at the required design of the system at a stage 
before its fabrication. Another application of this method is the computation of the 
first and second order derivatives of the optical properties: reflectivity R, transmis­
sivity Tand absorptivity A for any multilayer system. This should provide the points 
of extrema for the spectral dependence of the optical properties of the layer system. 
From the physical parameters and the optical constants of such a layer system its 
main characteristic features can then be unravelled even before manufacturing it.

A final advantage of this method over previous methods is the ease with which 
oblique incidence and not only normal incidence of e.m. waves on a film can be 
treated. This can be accomplished by an adaptation of the two dimensional TLM 
model introduced successfully by JOHNS and BEURLE [ 6 ]  for solving waveguide 
problems.
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