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Optical bistability in x(2) nonlinear media 
doe to cascaded process

W. Jijda, J. Petykiewicz, A. Zag<5rski

Institute of Physics, Warsaw University of Technology, uL Koszykowa 75, 00— 662 Warszawa, Poland.

We present a model calculation of bistable light transmission through nonlinear Fabry—Perot 
cavity filled with media without a  centre of symmetry. The susceptibility tensor of the third rank is 
assumed as the dominant nonlinear quantity. The model is based on the cascade-process. Two 
special cases are considered: interaction of two waves (incoming and its second harmonic) and that 
of three waves (two incoming beams of different frequencies and the third beam of difference 
frequency). The formulas for the intensity-dependent refractive indices are derived. With approp­
riately chosen parameters we obtain formulae for the transmitted intensity, which are analogous to 
the customary ones for Kerr-like media with symmetry centre.

1. Introduction

Optical bistability was first discovered in media with the third-order nonlinearity 
[1] — [3]. With such a nonlinearity the refractive index depends on the light intensity. 
The second-order bistability has focused much less attention [4] — [6]. The mecha­
nisms leading to it are different from those of the third-order bistability. To explain 
second-order bistability it seems necessary to consider the so-called cascade-process.

In the simplest case such process is connected with the second-harmonic 
generation. In the situation of sufficiently large wave-vector mismatch, the generated 
wave of frequency 2co is of a weak intensity and does not essentially change the 
amplitude of the incoming wave of frequency to. However, its influence on the phase 
of the incoming wave is crucial. This phase change, together with an appropriate 
feedback is sufficient for bringing about the intensity bistability.

In the case when the sample is illuminated by two waves of different frequencies 
coi and o)2> the role of the second-harmonic wave is taken over by the wave with 
frequency co3 = col — co2. This wave changes the phases of the two incoming waves in 
such a way that their intensities may exhibit bistability.

2. Two-waves interaction in the second-harmonic generation regime

We assume that the sample of nonlinear crystal is illuminated by a strong beam 
normal to the surface of the film. The wave is characterized by frequency co, wave 
vector k* =  (0,0,fcj parallel to the z-axis of Cartesian coordinate system. The
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second-order nonlinearity of the material is described by the susceptibility tensor of 
third rank

In order to simplify calculations, we assume that this tensor reduces to one 
component x{2)(2co;(o,co) = x(2)(co;2co,—co) = y Due to the nonlinearity the fun­
damental wave with electric field vector and its second harmonic E2tD are coupled 
and there appears a mutual energy transfer. This transfer may exhibit periodicity 
along the z-axis and was named a cascaded process. It was suggested in [7] — [9] 
that the cascaded process may lead to nonlinear phase shifts of the fundamental 
beam. Since the phase shift arising from optical Kerr nonlinearity is one of the causes 
of dispersive optical bistability a bistable behaviour based on nonlinear phase shift in 
the cascading process is expected.

In the slowly-varying-envelope approximation, Maxwell’s equations applied to 
a noncentrosymmetric and lossless crystal lead to coupled amplitude equations, 
which govern the second-harmonic generation process [3]

—df  =  “ i (̂ ^ X {2)(co;2œ,-co)E2a>E*Qxp(-iAkz),

= - i  ^ ^ x (2)(2co;co,co)Eiexp(iAkz) (1)
“Z n2a>

where Ak = 2co(n(0 — n2m)/c is the wave-vector mismatch and na, n2at are (linear) 
refractive indices of the material for both frequencies.

Our main assumption is that of a small conversion efficiency \E2m\2/\E(a\2 «  1 
which demands the condition on the sufficiently large wave-vector mismatch

\Ak\2 »
(2/Jp ccoyY 

n0n2(0
|E^z)]2. This implies the absence of depletion of the incident wave

amplitude, lE^z)! =  const. However, its phase (p  ̂ defined by the equality Ea(z) = 
\EJz)\e>xp(iq>a(z)) depends on z. The solution of the system (1) for the inten­
sity-dependent phase shift 5q>0(z) = q>Jz) — q>Jl0) of the fundamental beam is

0(PM) =  -
co2nlc2y2z ( 
4nan2(0Ak \

sin(dkz)| 
Akz j

IE0 (2)

This function demonstrates an oscillating length-of-path dependence of the 
intensity of the second harmonic wave.

In order to draw consequences from the result obtained above, we refer to the 
case of media with the third-order nonlinearity, for which the effective refractive 
index may be written in the form

„ e f f  _= n^+n^OOIEJz)!2. (3)

Considering the relation between the phase shift of the fundamental wave and the 
intensity-induced change of the refractive index àcpjz) = œz(n^{—n jc , we find that

2>n(0Ti2(0Ak (
sin(dkz)]

Akz }·
(4)
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From these it follows that in media with second-order nonlinearity and with an 
appreciable wave-vector mismatch Ak, parallel with the dependence on the intensity 
of the wave, there appears dependence of the refractive index on the path length of 
the beam. An appreciable z-dependence of appears only for a sufficiently large 
phase-mismatch Akz. We also observe that the intensity \E2fo\2 of the second beam 
does not appear in the expression for the phase of the first wave.

3. Three-waves interaction in the regime 
of difference-wave generation

The method of calculation of the previous section may be extended to cover the case 
of interaction of three waves. We now assume that two waves of frequencies col 
(pump beam) and co2 (probe beam) enter a nonlinear medium. The nonlinear 
interaction between them leads to waves with frequencies combined from a)1 and cd2, 
in particular to the wave with frequency (o3 = coi — co2. In the slowly-vary- 
ing-envelope approximation. Maxwell’s equations applied to this system lead to 
coupled amplitude equations:

dEt

"ldz

dE2 _ . li0c(o2 

n2dz

dE3 _ . ^0CW3 
”3dz

¿ 2)((ol ;a)^co2)E2E3e?Ahs9

Xl2)(co2;(o lt  - o ^ E f E ^ - **2, 

Xi2)(co3,col t -  r n ^ E f E ^ - ^*2

(5)

where Ak =  (cjini — Q)2n2 — oj3n3)/c and =  x(2)(co2) =  x(2)(a)3) =  y. The as­
sumption of a small ct^-wave depletion (lE^z)!2 «  lE^O)]2) demands the condition

!(0)|2~* (6)
( № *  A |£2(Q)1 

V(Aff)2 )  E M
« 1

where (Akc{[)2 =  (Ak)
4file y cd2o)3 

n2n3
\Et \2.

Below we consider two special cases of the realisation of this condition 

a) |£2(0)|2 ~  |E1(0)|2, \Akclt\ *  \Ak\ »  M
co2co3

|Ea(z)|. In this case we assume
2rl3

large wave-vector mismatch, which implies that the intensities of both two waves 
remain practically unchanged. Under this condition, we can derive the expressions 
for the phase shifts:

f i l c ^ c o ^ z  / sin(dfcz)'
n ^ A k  \ Akz

dq>2(z)
lilc2y2z(o2(D3 1 

n2n3Ak \
sin (Akz) 

Akz

|£2(0)l2,

|£ i(0)|2·

(7a)

(7b)
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These can be related (similarly to Eqs. (2)- 
refractive indices:

-(4)) to intensity-dependent parts of

-a» ., « fcV ffls /, sin(JJczy\ 
Bl (Z) =  niH Ak V1 Akz

(8a)

s“ (f z)\
n2n2Ak \  Akz J

(8b)

which are defined by the relations:

n ff =  n1+ni2)(z)|F2(z)|2, (9a)

n|ff =  n2+ni2)(z)|E1(z)|2. (9b)

We observe that the refractive indices of both two waves are not functions of the 
corresponding intensity but they depend on the complementary one. This cross 
interdependence represents a new effect in comparison with (2). However, such 
behaviour is not contrary to (2), since in the second-harmonic generation regime the 
fundamental wave Ea plays the role of both incoming waves and E2.

b) |E2(0)|2 «  lE^O)!2, \Ak\ > fi0cy / - 2<a-3 |£1(z)|. In this case we assume that the
V w2n3

intensity of the pump beam is much larger than that of the probe beam. Following 
the discussion leading to Eqs. (4), (8a), (8b) we obtain expressions for the 
intensity-dependent parts of refractive indices:

" № i l ,

»p m  =

/i8c3y2ffl3 /  Ak V  sin(Jfceffz)\  
nLn3Ak \A 2ke{{)  \  A kc{{z J

/i0c3y2(o2 (  sin(Jfcz)\  
n2n3Ak \  Akz J'

(10a)

(10b)

We observe that within this approximation the formulas for intensity-dependent 
refractive indices (Eqs. (10a), (10b)) have similar structure to (8a) and (8b) derived 
within the former approximation. However, an important difference is that now 
n\2) depends also on the corresponding pump beam intensity |E J2.

4. Optical feedback in a Fabry—Perot cavity

The basic assumption of our calculation is that of a large wave-vector mismatch A k. 
In consequence, the amplitude of the incoming wave |E J is practically constant 
However, the phase (pa of the incoming wave exhibits a dependence on the path 
length and a linear dependence on the intensity |£ J 2. The role of the se­
cond-harmonic wave E2a is to bring about the path-length dependence of the phase 
of the fundamental wave. The cascaded process is required for the appearence of the 
second-harmonic wave, without which intensity and path-length dependence of the 
phase of the fundamental wave cannot appear. The dependence of the nonlinear
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refractive index n^f in (3) on the path length represents a new effect which is a 
direct consequence of the phase change 5q>m(z) (Eq. (2)).

R

in • out

Fig. 1. Fabry—Perot optical resonator considered in this paper

Fig. 2. Influence of nonlinearity parameter y on the input—output cavity characteristics. Reflection 
coefficient of the mirrors is taken as R  — 50%, the length of the cavity is L =  2· 10-4 m. The following 
units are used: [£ 2] =  1020 V2/m2, [y] =  10-20 C/V2. These units apply for all the figures
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Fig. 3. Outgoing versus incoming intensity of the a^-wave for different values of the intensity of the 
incident wave with frequency w2: a — \E‘”\2 =  0.01, b — \E*|2 =  0.02, c — \E2\2 =  0.04

Fig. 4. Intensity of the outgoing <u2-wave versus intensity of the incoming Oj-wave for different values of 
the intensity of the incident wave with frequency co2: a — \E%\2 =  0.01, b — \E2 \2 — 0.02, c — |£ 2|2 =  0.04

Now we consider the Fabry—Perot resonator filled with the y(2)-nonlinear 
medium and illuminated with the field intensity Ea (Fig. 1). As the intensity of the 
second-harmonic wave does not appear in (2), the presence of this wave in the 
Fabry—Perot cavity can be neglected. The mode of reasoning developed for lossless 
dispersive Kerr-like media with third-order nonlinearity [1], [2], can be directly 
applied in our case. The feedback process in the cavity can be described by 
considering only the forward and backward waves of frequency co. In Figure 2, we 
plotted (in general multistable) transmittance characteristics of the Fabry—Perot 
cavity. The parameter of nonlinearity y is taken as the control parameter of the 
phenomenon of bistability.
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Bistability resulting from three-waves interaction was described in an analogous 
way. The wave with frequency (o2 = (o1 —co2 takes over the role of the se­
cond-harmonic wave. This wave is indispensable for the appearance of the phase 
changes 5cp1 and <5 q>2, however, due to its small intensity it can be neglected in this 
discussion of the feedback in Fabry—Perot cavity.

To obtain Figures 3 and 4, we assumed that the cavity is illuminated by a strong 
pump beam of frequency coit the intensity of which on the input is varied, and the 
probe beam of frequency co2, which on the input remains constant. In Figure 3, we 
observe that changing the value of input probe beam intensity we influence the 
input—output characteristics of the Fabry—Perot cavity for the pump beam, from 
linear to bistable. We also observe (Fig. 4) that the intensity of the probe beam at the 
output is strongly influenced by the change of input pump beam intensity, and that 
the shape of this relation can exhibit bistability.

5. Conclusions

As a consequence of a sufficiently large wave-vector mismatch, the phase of the 
incoming wave (two waves in the case of non-degenerated three waves-interaction, 
respectively) exhibited a dependence on the path length and a linear dependence on 
the intensity of the fundamental beam. The dependence of the nonlinear refractive 
index on the intensity is a direct consequence of the phase change. As the intensity of 
the second-harmonic wave (difference wave, respectively) does not appear in the 
formula for the phase of fundamental wave (waves), the presence of this wave in the 
Fabry—Perot cavity can be neglected.

We thus have constructed a model mechanism of optical bistability in media 
without space-inversion centre, which exhibit second-order polarization. The num­
ber of such materials is large, however, their bistable properties were as yet not 
examined in a satisfactory manner. An experimental verification of the conclusions of 
this paper for several organic materials is reported by Pura et al. (to be published).

Acknowledgement — This work was supported by the Grant No. 8 S507 018 06 of the Polish Committee 
for Scientific Research (KBN).

References
[1] Lugiato L., Bonifacio R , [In] Progress in Optics, VoL XXI, [Ed]. E. Wolf., North-Holland, 

Amsterdam 1981.
[2] G ibbs H. M., Optical Bistability, Academic Press, New York 1985.
[2] Wherrett B. S , H utchings D. C., [In] Nonlinear Optics in Signal Processing, [Ed.] R. W. Eason, 

A. Miller, Chapman & Hall, London 1993.
[4] Trutschel J., et aln IEEE J. Quantum Electron. 21 (1986), 1693.
[5] Pura B., ZagOrski A., Petykiewicz J., O p t App. 24 (1994), 229.
[6] Reinisch R., N eviere M , Popov E., Phys. L ett 20 (1995), 2472.
[7] D esalvo R , Hagan D. J., Sheik-Bahae M., Stegeman G , Van Stryland E. W , Vanherzeele H., 

O p t Lett 17 (1992), 28.



314 W . J eda, J. P etykiewicz, A. ZagOrski

[8] Steoeman G., Sheik-Bahae M., Van Stryland R  W , Assanto G., O p t L ett 18 (1993), 13.
[9] Schiek R , J. O p t Soc. Am. B 10 (1993), 1848.

Received November 27, 1996


