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The growing family of spatial solitons
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The recent proliferation of spatial solitons which have been observed experimentally is discussed.

1. Introduction

The effects of material optical nonlinearities on the propagation of optical beams in 
nonlinear media have been investigated since the earliest days of nonlinear optics 
[1]. Self-focusing of laser beams, leading to beam filamentation and subsequently to 
material damage was frequently encountered. It was not until the 1970s that the 
connection was made between the one parameter family of solutions to the 
Nonlinear Schrôdinger Equation (NLS), called solitons, and the observed beam 
filamentation and self-trapping [2]. These solutions are valid for ID "pulses’, i.e., 
beams with a finite extent in one spatial or temporal dimension (time or space) 
travelling in a medium (Kerr) in which the self-induced index change An is strictly 
proportional to the local intensity I, i.e.y An =  n2I. Solitons are robust, i.e., not 
destroyed by small perturbations, and one parameter in the sense that choosing the 
peak power determines the pulse width, or vice-versa. In those early days, it was 
quickly realized that Kerr nonlinearities could only support stable spatial solitons 
with one transverse beam dimension, i.e., in a slab waveguide. Later it was shown 
that an additional degree of freedom was required for the 2D case [1]. Stable 
self-trapped beams, but not solitons in the strictest mathematical sense, with 
two-dimensional (2D) cross-sections could also exist, but they required the presence 
of saturation in the index change with increasing intensity, or a higher order (e.g., 
X(5)) nonlinearity [1].

Although the initial interest in solitons was driven by the observed beam 
filamentation, it was temporal solitons that were first investigated experimentally in 
detail in glass fibres [3], [4]. Bright solitons were observed first [3]. They consist of 
an isolated bright temporal pulse which does not spread in time upon propagation. 
Later, dark solitons which correspond to a narrow intensity zero imbedded in 
a broad, background light field were observed [4]. This was followed by grey 
solitons for which the intensity goes to a minimum but not zero, the interactions 
between orthogonally polarized solitons, etc. [4], [5].

In this paper we will concentrate on spatial solitons and discuss the large variety 
of spatial solitons that have been observed experimentally to date, see Fig. 1. The
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Fig. 1. Schematic of the spatial soliton family

first clean spatial solitons were observed in a waveguide made from CS2 sandwiched 
by two glass plates in 1988 and this field has blossomed since then [6]. This paper is 
not meant to be a complete review. Instead the goal is to sketch the rich variety of 
spatial solitons that have been observed in the last few years.

2. Spatial solitons based on third order nonlinearities

Here there are three main categories of spatial solitons, bright, dark and vortex. 
Typical amplitude and phase distributions are shown in Fig. 2.

2.1. ID bright spatial solitons

Bright spatial solitons were first identified in ID CS2-filled slab waveguides. The 
nonlinearity was the classic intensity-induced molecular reorientation of optically 
anisotropic molecules. It resembles the Kerr case for small index changes [6]. These 
solitons are beams with a single polarization which propagate in a slab waveguide
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Bright solitons Dark solitons

Fig. 2. Field amplitude and phase distributions associated with (a) a bright soliton, (b) a dark soliton and 
(c) a grey soliton

without spreading in the plane of the slab. For propagation along the z-axis and 
x  normal to the slab surfaces, they satisfy the NLS equation

dz
i d2Ee 

2k dy2
+ ik0n2fE\Ee\2Ee (1)

where n2 > 0 and we have assumed a TE guided mode (subscript e, a TM mode 
would be subscripted m). Note that the term n2E\Ee\2 represents an intensity 
dependent refractive index change A n(I). This term is frequently called the self-phase 
modulation term. The solution, without the usual propagator term exp[i(eui—fcz)], is 
of the form

£'(r) * ̂ ¿£iMsech(i)expfe] <2)
where co0 is approximately the 1/e beam halfwidth and Ee(x) is the guided wave field 
distribution along x, the waveguide confinement axis. The corresponding field 
distribution is sketched in Fig. 2. For a pure n2 nonlinearity, the solitons satisfy the 
NLS, and pass through each other on collision with no energy exchange. Ultrafast 
electronic Kerr nonlinearities were used first in glass and then later in AlGaAs 
waveguides to observe ID spatial solitons [7], [8]. In all of these cases the soliton 
had a single polarization component.

Self-trapped beams, and even mathematical spatial solitons for a special case, can 
exist for dual polarization beams [9 ]-[11 ]. In 1996 dual polarization self-trapped
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were observed for the first time [12], [13]. They satisfy the following equations for 
the two polarizations:

SF i 3̂ 1F
~df =  ^ - g ^ + i K n 2i\Ee\2E.+A\Em\1Ee+BElE*exp(~2i5kz)l (3)

^ =  ^ ^ + i k 0ri1UEJ1Em+A'\EJi‘Em+B'ElE*exp(2iSkz)·]. (4)

Now in addition to the self-induced index change, there is also an index change 
induced by the orthogonally polarized component for each polarization. For 
example, for the TE polarization component, the TM induced index change is 
rí2tE\Em\z, typically called cross-phase modulation. In the most general case, n2 and 
n2, A  and A' (ratio of cross-phase to self-phase modulation coefficients), and B and B' 
(coherent polarization coupling terms) are values appropriate to the TE and TM 
polarizations, respectively. The coupling terms lead directly to continuous, periodic 
with propagation distance, power exchange between the two polarizations. This 
results in "dynamic” spatial solitons since the beam widths of the two individual 
polarizations vary periodically with distance, but on the average the propagation is 
diffractionless. (There are also mixed polarization stationary solutions in which there 
is no power exchange, but these have not been found experimentally yet).

There is a special case called the Manakov soliton [9]. It is an integrable solution 
which requires very special material conditions, namely n2 =  n'2, A = A! — 1 and 
B =  B' =  0. In this case, the equations simplify to:

i d2Ee 
2k dy2

+ik0n2[\Ee\2+\Em\2lE e, (5)

BE.
dz

i d2Em 
2k dy2

ik0n2UEJ2+\Een E m. (6)

The unique nature of these Manakov solitons can now be seen from the term in 
the square brackets, the total induced index change which self-traps both polariza­
tions equally. That is the soliton properties are independent of the fraction of power 
in each polarization.

The difficulty in generating Manakov solitons is due to a material with the right 
nonlinear properties. For example, an isotropic material cannot satisfy these 
conditions since A = A! =  2/3. Fortuitously it was found that AlGaAs waveguides 
with the guiding material consisting of Al0>18Ga0 82As for propagation along the 
[110] axis with the [001] axis normal to slab surfaces, satisfied n2 =  ri2, A — A' = 1 
to within the experimental uncertainty (±5% ) [14]. Also, a trick was used to 
effectively make B =  B' =  0. Namely, the TE and TM components were excited by 
two separate beams which had travelled through different optical elements and hence 
experienced different phase modulation, frequency chirping, etc. Therefore the two 
fields, each about 500 fsec long were no longer coherent with respect to each other, 
effectively eliminating the exchange coupling term. Experimentally it was found that
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the soliton properties were independent of the fraction of power in the two 
polarizations, as long as the total power was a constant

As shown in Figure 1, the bright, ID, spatial solitons just discussed are just one 
branch of a large family of self-trapped beams. But, are these really all spatial 
solitons? In the strictest mathematical sense that a soliton is an integrable solution to 
the NLS equation, only the ID single polarization and the incoherently coupled dual 
polarization beams are ’’solitons”. In contrast, the coherently coupled dual polariza­
tion, ID beam is a solitary wave, i.e., a self-trapped beam. Nevertheless, it has now 
become common usage to call every self-trapped beam a soliton and we shall adopt 
this terminology here.

2.2. 2D bright spatial solitons

Beams with two transverse dimensions cannot form stable spatial solitons in pure 
Kerr law media. Another degree of freedom is needed. If the intensity-induced index 
change now takes on a more complicated (non-Kerr) form, namely An — n2I+ n 3I 2 
with n2 > 0 and n3 < 0, then stable 2D solitons can exist. They are governed by

No integrable solutions exist, but self-trapping does occur. A negative n3 can occur 
physically from either a distortion in the potential well in which an electron sits, or 
via saturation in the population of an excited state generated by the incident light via 
absorption. Measurements of the nonlinear properties of the polydiacetylene 
bis-para-toluene sulfonate (PTS) at 1600 nm have shown exactly the right properties 
[15]. Because there was no measurable multiphoton absorption, it is unlikely that 
this nonlinearity is due to saturation. In fact, 2D spatial solitons have recently been 
observed in this material [16]. Another useful material system is a gas of atoms 
which can be approximated by two level systems for frequencies near an electronic 
transition [17].

23. Dark spatial solitons

As indicated previously in Figure 1, a negative Kerr nonlinearity (n2 < 0) allows the 
excitation of dark spatial solitons. The appropriate ID equation is Eq. (1). The stable 
solution for the defocusing case is

Note that, as indicated in Figure 2, such a dark soliton requires a 7u phase shift at the 
zero in intensity. The dark soliton consists of an intensity zero which propagates 
without spreading, imbedded in a bright field of infinite extent. If in fact the 
launching conditions lead to a phase change of less than n, then the minimum does 
not reach zero and ’’grey” solitons are obtained.

True ID dark spatial solitons have proven difficult to achieve experimentally.

(7)

£ e(x)tanh (8)
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Just as was the case for bright solitons, it is known that 2D dark solitons are 
unstable in bulk Kerr media, but are stable in saturable media [18]. Furthermore, if 
diffraction in one of the dimensions can be arrested, for example by diffraction from 
a periodic structure, the 2D case can be reduced to ID [19]. The generating 
equations are essentially the same as those for 2D bright solitons, i.e., Eq. (7) with 
n2 < 0 and n3 >  0. Such 2D dark spatial solitons have been generated in a number of 
different media, including liquids with thermal nonlinearities, semiconductors and 
gases (near a two level resonance) [19] — [21]. Although none of these cases really 
corresponded to local instantaneous nonlinearities, the observed beams were 
indistinguishable from dark and grey solitons. Note that it is not really feasible to 
produce an infinite background field into which the dark soliton is embedded 
because this requires infinite energy. Thus, in practice, the background field was of 
finite extent and in fact diffracted upon propagation, increasing with propagation 
distance the dark soliton width. This ultimately leads to the decay of a dark soliton 
into grey solitons.

A line array of dark spatial solitons has also been generated using a thermal 
nonlinearity [22]. Two weakly focused elliptical beams were intersected at a small 
angle to produce an interference pattern. This interference pattern evolved with 
distance into an array of regularly spaced dark solitons. The ’’gain” provided by the 
weak focusing was sufficient to prevent this ID array of spatial solitons from 
reconstituting itself back into the interference pattern. The net result was a line of 
regularly spaced dark solitons.

4.4. Vortex solitons

One of the most interesting spatial soliton phenomena to be observed are vortex 
solitons [23] — [25]. A vortex in general is a singular point in space which has the 
property that integration of the phase of the electromagnetic field around this point 
yields a non-zero value, ±2mn, where m is an integer and the sign determines the 
sign of the ’’topological charge”. What separates a vortex soliton from a linear vortex 
is its non-diffracting nature with propagation distance. The generating equation is 
again Eq. (7), but of course the boundary conditions at the input contain a screw 
discontinuity, i.e., a vortex. Furthermore, another wave of either orthogonal 
polarization or at a different frequency can be guided in the vortex, i.e., it acts like an 
optical fiber.

Dark wortex solitons have been generated directly with appropriate phase masks 
in both liquids (thermal nonlinearities), and in gases of two level atoms with an 
appropriate detuning from resonance to produce a defocusing nonlinearity [23], 
[24]. The field distribution is given approximately by [23]

(9)

Pairs of dark vortex solitons can also be generated by the modulational 
instability of a ID dark stripe in an intense 2D background optical field of limited
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extent [24]. This stripe first evolves into a ’’snake” instability. This, in turn, 
degenerates into pairs of dark vortex solitons which rotate around each other on 
further propagation. This beautiful demonstration is in excellent agreement with 
theory [24].

The generation of bright spatial solitary waves has also been observed by the 
break-up of an optical vortex in a saturable self-focusing medium [25]. A vortex 
imbedded in a strong bright field undergoes azimuthal symmetry breaking modula- 
tional instabilities. The resulting pairs of bright spatial solitons spiral around the 
center of the initial bright beam.

3. Solitons in quadratically nonlinear media

Spatial solitons have been observed which do not even require the traditional third 
order nonlinearities. For example, a variety of bright and dark spatial solitons have 
been reported in photorefractive media. And solitons even occur during second 
harmonic generation (SHG).

3.1. SHG solitons

These are a particular example of parametric solitons which can exist when fields at 
different frequencies are strongly coupled via a second order nonlinearity x(2) near 
phase-matching for that mixing interaction. The simplest case is for Type I SHG in 
which one fundamental beam produces one SHG beam. The usual coupled mode 
equations describe this process, namely:

d „ i d2E. i d2E.V _ 1 I 1— T vi — 0 f t 17 17* p y Yi A b «7~| (10)
dz 1 2/cx dx2 2ky dy2

— IXy — CU, ZuJ, — (DfH, i CAp [iZI KZJ ,

d F ' d l£ l I ‘ S2El 
dz 2 lk 2 dx2 lk 2 dy2

-  ix( — 2co; co,co)E2 exp [ —\A kz\, (11)

where Et and E2 are the complex field amplitudes for the fundamental and second 
harmonic, respectively, the wavevector mismatch is Ak = 2ki —k2 — 
2kvac(&j)[n1(co)—n2(2co)] and x is a coupling constant proportional to d[2l  The first 
two terms on the RHS are the usual diffraction terms and the third term describes 
the coupling which both regenerates the fundamental from the second harmonic 
(down-conversion in Eq. (10)) and generates the second harmonic (up-conversion) 
in Eq. (9).

Since there is no index change associaded with this interaction, the origin of the 
beam narrowing effect is not immediately clear. Starting from the fundamental, the 
spatial width of the generated harmonic is spatially narrower than the fundamental 
because it is proportional to the fundamental spatial distribution squared. Similarly, 
the regenerated fundamental is narrower than die original fundamental for the same 
reason. The key condition for defeating diffraction is that the parametric gain length, 
defined by IxEi^l-1 ls smaller than the diffraction length. This of course does not
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quarantee a stable soliton solution. However, a stable soliton does evolve under 
those conditions.

Both ID and 2D quadratic bright spatial solitons have been observed experimen­
tally [26], [27]. Both are stable. For the ID case investigated in LiNb03 slab 
waveguides, the SHG process was far from the phase-matching condition so that the 
second harmonic field was small [26]. The resulting spatial soliton closely resembled 
that of a Kerr ID soliton.

The 2D spatial solitons during SHG have also been observed in bulk KTP which 
requires Type II phase-matching [27]. That is, two orthogonally polarized fun­
damental input beams are required. Above the threshold power, the three beams, two 
fundamental and one harmonic lock together in space and propagate together 
without diffraction. There are two additional features which make these spatial 
solitons especially useful. First, in situations with walk-off, i.e., where the group 
velocities of at least one of the interacting beams is different from the others), all of 
the beams co-propagate above the soliton locking threshold, that is, no walk-off 
occurs. In addition, when the crystal alignment is not exactly at the phase-matching 
condition, the locking process ’’pulls” it onto phase-matching.

32. Photorefractive solitons

A variety of bright and dark spatial solitons can exist in photorefractive media. 
Absorption of light generates carriers whose motion, usually under the influence of 
an external field, leads to an internal electric field. The electro-optic effect then 
creates a refractive index change under the influence of the total local electric field. 
A ’’waveguide” is formed by the refractive index changes which then guide the beam 
itself, or other optical beams. The generic equation in 2D is

d J L _ i_ P E  i d2E 
dz 2k dx2 2k dy2

i-An{E)E
n

(12)

where the exact form of An determines the type of soliton obtained. Namely:
1. Ancc rcll[d2l/dy2~\/I, where I  is the optical intensity distribution gives a 

quasi-steady state photorefractive soliton [28] —[30]. Photocarriers are excited by 
optical absorption and carrier drift in the presence of an electric field establishes 
a screening field. During this process the ensuing gradients lead to a transient spatial 
soliton.

2. dnocreff/ / [ / + / J ,  where Id is the dark current leads to photovoltaic spatial 
solitons [31]. The index change required for these steady state solitons is generated 
by photovoltaic currents generated by the absorption of the light.

3. dnocreff/ [ / + / J  leads to steady state screening solitons [32], [33]. In this 
case the photoexcited charge leaves the illuminated region under the influence of an 
external field, sets up its own internal field which at least partially compensates the 
external field in the illuminated region. Depending on the sign of the electric fields, 
electro-optic coefficients, and crystal orientation, the index change can lead to either 
dark or bright spatial solitons.
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Which type of soliton can be excited depends on the details of the material 
properties (photovoltaic versus photoconductive, sign of electro-optic coefficients, 
etc.\ and the conditions under which the external fields were applied. These solitons 
also have their stability criteria. For example, dark stripes on a 2D bright 
background have been shown to develop snake instabilities and to degenerate into 
pairs of optical vortices [34].

4. Summary

Eight years ago spatial solitons were reported for the first time in CS2 slab 
waveguides. These were ID bright solitons, based on a classical Kerr nonlinearity, 
stable solutions to the NLS equation. Since then the variety of spatial solitons has 
exploded. There are now solitons with more than one polarization in Kerr media, 2D 
spatial solitons based on saturable third order, or higher order nonlinearities, and 
single polarization, vortex and arrays of dark spatial solitons. A new branch has also 
been bom, spatial solitons based on second order nonlinearities. These include 
different types of photorefractive spatial solitons, both bright and dark. And most 
remarkable are the quadratic spatial solitons which occur during parametric 
processes such as second harmonic generation. It has been truly an exciting time for 
spatial soliton physics.
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