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Diffraction by a perfectly conducting open-ended 
waveguide in a homogeneous biisotropic medium

S. Asghar, Tasawar H ayat

Mathematics Department, Quaid-i-Azam University, Islamabad, Pakistan.

In this paper, the diffraction of an electromagnetic wave within perfectly conducting parallel-plates 
embedded in a homogeneous biisotropic medium is examined. The vector diffraction problem is 
reduced to the scattering of a single scalar field, the latter being the normal component of either 
a left-handed or a right-handed Beltrami field. The scattering of the left-handed field component is 
explicitly analyzed, with that of the other scalar field being analogously tractable.

1. Introduction
The concept of Beltrami fields and flows has a long and distinguished history in fluid 
mechanics. A mathematical formulation of Beltrami flows was first published in the 
year 1889 [1]. The reintroduction of Beltrami flows must be credited to CHANDRA­
SEKHAR [ 2 ] ,  who was then deeply involved in a study of force-free magnetic fields. In 
electromagnetism, following early work by SlLBERSTElN [3 ] , the Beltrami field 
concept has been repeatedly rediscovered throughout this century (see, e.g., 
[4] — [6]), though its antecedents have generally remained muddled. It is fair to state 
that these approaches mainly viewed the Beltrami field concept as a convenient tool 
to rearrange the time-harmonic electromagnetic field equations. Only in recent years, 
with considerable interest in the study of complex media, has there been a shift in 
emphasis: Beltrami fields are essential for the description of time harmonic 
electromagnetic fields in chiral and biisotropic media [7], [8], for which reason they 
have occurred quite often in very recent literature on electrical engineering.

During the last few years, considerable interest has been demonstrated by the 
electromagnetics community in the study of the Beltrami fields in a biisotropic 
medium. A number of developments have been given in [9] — [15], To these may be 
added papers on diffraction by a half-plane [16], [17]. Whereas guided wave 
propagation in biisotropic and isotropic chiral media has been much attended to of 
late, canonical diffraction problems have not been tackled. A notable exception is 
a paper by FlSANOV [18] on chiral wedges. In continuation of this line of seeking 
a better understanding of the interaction of electromagnetic fields in a biisotropic 
medium, the objective of this paper is to obtain the diffraction of an electromagnetic 
wave by a perfectly conducting open-ended waveguide. Since time-harmonic 
electromagnetic fields in a biisotropic medium are not more difficult to analyze than 
in an isotropic chiral medium, we let the open-ended waveguide lie in a homo­
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geneous biisotropic medium. The diffraction of a left-handed Beltrami plane wave 
incidence is discussed using the Wiener-Hopf technique [19].

2. Formulation of the problem

Let all space be occupied by a homogeneous biisotropic medium with the exception 
of the perfectly conducting waveguide z <  0, x  =  ±b. The geometry of the problem 
is shown in the Figure. In the Fedorov representation [20], biisotropic medium is 
characterized by the frequency-domain constitutive relations:

D = eE + eaV x E, (1)

B = /iH+uPWxH  (la)

where e and /z are the permittivity and permeability scalars, respectively, while a. and 
P are the biisotropy pseudoscalars. The biisotropic medium with a = ft is reciprocal 
and is then called a chiral medium. The time dependence exp(icot) is assumed 
throughout.

Using the constitutive relations (la) and (lb), the Maxwell curl postulates, 
V x E = — icoB, and V x H  =  itoD, may be written as:

V xQ x — )’iQi> (2a)

V x Q2 = ~ 1 2Q.2i (2b)
with the Beltrami fields [21]

Q i - Z ^ h r l E + i r i z H l ,  (3a)
n 1 ' */2

Q2 = ^ h r i H + iEM ’ (3b)»7l + *12
in terms of the electric field E and the magnetic field H. The two wave numbers y1 
and y2 in this medium are given by:
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7i = (1_ ^  {v 'l +  k2(a-/J)2/4 +  fc(« + «/2}, (4a)

>-2 =  (1_ | 2̂  {V l +  k2( a - « 2/4 -k (a+ ^ /2 } . (4b)

and the two impedances and rj2 by:

th =  *|{Vl +  fc2(«—̂ )2/4H-fc(«—̂ y2}-4, (4c)

»72 = >/{ V 1+ k2 (“ -  ̂ )2/4+ k(a -  0)/2} (4d)

where k = — aiy/sfL and t] — y/Jt/e are merely shorthand notations. Furthermore, 
while Qi is JE-like (left-handed Beltrami field), Q2 is //-like (right-handed). Because of 
our interest in scattering with a prescribed y-variation, it is appropriate to 
decompose the Beltrami fields as [15]

Qt -  Qu+yQiy, (5a)

Ql = Q.2t + yQ.2y (5b)
where the fields Qu and Q2( lie in the x —z plane and y is a unit vector along the
y-axis, so that y-Qu =  0 and y Q2t =  0. Next, on assuming that all field vectors have
an implicit exp(—ikyy) dependence on the variable y, we get from Eqs. (2a), (2b)

tlx

III

Qzx

where:

“  lc?„ [ '

=i [ - ‘

= i 4 Z l ‘

i L ^ + y  ^dx dz

W ly
tk’ d~ i ? + y‘ dx

3Q2

]■

]■

*■*£+**&

k?« =  (}-?-k,2) \
k l x z  =  (r2- k 2) J

(6a)

(6b)

(6c)

(6d )

(6e)

Now, note that if we explore the scattering of the scalar fields Qly and Q2y, then we 
can completely determine the other components Q2 and Q2 by using Eqs. (6 a)— (6d). 
With the help of Eqs. (2a), (2b), it can be easily shown that the scalar fields Qly and 
Q2y satisfy the reduced scalar Helmholtz equations:
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On the perfectly conducting plates the tangential component of electric field must 
vanish. This implies that Ex — 0 = Ey [22], [23] for z <  0, x =  ±b. Using this fact in 
Eqs. (3 a), (3b) we obtain:

Q iy - irhQiy =  0, z < 0, x =  ±b, (8a)

Q ix~ irhQzx =  0» z < 0, x =  ±b. (8b)
With the help of Eqs. (6a), (6c) and (8a), (8b), we have:

dx
where

^  +  < 5 ^  =  0,dz z < 0, x — ±b, (9)

<5 =(yiklxz+y2kixz)liky(k2lxz- k l xz)] 1

and T signs in Eq. (9) correspond to the upper and lower sides of each plate, 
respectively. It is worthwhile noting that the boundary conditions (9) are of the same 
form as impedance boundary conditions [19].

Because the fields radiated by any finite-sized source can be represented in terms 
of an angular spectrum of plane waves, without loss of generality we can set the 
incident field to be a plane wave. Thus,

Qi (*. z) =  fif°(x, z) +  QT(x, z) (10)
with

Q[™(x,z) =  e- ,{k>y+k'*x+k''2\  (11)

where k j ^  = kfx + kj2 =  (yj — ky). Our aim is to find Qs“ (x,z) such that Eq. (9) is 
satisfied by

Qly(x, z) = Ql“C(X> z) + Qr;(x, z), (12)

and we recall the implicit exp(—ikyy) dependence of all fields on the variable y. 
For a unique solution of the problem we also require

Qi“ (x,z) =  0[exp(—Imfclxz)z] as z-»oo,

ö i“  =  0[exp(lmfciz)z] as z -+ — oo, (13a)
and the edge condition [24]:

Qi,(x,z) =  0 (1),

^  Qiy (x, z) =  0(r~112) as r-»0 . (13b)

In Equation (13 b), r is the distance from (b,z) to (b, 0) or ( — b,z) to (—b,0), 
respectively, with z >  0.
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We note that the field Q2y also satisfies the same set of conditions, i.e., Eqs. (9) 
and (13a), (13b). We must also observe at this juncture that, in effect, we need to 
consider the diffraction of only one scalar field, i.e., either Qiy or Q2y, at a time, but 
the presence of the other scalar field is reflected in the complicated nature of the 
boundary conditions (9).

From Equations (7 a) and (12)

+  ̂ 2  +  kLxJ QTy =  0 (14)

where: klxz =  Re(kixz)+ilm(klxz), and Im(fe1;t2) -> 0+ is the loss factor of the 
medium.

3. Wiener-Hopf method

We now suppress the y-dependence in our analysis. If we introduce the Fourier 
transform

i/r(x,v) =  —=  j Qi“ (x,z)e'vzdz 
2 71 — oo

(15)

where v = cr+it, then it follows from the asymptotic behaviour of Qfy{x,z) that 
\p(x, v) is regular in the strip defined by

Im(fe12) >  Im(v) >  -Im(fclx2).

The transformed wave equation (14) reads

(16)

M*,v) =  0 (17)

where x = (v2 —fcfxz)1/2 and the proper branch for the double mixed function x is 
chosen such that Re x > 0. Introducing the Fourier integrals as

<M * , v) =  J Q8“ (x, z) eivzdz,
y/2n  o

iM x,v) =  —^  J QTy(x,z)e"2dz,
-y/ 27C — oo

we express i/i(x, v) as

= <Mx,v) + iM x,v) (18a)

where the subscripts “ —” and “ +  ” indicate that i/r_(x, v) is regular in the lower-half 
v plane defined by Im(v) < Im(/cl2), and iA+(x,v) is regular in the upper-half v plane 
defined by Im(v) > — Im(/clx2), respectively.
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The inverse Fourier transform is

= —j== J <Mx,v)e IVZdv.
-y/ 2n — oo

(18b)

Using Eqs. (11) and (12) in Eq. (9) and then taking Fourier transform with respect 
to z of the resulting expression we obtain

M r . v M W ' . r , , ) “  »·

i Tfe + 51 g'*“6 = 0

(19a)

(19b)

(19c)

(19d)

where b+ and b~ denote the upper and lower sides of the plates at x = +b and the 
prime denotes differentiation with respect to x.

The solution of Eq. (17) satisfying the radiation condition, can be formally 
written as

iKx, v) =  ·
AMe-™,
B(V)e~xx + C(v)exx, 
D(v)exx,

x > b
—b < x < b  

x  < — b
(20)

where: 4̂(v), B(v), C(v) and D(v) are unknowns. In terms of Eq. (18a), the values of
i//(x, v) at the two plates can easily be written as:

il/+(b,v) + \J/_(b+,v) = A(v)e~xb, (21a)
il/+(b,v) + [//_(b~,v) =  B(v)e~xb + C(v)exb, (21b)
iA + (-b ,v )+ «A -(-b  + ,v) =  B(v)exb + C(v)exb, (21c)
i/' + (-fc,v) + i/r_(-fc- ,v) =  D(v)e~xb, (21d)
r +(b,v) + r ~ (b \v )  = —xA(y)e~xb, (22a)
^V(M+<A-(&~,v) =  -xB(v)e~xb+y<C(v)exb, (22b)
il/'+( - b , v ) + V - ( - b +,v) = -*B(v)exb + xC(v)e~xb, (22c)
^'+(-M + < A '_(-fc-,v ) = *D(V)e -xb, (22d)

where:

i M ± t +,v) =  iK (± b ~ ,v )  = i M ± M ·
From Eqs. (21) and (22) we have
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^ (v )

B(v) = - | ~ J _ ( - b ,v ) - ± J ’- ( - b ,v )  e~*b, 

C (v )= -|^J_ (fc ,v )+ ij'_ (b ,v )Je- xi,

>̂(v) = [ j - ( - b , v ) + ±  J'_(fc,v)Jex6-^J_ (b ,v )+ ^  J'_(b,v)le-Xfc. 

In writing Eqs. (23) we have used

•MM) = ĴjMi> + ,v)-iMfc- ,v)J,

M ~ M ) = l^ _ ( - b - ,v)-^ _ (-b +,v) ,

J'_(fc,v) =  ^ L '_ (h +,v )-^_ (b -,v ) ,

J '( - fc ,v )  =  i L ' . ( - b - (v ) - f . ( - f c +,v) .

Substitution of Eqs. (23a) and (24c) in Eq. (22a) yields

r + ( M ) + ||V ( M v ) + » M M v ) ]

=  -x J_ (b ,v ) + xe_2xi^ J_ (-fc ,v )-ij '_ (-fc ,v )J . 

Subtraction of Eq. (19a) from Eq. (19b) gives

^'_(b+,v) + i/'-(b ,v) =  —2iv5J_(b,v)+- klxe~ik'’b
(2n )ll2( v - k i2Y 

Making use of Eq. (26) in Eq. (25), we have

>MM) + M M ),v )
L· p~ik i,b

----- —  =  * i T 2xfc(2n)1/2(v —fclz)

In a similar way, we can derive the following equations:
Jk.'b

P +(-b ,v )-J_ (b ,v ), v) |^x —iv^J klxe ' ^

= —xe — 2 xb

(2n)1/2(v — klz)

|[m M ) + ^ M M ) J ,

(23a)

(23b)

(23c)

(23d)

(24a)

(24b)

(24c)

(24d)

(25)

(26)

U - b ,v )  ■ 

(27)

(28)
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fcj
=  — e —2xb

’ f  J  _ (b, v)+ ^  J'_ (ft, v) J.=  — e

Now subtraction and addition of Eqs. (27) and (28), respectively, gives

P V O O - l * *  u /° r( T ^  =  1 v 35 _ (v)— 2x2 _ (v) G(v)+ (v) e ~ 2xft, 
(27r)1/2(v — felz)

s+(v)+̂ ^^v f̂e7)= iv<5D-(v)_2xD-(v)L(v)_r-(v)e_2x6·
Again, subtracting and adding Eqs. (29) and (30), respectively, yields

P , (v )+  ^ C (fell b)r  (— i/v<5)T'_ (v) — 2bT'_(v)G(v) +  D _ (v)e~2xt, v(2n)ll2( y - k lz)

6 + (v )+  =  (— i/v<5) -R -  (v) — (2/x)R'_ (v) L  (v) — S _ (v) e ~ 2x6.
v{2n)ll2( v - k iz)

In writing Eqs. (31) —(34), we have used:

D'+ (v) =  i/r'+ (b, v) - 1!/'+(-b, v ) , '  
S '+ (v) =  i^V(b,v) +  iA'+ ( - b , v ) ,  
P + (v) =  i M b , v ) - < M - b , v ) ,  
Q + (v) =  iA+(b, v) +  i/̂  + ( —b ,v), 
S _(v) =  J _ ( b ,v )  +  J _ ( - b , v ) ,  
D _(v) =  J-(b,v)—J  - (  —b, v),
R - (v) =  J  -  (b, v) — J'_ (—b, v), 
r_(v) =  J'_(b,v) +  J'_ (-b ,v),

, s e - x i s in h x b  
G (v )”  x t  ·

L(v) =  e _ x i c o sh x b .

The functions G(v) and L(v) may be factorized as
G(v) =  G+(v)G_(v) =  G+(v)G+(-v),

L(v) =  L +(v)L_(v) =  L +(v)L+( —v)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38a)
(38b)
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where:

G »  = [ ^ f ] 1/2exP{ ^  [1 -  Ct + In (2n/klxt b) + in/2] J

x e x p I n ( ( v - Jt)/klxz) \  f [ ( l  +  v/ixH)ei2vblnK,
even

exp<”  [1 — Cx +  In (n/2klxz b)+ itc/2] 1 

x exp j “ r  In ((v- x)/klxz) j  [1(1 +  v/ixn)ei2vblmt,
even

x„ =  [(n7t/2fc)2 — k2*z] 1/2, Cv =0.5772 ... is Euler’s constant

Equations (31) —(34) are the desired Wiener-Hopf equations to be solved for the 
unknowns A, B, C and D. Their solution is given in the next Section.

4. Simplification of Wiener-Hopf equations

Let us first concentrate on the solution of Eq. (31). Rewrite it as

D'+(v) -iöU+(v)— F+(v)-
2iklxsm(klxb)

(v+fci xt)G+(v) ' +w  (27c)1/2(v —kl2)

X [(v+fci«)G +(v) (kiz + klxz)G+(klz)\

2iklx sin(klx:b)
,W -(v) (V) (2n)1/2(v — k lz)(kiz + klxz)G+(kiz)

— 2(v—kljt2)bS_(v)G_(v)

where the splitting technique of Noble [19] has been used 

x =  (v2-k ? « )1/2 =  (v+ klxz)ll2( v - k lxz)1' \

S-(v)
(v+klxz)G+(v)

R'-(v)e~2xb
(v+ ki„)G +(v)

lf+(v) +  U_(v), 

F+(v)+K_(v).

(38c)

We note that all the terms on the left-hand side are “ +  ” functions, while all the 
terms on the right-hand side are “ —” functions. The left-hand side of Eq. (38 c) is 
analytic in the domain — Im(/clJ£2) < Im(v) and the right-hand side is analytic in the 
domain Im(v) <  Im(/cl2), and thus both expressions define an entire function because 
of the strip common to both domains. With the help of the edge condition, it may be
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shown that both sides of Eq. (38c) are equal to zero and the resultant equations are 
valid for all v. In particular, equating the right-hand side of Eq. (38c) to zero 
gives

s^)= i:5U-?)+z - % -, ( v - * i xz) 1iklxsin(klxb)
2b(v-fclxz)G_(v) b ( 2 n y \ V- k u )(klxz +  klz)G+(klz)G_(Vy  

In a similar fashion, Eqs. (32), (33) and (34) can be shown to give 

i<5X_(v)-Y_(v) (v -* 1„ r 1/2*1,cos(fc1,6)D_(v) =
2(v—felxz)1/2L_(v) (2nyi2(V- k iz)(klxz + klzy '2L +(klz)L_(Vy

sm(klxb)r  (v) {—i/5)E_(v) + F_(v) |
2bG_(v) ' (27i)1/2vG+(0)G_(v)h

sin (klxb)
(2n)112 (y—kiz)G+ (klz)G_(v)b’

(i/5)W_(v)+I_(v) i ( v - k lxzy i2(kixzy 12 cos (klxb) 
^  '  2(v —fclxz)_1/2L_(vj (2n)1/2 vL+ (0) L_(v)

' ( v - k lxz)ll2(klz + klxzy i2cos(klxb)
(2ir)1/z(v — klz) L +(fclz)L_ (v)

where:

£_(v)
(v +  ̂ l« )1/2-i'+(v)

=  X +(v) +  X_(v), ^ 4 t  =  £ +(v) +  £_(v),

r_(v)e — 2xb

(.v+klxz)ll2L + (v)

R'-{v)(v + klxzy 12 
L +(v)

5_(v)e - 2xt(v +  fcljcz)2/2
L + (v)

= Y+(v)+Y_(v),

G+(v)

D_(v)e -2xb

G+(v)
— F +(v) + F_(v),

JY+(v)+IY_(v),

=  / + (v) +  I_(v).

From Eqs. (18 b), (20), (23) and (35) we can write

^ oo + ix
Qfy(x,z) =  — 1/2 J [5 _ (v) cosh xx + D _ (v) sinh xx

(2 ft) -oo + ir

-I-—1?'_ (v) cosh x x + -  T'- (v) sinh xx] e _ xi ~IVZ d v,
X X

(39)

(40)

(41)

(42)

(43)

where: — Im(fclxz) <  Im(v) < Im(/clz).
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5. Field within the waveguide

The transmitted field inside the waveguide can be calculated from Eq. (43). For 
negative z, we enclose the contour of integration in the upper half-plane. The 
integrand has simple poles at: (i) v =  klxz, klz and v = 0, (ii) v = ix„ (n =  0, 2,4, ...) 
in S_(v) and i?'_(v) corresponding to the equation: G_(v) =  0, (iii) v =  ixn (n = 1, 3, 
5, ...) in Z)_(v) and T'_(v) corresponding to L_(v) =  0. Evaluating the residues, we 
have

Qic;(*,z) .*+*,.*) sinOclxb)e
kixbG_(klxz)G+(kiz)

f -  (—l)2fclxfecos(fclxfe)(fclx2 +  zxJ1/2
1 n=i nn(klxz + klz)1,2(ix„ -  klz)L + (klz) LL (ix„)

y  _______________klxsm(klxb)______________
»=2 b(klxz+ k lz)(klxz- i x n){klz- i x n)G+(kiz)G'-(ixn)
even

y  sin(fcixb) f ______ 1_______ 1
n=i ^ G - ( ix fl)L(fclz- iX )G +(/cl2) x„G+(0)_
odd

+ E
n = 2

cos(klxb) J~(fclx — ix j  1 
bL'-(ixn) |_ L +(klz) \ L + (0 ) j

cos (n 7t (x—b)/2b) ex‘z

iQc^x-k,,!) i b U - ( k i xz) + V - ( k lxz) lklxzz

2 bG.(kixz)

1 (cos(klxb) cos(klx,x) sin(/clxb) sin(fclx2x)
+ ; r .< + -2i [ cos(klxzb) sin(fclx2b) j

+  [Af_ (ix j + iV_(ixn) + H_ (ix„) + 0  _ (ix j] cos(mt(x—b)/2b) e*,z,
where:

, ,  .. , i SX_(ix)  — Y_(ixn) M_(ixn) =  —  v

N-(iK) =

2(ix„-kixx)112 L'-(ixn)’ 

W )E _ (ixn)-F _ ( ix n)
2bG'-(ix„)

2b(ixn- k lxz)G'-(ixny
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0 -( i*  „) =  - 1 2L'_(ixJ

i ' - ( « X )  =
dL_ (v)

dv , G'_(/x„) =
v =  ix. dv

| 0 X - fci« )1/2.

dG_(v)
v =  ix.

6. Conclusions
We have studied a canonical diffraction problem in a homogeneous biisotropic 
medium. To summarize the preceding analysis, we make the following remarks:

i) The analysis for the right-handed Beltrami field Q2 is similar to that of its 
left-handed counterpart Qx.

ii) We recall that

Qiy(x, y, z) =  Qiy(x, z) exp(- ikyy), (44)
and it is clear from Eqs. (6) and (44) that after obtaining Qly(x,y,z) the remaining 
field quantities Qlx(x,y,z) and Qiz(x,y,z) can be calculated.

iii) A major use of the presented analysis shall be for antennas operating in 
hazardous environments, for instance, in the decontamination chambers of hospitals 
in which textiles and apparatuses are routinely sterilized using highly toxic organic 
gases. Antennas and bodies coated with chiral materials offer another use for the 
presented analysis.

In nature chiral media occur as the stereo-isomers of organic chemistry which 
reveal circular birefringence or optical activity at optical frequencies.
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