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Compression of greyscale images based on sub-band 
decomposition using morphological filters
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We present an algorithm for compression of greyscale images, which is a modification of the 
morphological sub-band decomposition algorithm proposed by Pei and Chen. In the first step, an 
input image is decomposed into four sub-bands using morphological opening and closing filters. In 
the second step, sub-bands are compressed with lossless methods matched to the dynamics of each 
sub-band. After transmission the sub-bands are decompressed and added together to form the 
output image. Results of computer simulations are presented.

1. Introduction
Expansion of computer networks during the last decade have caused drastic increase 
of information transferred by telecommunication links. A great part of this 
information are coded greyscale images. The problem of image coding and 
compression in order to decrease the amount of transmitted and stored information 
is therefore important. Many algorithms have been invented for coding and 
compression but most of them are complicated and require much processing time 
[1]. New fast and simple algorithms are still to be found. One of the possibilities is to 
use mathematical morphology as a tool for analysis of images and description of 
their structural properties [2] — [4]. As a result of morphological filtering performed 
in the image plane we calculate images which are simpler than the original and could 
be compressed with small compressed-to-original ratio.

A number of earlier experimental studies have shown the possibility of construc­
ting optical-digital systems for morphological filtering [5] —[8], The most time 
-consuming operation which is a convolution of an image with a filter running 
window can be made optically. Other algebraic and logical operations are then made 
in an electronic part of optoelectronic processors.

This paper presents advantages of using morphological operations to achieve fast 
image compression. The algorithm presented is a modified version of that proposed 
by Pei and C h e n  [9]. The possibility of the algorithm being realized in an 
optical-digital systems is considered. In Section 2, we review mathematical mor­
phology operations on binary and greyscale images. In Section 3, the sub-band 
decomposition operation in the image plane is defined, methods of compression of 
sub-bands are discussed, and a block diagram of the algorithm is presented. Sec­
tion 4 contains the results of computer simulation.
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2. Mathematical morphology
2.1. Basic morphological operations
Mathematical morphology is based on operations defined in set theory by 
Minkowski in the first decade of the 20-th century. These operations are Minkowski 
addition and subtraction. Symbols X and A denote any two sets in Euclidean 
space E.

Minkowski addition is defined as

X ® A  = {x + a :xeX ,aeA}  = \ J X a = \JAx (1)
aeA  x e X

where X a =  {X + a :x e X j  is the translation of a set X by a vector a. 
Minkowski subtraction is defined as

xex =  (x t ®A)c= n ^ - .  =  n ^ - *  (2)
aeA xeX

where superscript c indicates the complement of a set, that is, Xe =  
{xeE — R2:x(x) = 0}, and x is the characteristic function of a set X defined as 
follows:

*(*) = l is xeX , 
otherwise. (3)

Let AT be a set transposed to the set A, AT =  { — a\aeA).  For a set symmetric 
with respect to its origin, the transposed set A T is equal to itself. Then, basic 
morphological operations: erosion and dilation are defined as follows:

eat(X) = X  © A T — erosion, (4)

Sa t(X )  = X © A T — dilation. (5)

One of the two sets, for example A, which is smaller, modifies structure of the 
set X, that is, it acts as a structuring element.

Another way of looking at erosion and dilation is that erosion ea  of a set X by 
a structuring element A is a set of points (locus) in which the centre of the structuring 
element is located when the element A is included in the set X (in the extreme 
situation the set A is tangent to the boundary of the set X from inside); dilation SA of 
a set X by a structuring element A is a locus in which the centre of the structuring 
element is located when the element A intersects with the set X (in the extreme 
situation the set A is tangent to the boundary of the set X from outside).

This interpretation considered in terms of convolution of both binary functions 
gives erosion as supremum and dilation as infimum of the operation result 

Simple morphological filters, opening and closing ones, are calculated as 
sequences of erosion and dilation

XoAT = (XO A T)®A — opening, (6)
X«AT =  (XfflAT)OA — closing. (7)
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Fig. 1. Four basic morphological operations: erosion, dilation, opening and closing defined for binary sets.

The result of applying these morphological operations to sample binary set X  is 
shown in Fig. 1.

2.2. Morphological operations on greyscale images
Basic morphological operations are defined for binary sets. Real-life images are 
greyscale, i.e., are composed of various intensity values contained within a specified 
range. Thus, extension of morphological operations to the greyscale case is a natural 
need. According to the threshold decomposition concept this is done through slicing 
a greyscale image into binary intensity layers [10],

Image transformations are often divided into three groups [4]:
— SP (set processing), where a set represents a binary input and output image,
— FP (function processing), where a function represents a multi-level input and 

output image,
— FSP (function and set processing), which is a subgroup of FP, where the type 

on an output signal is the same as that of an input image (set —set or func­
tion-function).

Let us define the threshold decomposition for FSP transformations [10], If cp is 
FSP transformation, $  is corresponding SP transformation and xs is the characteris­
tic function of a set S, then (p(xs) = We say that (p fulfils threshold 
decomposition property if

[<?(/)](*) =  sup{g e K-xG<f[Ts(/)]} (8)

where V is the set of/function values for any function f. Hence transformation of the 
function fbycp  satisfying Eq. (8) is equivalent to its decomposition to the threshold
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sets Tt ( f  \  transformation of each set Tq(f)  by <P, and superposition of the output 
function from the transformed sets $  [Tt (f)~\. FSP transformations are convenient for 
image analysis because they allow filtration of multi-level signals by means of binary 
signals transformation.

Threshold decomposition can be made on condition that FSP transformation 
(p commutes with thresholding for any function /

* [ W ) ]  =  T<l<P(f)l> (9)
Transformations which commute with thresholding are erosion, dilation, ope­

ning, closing and any combination of operations that commute with decomposition 
[ 10]·

All morphological operations are non-linear signal transformations which locally 
modify their geometrical structure. Non-linearity of these operations results from 
thresholding local convolutions of structuring element and fragments of the input 
image at the maximum (erosion) or minimum (dilation) level.

3. Decomposition, compression and reconstruction of images 
using a morphological algorithm

3.1. Sub-band decomposition in the image plane

Two-dimensional (2D) Fourier transform (FT) plays an important role in the thoery 
of optical signals. Applied to a 2D input function, that is an image, FT generates 
another 2D function, which is representation of the image in terms of spatial 
frequencies. Small objects in the input image are related to high frequencies and large 
objects to low frequencies. This property is directional, i.e., the object which is large 
along one direction and small along the perpendicular direction generates the 
spectrum with low and high orthogonal frequencies, respectively. The process of 
decomposition of 2D Fourier spectra to ranges which are connected with objects 
that generate specified frequencies is called band filtration and these frequency 
ranges are called sub-bands.

Sub-band decomposition of images can also be performed in the image plane 
using morphological filters. In this case, the input image is called a band and its small 
size elements (objects) are called sub-bands. Morphological filters with structuring 
elements of controlled size and shape extract corresponding structures from the input 
image. In the 2D case morphological filtration of the image can be directional, that 
is, limited to one particular direction. Since 2D morphological and rank order filters 
are usually separable, a 2D filter can be decomposed to two ID orthogonal filters.

In the image plane, decomposition of an image to sub-band allows faithful coding 
and decoding of images [11] — [14]. Each sub-band can be coded with small 
quantity of information for one pixel (measured in BPP — bits per pixel). This is 
because sub-bands contain objects that have similar structure. For example, high 
sub-bands contain large areas of constant values in highly correlated regions where 
there are no details in an input image.
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As was shown in [11], the coding of images using sub-bands in the image plane 
has several advantages over other methods: 1) it gives high signal-to-noise ratio,
2) distortions of image are relatively small (considering resolution of the human eye),
3) it is simple and effective in applications.

3.2. Morphological analysis and synthesis filters

Morphological operations on an input image, which eliminate objects smaller than 
the size of a structuring element act like low-pass filters. Consequently, high-pass 
filters are calculated by subtraction of the result of low-pass filters from the original 
image. In this way, the analysis part of the sub-band decomposition system uses 
morphological filters with small structuring elements. Small structuring elements 
simplify digital calculation and allow easy optical implementation.

Morphological operations are advantageous for their effectivenss. In computers, 
these operations can be made very fast in comparison with other image processing 
operations. They can be be directly coded in VLSI circuits. Realisation of 
morphological operations in optical processors gives less exact results than those 
computer calculated. Small structuring elements correspond to small point spread 
functions, however, the speed of calculations does not depend on the size of 
structuring elements.

Most of the morphological algorithms require many operations, especially in 
digital systems. For example, dilation of an image composed of512x512 pixels by 
a structuring element of 5 x 5 size needs 6,553,600 operations of comparsions. The 
algorithm proposed by P ei and CHEN [9] considerably simplifies decomposition to 
sub-bands in the case of 4 bands. This is achieved by reducing the number of 
algorithm steps. The idea of the algorithm is described below.

Let us denote by X  the original image, y and <p denote, respectively, opening and 
closing by ID structuring element. Then, the ID morphological low- and high-pass 
filters are constructed as follows:

In the low-pass filter, opening eliminates bright elements, which are smaller than 
the structuring element, then closing eliminates small dark elements. The high-pass 
filter is the difference between the original image and the result of low-pass filter. The 
output image contains only elements smaller than or equal to the size of 
a structuring element. In the 2D case we can take composition of the above filters 
calculated along vertical and horizontal directions, denoted by superscripts v and h, 
respectively:

low-pass filter H 0[X] =  (p[_y[2T]], 
high-pass filter H ^ X ]  =  2 f - H 0[2Q.

(10)

(U )

low-low H00[X] =  HV0[H*0][X ]], 
low-high H0l[X] = HllHllX]·} ,  
high-low H 10[X] =  HI [ff &[*]], 
high-high = H \ [H ?IX ] ].

( 12)
(13)
(14)
(15)
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These filters decompose an image to 4 sub-bands of different structures which can 
be used for reconstruction according to the scheme shown in Fig. 2. Figure 3 presents 
an example of sub-band decomposition of a test binary image to show properties of 
the morphological algorithm. It should be noted that the resulting sub-bands are not 
binary because subtraction of intensities in Eqs. (12)—(15) may lead to both positive 
and negative values.

Fig. 2. Decomposition of the input image X  to sub-bands X 00, X 01, X 10, X u . After sampling sub-bands 
Yoo, Y01 . Yio, I'll are compressed to Y00, Y'ai, y'10> Yl v

Fig. 3. Decomposition of a sample binary element to four sub-bands containing large as well as small 
horizontally or vertically oriented structures.
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Due to subtraction, the sub-bands (1,0), (0,1) and (1,1), of either a binary or 
a greyscale image, may contain pixels of intensities, which are from outside of the 
input intensity range. To avoid an increase in the number of bits necessary to store 
the intensities their new values are scaled back to the previous range according to 
equation

= (x +  n) Q
(m + n) (16)

where m and n are the maximum positive and negative differences between intensities 
in the image (m, n > 0), respectively, Q denotes the number of grey levels used in the 
input image, x and x' are the values of intensity before and after scaling. Two 
structuring elements of sizes 1 x p and p x 1 are used, where p =  3, 5, 7, 9.........

Sub-band decomposition is performed using the scheme presented in Fig. 2. The 
system which produces sub-bands is composed of two parts: the analysis part in 
which several filters extract sub-bands from an input image (sub-bands contain only 
part of objects) and the coding part which prepares the sub-bands for transm ission  
In the coding part, pixel sampling is applied first to reduce information and then 
compresssion follows.

Decomposition requires 8 steps:
1. Elimination from the input image of objects which are smaller along the 

vertical direction than the structuring element p x 1.
2. Elimination from the result of step 1 of objects which are small along the 

horizontal direction in comparison to the structuring element 1 x p. The result of the 
first two steps gives the sub-band (0,0).

3. Elimination from the result of step 1 of all objects except those which are 
larger in the vertical direction and smaller in the horizontal direction in comparison 
with those contained in the sub-band (0,0). The results of step 3 constitutes the 
sub-band (1,0).

4. Elimination from the input image of objects which are smaller in the 
horizontal direction than the structuring element 1 x p.

5. Elimination from the result of step 4 of all objects except those which are 
larger in the horizontal direction and smaller in the vertical direction in comparison 
with those contained in the sub-band (0,0). The result of step 5 gives the sub-band 
(0,1).

Steps 6 — 8 eliminate from the input image all the objects which belong to the 
sub-bands (0,1), (1,0) and (0,1), respectively. The results forms the sub-band (1,1).

Subsequently, four sub-bands are sampled in 2D with constant 2 to assure that 
the total number of pixels in all the sub-bands is not larger than the number of pixels 
in the input image. Hence, every sub-band is reduced to the area 4 times smaller than 
that of the input image.

Finally, the resulting sub-bands are compressed using the lossless Huffman 
coding.

In the reconstruction stage sub-bands are decompressed and then interpolated 
(Fig. 4) to the original size. Afterwards the sub-bands are added their intensities are
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Decompression

Y'oo

Y',0

Y'oi

Y',1 Yll

Fig. 4. Composition of the output image X' from sub-bands y00, yol, Y10> y^.

normalised to obtain the output image with intensity values in the same range as 
those of the input image.

To achieve the best results of image analysis/synthesis the following two 
conditions should be satisfied:

1. The processing system should not introduce noticeable image distortion, that 
means, it should be resistant to quantization noise generated by sampling.

2. The system should not produce an output image of greater number of pixels 
than in an input image.

The algorithm presented in this paper is a simplification of that proposed by 
PEI and C h e n  [9]. It does not require any morphological operations to 
reconstruct the output image from the sub-bands. In our algorithm, the reconstruc­
tion is a direct sum of interpolated sub-bands, scaled up to fit the original intensity 
range 0 —255. This makes our algorithm fast and simple. Our experimental results 
seem to be better than those obtained when additional morphological operations 
are performed before the reconstruction of the output image [15]. The simp­
lification proposed is important in the case when morphological sub-band 
decomposition of the input image is made in a fast photonic processor, sub-bands 
are transmitted through telecommunication links and then the output image is 
synthesised electronically. Recently, a demonstrator of the photonic system was 
reported, which could serve for morphological sub-band decomposition purposes 
[16], [17].

33 . Image compression
The image plane sub-band decomposition produces a set of images with the total 
number of pixels bigger than in an original image. The total number of pixels in 
these sub-bands is reduced by sampling. Since the structure of sub-bands is very
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regular, i.e., highly correlated, it is possible to code the sub-bands with compression 
factor smaller than that possible in an original image.

The image plane sub-band (0,0) contains large elements which generate low 
spatial frequencies in the Fourier spectrum, because the pixels in this sub-band are 
highly correlated. This sub-band could be coded using one of the differential 
methods. Differential pulse code modulation (DPCM) method is frequently used. 
Moreover, due to the correlation of pixels the result is a sequence of small numbers 
which can be coded using smaller BPP ratio and then compressed using dictionary 
method, for example, Huffman coding [1].

The image plane sub-bands (1,0), (0,1), (1,1) contain small objects which 
generate high frequencies in the Fourier spectrum. Nevertheless, in these sub-bands 
there are still large areas of of pixels of similar intensities. Only some of the pixels 
mark edges and small objects. We can decrease the number of quantization levels 
and then apply a method which is effective for large areas of the same intensity, for 
exampe, run lenght encoding (RLE). The next step could be Huffman coding of the 
results.

Sampling the sub-bands (1,0), (0,1) and (1,1) causes relatively large loss of 
information in comparison with the sampling of the sub-band (0,0) which contains 
objects of sizes bigger than the sampling grid. All the objects from the latter 
sub-band are reconstructed in the output image although they can be shifted or 
distorted. This effect is not significant, however, on the contrary, removing pixels in 
the higher sub-bands causes blurring of edges and elimination of small objects. These 
effects should be analysed for each particular case of sampling the sub-bands.

4. Experimental results

In our computer simulation the input image of 512x512 pixels and 256 intensity 
levels was used. Due to subtraction performed in Eqs. (12)—(15), the sub-bands (1,0), 
(0,1) and (1,1) may contain pixels of intensities which are negative. In order that the 
number of bits necessary to store the new values of intensities be kept low, these are 
scaled back to previous 0 —255 lavel range according to Eq. (16).

Since the sub-bands (1,0), (0,1) and (1,1) contain information mostly about edges, 
modification of intensities of pixels in these sub-bands is not significant for an 
observer. Therefore, we can modify histograms of these sub-bands decerasing the 
number of grey levels. Thus for all images the sub-bands of grey levels are limited to 
16 according to the formula

f  0 for q =  0, 

for q c  (0; 255] (17)

where / and h are arbitrary threshold values. Almost all the pixels except those of 
value 0 are located between l and h. Histograms of the processed sub-bands show 
that this method gives the output image that is better than in the case of
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quantization of intensity at equal intervals. However, it requires storing of the values 
/ and h.

The sub-band (0,0) contains pixels which are highly correlated. Investigation of 
whether storing only the differences between pixels is beneficial or not resulted in 
a conclusion that the decrease of compression factor is not significant. The sub-bands 
(1,0), (0,1) and (1,1) contain pixels of similar intensities in large areas where the 
original image has neither edges nor small objects. However, almost invisible 
fluctuations of intensities make the RLE method useless. We find that the best 
compression factor is obtained for the Huffman coding method.

Figures 5a —f show, respectively: the input image, the output image and the 
sub-bands, all for the ID structuring element of length 9. The structuring elements of 
lengths 3, 5, 7, 9, 15 and 21 pixels are also used. Two measures of the reconstruction 
error are used:

— mean absolute error (MAE) defined as

MAE = ^ £ [ 7 ( k )  —J(k), (18)
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Fig. 5. Input image (»X output image (b), sub-band (0,0) (cX sub-bad (1,0) (dX sub-band (0,1) (eX 
sub-band (1,1) (IX

— maximum absoulte error (MAXAE) defined as

MAXAE =  max {/(k)—J(k)}t (19)

where I  is the original image, /  — the output image, k is the image point coordinate 
vector and N  is the number of pixels in images.

T a b l e  1. Compression factor, MAE and MAXAE for the test image with 256 grey levels.

Size of saturating 
element

Sub-bands 
compression factor

Output image 
compression factor

MAE MAXAE

3 pixels 0.52 (4.16 bit/pxl) 0.32 (2.56 bit/pxl) 11.75 162
5 pixels 0.49 (3.92 bit/pxl) 0.33 (2.64 bit/pxl) 11.25 181
7 pixels 0.47 (3.76 bit/pxl) 0.32 (256 bit/pxl) 12.04 154
9 pixels 0.45 (3.60 bit/pxl) 0.32 (256 bit/pxl) 1222 167

15 pixels 0.41 (3.28 bit/pxl) 0.33 (264 bit/pxl) 12.56 166
21 pixels 0.38 (3.04 bit/pxl) 0.32 (256 bit/pxl) 12.14 159

T a b l e  2  Compression lactor, MAE and MAXAE for the test image in the case 
histograms of sub-bands to 16 grey levels.

of modification of

Size of saturating 
element

Sub-bands 
compression factor

Output image 
compression factor

MAE MAXAE

3 pixels 0.38 (3.04 bit/pxl) 0.32 (256 bit/pxl) 10.17 161
5 pixels 0.33 (2.64 bit/pxl) 0.32 (256 bit/pxl) 10.87 149
7 pixels 0.31 (248 bit/pxl) 0.31 (248 bit/pxl) 11.00 158
9 pixels 0.28 (2.24 bit/pxl) 0.31 (248 bit/pxl) 10.46 159

15 pixels 0.24 (1.92 bit/pxl) 0.30 (240 bit/pxl) 11.52 170
21 pixels 0.21 (1.68 bit/pxl) 0.29 (232 bit/pxl) 1230 155
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Table 1 presents the quality of reconstruction in terms of the compression factor, 
MAE and MAXAE for the test image with 256 grey lavels. Table 2 shows the results 
obtained for sub-bands with reduced greyscale. For comparison purposes the tables 
show results of compression of the output image as well as the sub-bands.

5. Conclusions

Increasing the lenght of the structuring element causes the sub-band compression 
factors to decrease.The output image compression factor remains almost at the same 
level and is smaller than the compression factor of sub-bands on condition that the 
number of grey levels employed in the sub-bands is constant

A decrease in the number of grey levels to 16 in the sub-bands (1,0), (0,1) (1,1) 
causes a significant decrease of sub-band compression factors while the output image 
compression factors remain almost the same.

MAE slightly increases with the structuring element size. In turn, a decrease in 
the number of grey levels causes a decrease of MAE. This result is quite unexpected 
because reduction of the dynamic range of intensities results in a loss of information. 
Besides, the images with reduced intensity range are worse from the visual point of 
view. This has led us to a conclusion that MAE should be cerefully used as 
a criterion for comparison of images processed in different ways.

For sub-bands with both 256 and 16 grey levels MAXAE preserves almost the 
same value with random changes independent of the size of structuring element.

Increasing the lenght of structuring element over 21 makes no sense. Its optimum 
length for 512x512 image size is 5 — 9 pixels.

Further reduction of the compression factor should be achieved with efficient 
methods of sub-band coding. Differential and RLE methods are not the best ones in 
this case and need modification.

The main advantage of digital information processing is its flexibility. In the same 
experimental set-up any algorithm can be tested. The result can be copied, scaled, 
rotated and sent to other computers for use by other people interested in information 
about an image.

However, some operations in digital image processing are time-consuming. For 
example, the number of operations required to convolve two images is proportional 
to n2-m2, where n2 is the number of pixels in the first image and m2 in the second 
one. Thus, convolution of two images of 512 x 512 pixels size requires at least 7 · 1010 
arithmetic operations on pixel intensity values.

Such operations as convolution, vector-miatrix and matrix-matrix products can 
be done in parallel in optical imaging systems. The disadvantage of optical systems 
lies in their lack of flexibility. Adjusting a shadow casting correlator takes some time.

To use only virtues of digital and optical processing it is advisable to combine 
both in photonic processors where optics is used to perform operations, which are 
time-consuming in digital realisation. A promising, fast and compact photonic 
system based on optical thyristors working in differential pairs has recently been
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presented by BUCZYŃSKI et al. [16], [17]. The system was used as a hard clip 
thresholder of greyscale images and a morphological processor. At the moment, its 
drawbacks is a small size of processing matrices.
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