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Self-conjugation of the edge diffraction wave 
using a quadric hologram
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Ukraine.

Self-conjugation of the wave front corresponding to a near-field diffraction of a simple primary 
wave by an aperture has been realized. Such an operation is performed by using a static hologram 
that is nonlinearly recorded with a standing reference wave. The contouring effect at the 
self-conjugated reconstruction is demonstrated. This effect is interpreted within the framework of 
the Young-Rubinowicz concept of diffraction phenomena, namely, as the result of predominant 
phase conjugation of the edge diffraction wave.

1. Introduction
Various techniques of the phase conjugation (PC) are employed in optics. The PCs 
based on a simulated Brillouin back-scattering (SBS-PC) and on the four-wave 
degenerate mixing process (FWDM-PC) by means of the dynamic holography 
— photorefractive nonlinear optics — dominate among them [1], [2]. Recently, an 
optical PC of the object’s wave front has been implemented by POLYANSKII [3 ]  by 
means of static holography, using a quadric hologram (QH) technique.

The term “quadric hologram” has been coined for a hologram whose peculiar 
reconstruction properties are caused just by the quadratic component of the power 
series expansion of a hologram’s complex amplitude response Ta(r), with respect to 
the exposure (or intensity) degrees [4]

T O  =  £  W f )  (1)
1=0

1 5'Twhere: 7J =  c / ,  c, =  — ——f, E(f) = tl(f); t is an exposure time, 1(f) is the intensity of 
/! oE

an exposing field, and f  is the position vector of the running point at the registration 
domain.

The recording arrangement of the QH-based PC-mirror (QH-PCM) is the same 
as the well-known arrangement of the FWDM using two counterpropagating 
pumping beams. However, unlike the dynamic holography approach where a photo- 
refractive hologram is read out “in opposed ray tracing-manner” by each of the 
pumping beams, the QH-PCM operates in the self-conjugated fashion, just as the 
SBS-PC: the object wave is partially re-scattered in its own phase-conjugated replica,
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without participation of any of the two reference waves in the readout process. It is 
important, on the other hand, that the formation of a seed of the spontaneous 
light-scattering in the material exhibiting the SBS-PC is fundamentally preconditioned 
by the spatial inhomogeneity of the exposing beam, that regularly presumes a diffuser 
to be placed at the input plane, and a “coded” (speckled) wave front obeying the 
Gaussian statistics [5], [6] to be self-conjugated. In contrast, the QH-PCM makes it 
possible to self-conjugate the wave fronts of arbitrary complexity: both the speckled 
object fields and simple ones, kind of planar or spherical waves. This property of a QH 
is determined by the use of two reference waves at the recording stage. Namely, the 
cross-gratings produced by interference of an object wave with each component of 
a standing reference wave undergo nonlinear mixing (spatial-frequency heterodyning 
[3], [4]) due to nonlinear amplitude response of a hologram to exposure. The resulting 
set of the combination gratings in the volume of such a hologram just realizes spatial 
inhomogeneity of a hologram’s reflectivity of specific kind that provides a self
conjugation of an arbitrary wave front irrespective of its complexity.

In this paper, we study the peculiarities of the QH-based PC for the intermediate 
case, when the object wave results from a knife-edge diffraction or a near-field aperture 
diffraction. It is obvious that the object field does not obey Gaussian statistics in this 
case, being at the same time more complex with respect to the plane or spherical wave. 
We discuss this problem using physically appealing Young-Rubinowicz concept of 
diffraction phenomena [7] — [9], i.e., understanding a near-field pattern as a sum of the 
geometrical optics wave defined within the directly illuminated area only, and the edge 
diffraction wave (EDW) propagating both into the directly illuminated area and to the 
geometrical shadow region. Previous consequences of the Young-Rubinowicz concept 
in holography as well as the technique of Young holograms (i.e., holograms of the 
EDW) have recently been developed in [10] —[16],

In Section 2, we briefly formulate the QH-based PC principle. The possibility of the 
EDW being self-conjugated by applying the QH-PCM technique is substantiated in 
Sec. 3. The experimental demonstration of the QH-based self-conjugation of the EDW 
is given in Sec. 4. The main results of our study are discussed in Sec. 5 and compared 
with earlier versions of the Young hologram technique.

2. Principle of the quadric hologram-based phase conjugation

Here we formulate concisely the principle of the QH-based PC following the recent 
papers [3], [4]. Let us define the object wave at the running point of the recording 
domain with the position vector r as the superposition of N  wavelets associated with 
the optical retransmitters whose ensemble represents the object

G(r)=  X ag(f)e xp [ i(o ) t-kgf+(pg)] (2)
0 =  1

where ag, kg, cpg are the amplitude, the wave vector, and the initial phase of the g-th 
retransmitter, respectively. Let a QH of the wave (2) be recorded using two 
counterpropagating referesnce waves, QA(f) and QB(f), so that
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n A(f)+ nB{f) = A exp [i (cot-kA f+ cpj] + B exp [i(w t-k B f+  <pg)] (3)

where A and B are the (constant) amplitudes, and <pA, cpB are the initial phases of 
partial reference waves, since kA + kB= 0 at each point of the recording domain. 
Intensity of the exposure field takes the form

/(f) =  |^ ( f )+ i2 B(f) +  G(f)|2. (4)

Substituting (4) into (1), one finds among numerous summands of the quadratic 
components of the hologram amplitude response T2I 2(f), the term causing the 
reconstruction of the PC-replica of the object field in the case where a QH is read out 
by the object wave [3]

{2T2(G*(f))2n A(r)iiB(f)} G(f) =  flG*(f) (5)

where a = 2T2QG(f)\2yABexp((pA + (pB) is the complex reflectivity of the PCM,
N

<|G(r)|2)  = X a2(f) is the object wave’s intensity averaged over the ensemble of 
» = i

N  retransmitters representing the object [17]. (In the case of a speckled object field, it 
coincides with the intensity averaged over the registration domain [5]).

Let us note that any real nonlinearly recorded hologram exhibits both the 
quadratic nonlinearity and the higher-order ones. Therefore, nonlinearities of the 
orders higher than the quadratic one provide only noise contributions into the PC 
response of a hologram [4], However, if the cubic and the higher-order nonlinearities 
are not too large (that implies the limitations on a QH-PCM’s reflectivity and its 
diffraction efficiency [4]), their effect on the PC response may be neglected. Since the 
fitting of Ta(r) in terms of cubic polynomial in E(f) for a nonlinearly recorded hologram 
is quite good for most of the holographic photolayers [18] and moreover the cubic 
component occurs, in practice, to be less than the quadratic one by one or two orders 
of magnitude [18], the QH-approximation accepted by us is adequate for most of the 
experimental situations.

A QH-PCM can be recorded both at relatively thin photosensitive layers, such as 
the standard holographic photoemulsions, and using any volume recording medium 
exhibiting high angular selectivity. From the wave-vector diagrams shown in 
Fig. 1, there can be seen those demonstrating the combination grating formation.

An interference of the wavelets associated with two arbitrary object retransmitters 
whose wave vectors are icg and with the reference waves S2A(f) and S2B(f) 
(with the wave vectors lcA and HB, respectively) results in the cross-gratings, 
{G*(r) S2A(f)+c.c.} and (G*(r) £2B(r) + c.c.} (c.c. designates the complex conjugation), 
whose wave vectors are: R GA = kg- k A, Z QA = kq- k A, Z GB = kg- k B\ = £q- £ B, 
see Fig. la. Figures lb,c show the wave vectors of the quadratic and combination 
(summation) gratings resulting from a nonlinear mixing of the transmitting and 
reflecting partial cross-gratings formed with the corresponding retransmitters:

H +) = £ ga+ Z cb =  2fc~g,
FlQ+) = X qa + Z qb = 2kq,
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Fig. 1. Wave-vector diagrams explaining the principle of the wave front self-conjugation by using the quadric 
hologram recorded with two counterpropagating reference waves: kf, kq — the wave vectors associated with 
wavelets corresponding to arbitrary retransmitters of the object; —kA = PB — the wave vectors of the 
reference waves (\lcA\ =  |£B| =  |£f | =  =  2n/X); P CA, f t QA, K GB, f t QB — the wave vectors associated with
the cross-gratings resulting from interference of the object wave with the reference ones; F{.+), P{q \  
P J i' — the wave vectors of the summation gratings providing the wave front phase conjugation process.

P &  = i£GA + pQB — P gB + ̂ QA = Pg + Pq-
As is well known [2], [19], [20], the presence of the so-called “2k”-gratings is the 

universal and unambiguous formal sign of the PCM functioning in the self-conjugated 
fashion. Really, as can be seen from Fig. Id, the gratings with the wave vectors Ftf \  

and P(cd satisfy the Bragg condition for the case when a QH is read out by the 
object wave

kq-P<Q+) = - k q, = -U g, kg- p ^ =  -p q; Pg- P {G+)= - k g. (6)
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It follows from Eqs. (6) and Fig. Id that diffraction of the wavelet from each 
object retransmitter in the set of quadratic and summation gratings results in 
reconstruction of both its own PC-replica and in a PC-replica of another wavelet 
involved. It grounds the possibility of reconstructing the complete self-conjugated 
replica of the object by reflection of both the whole object wave G(f) and its partial 
version from the QH-PMC, if only the gratings with both the wave vectors 
F\£) and the wave vectors are represented in the spatial-frequency structure of 
a hologram. An associative error-correcting imaging by reflection of the wave 
produced by incomplete version of the stored memory from a QH-PCM has been 
demonstrated in [3],

3. Quadric hologram of an edge diffraction wave
3.1. Conceptual background
In this section, we consider the peculiarities of a QH-PC for the case when the object 
wave G(f) results from a near-field diffraction of a simple primary wave on 
a diffraction aperture of arbitrary configuration. In the present discussion, we avoid 
the rigorous analysis of a wave motion behind a diffraction device. The firm 
consideration relating to the topic and accounting for the stationary phase principle 
(SPP) may be found in [21] — [23], Instead, we will try to explicate some intuitive 
arguments that may be relevant to a holographic experiment.

In accordance with the Young’s heuristic approach [24], [25], the field originating 
from a diffraction of the primary illuminating wave at any simple aperture (without 
a diffuser) may be understood as the one resulting from interference of the part of the 
primary wave whose propagation obeys the geometrical optics laws, and the EDW 
arising due to the amplitude gradient of the field behind the sharp edge of an opaque 
obstacle. The comprehensive mathematical background of intuitive Young’s notion 
concerning the nature of diffraction, within the framework of validity of the KirchhofPs 
scalar theory, has been given by RUBINOWICZ [7], [8], [26], (see also [9], [21], [24], 
[25]). Following the Young-Rubinowicz approach, the diffraction field behind the 
diffraction obstacle is described as the sum

G(f) = Gg(f) + Gd(r) (7)

where Gg{f) is the geometrical optics wave at the running point of the observation 
domain, and Gd(f) is the EDW generally defined by the integral over the rim of 
a diffraction obstacle. In accordance with such a representation, the EDW’s wave 
front behind the obstacle is disrupted at the boundary of the directly illuminated 
area and the geometrical shadow region, and this disrupt exactly compensates for the 
disrupt of the wave front of the geometrical optics wave, so that the resulting wave 
motion arises to be continuous. Besides, the EDW is in-phase with the geometrical 
optics wave within the geometrical shadow region, being out-of-phase by n with this 
wave at the directly illuminated area [8], It is well known [8], [12], if the imaging is 
performed by applying the schlieren technique, such a phase structure of the EDW 
results in a dark-field image of the diffraction obstacle’s rim that is bounded by two
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bright fringes being out-of-phase by n. Let us emphasize in this connection that 
based on the shown double-contouring effect we give preference to the Rubino- 
wicz’s approach to explanation of diffraction phenomena against the Keller’s 
approach [27] within which the edge diffraction rays (rather than waves) are 
postulated but are not derived from the primary principles. As it follows from the 
Rubinowicz’s representation of the Kirchhoff diffraction integral, the EDW’s 
amplitude approaches half of an amplitude of the wave impinging on the 
diffraction device as the observation point runs to the geometrical shadow 
boundary [8], and rapidly decreases in magnitude (as [tan(Sdiffr/2)] “ \  where $diffr 
is the diffraction angle) as the running point leaves this boundary [9], [21].

One more feature of the model relevant to the following consideration of the 
holographic problem is derived on the basis of the SPP. Namely, if the well-known 
prerequisites of the SPP [28], such as “slow” (in a spatial sense) changes of a wave 
amplitude within the integration domain, and deterministic but fast (owing to 
a small wavelength) changes of the space-dependent part of a phase factor, 
quadratic as a rule, are valid, then successive reduction in dimensionality of the 
representation of the diffraction field takes place [21], resulting in degeneration of 
the linear integral over the boundary of the diffraction device into contributions of 
the set (often limited) of the wavelets associated with the critical points of the 
second kind, localized at the obstacle rim and obeying the peculiar “reflection rule” 
[7], [9], [25], Hereinafter, the critical points of the second kind (whose nearest 
vicinities with linear dimension of the order of the diameter of the central Fresnel 
zone constructed at the plane of a diffraction device from the recording plane are 
called the “active zones” [29]) will be referred to as the “edge retransmitters” [10], 
[16].

3.2. Phase conjugation of the edge diffraction wave

Now we apply the Young-Rubinowicz concept of the EDW to the problem of 
a self-conjugation of the wave front corresponding to a near-field diffraction using 
a QH recorded with a standing reference wave.

3.2.1. Edge enhancement at the self-conjugated image

Let us assume that the well-known preconditions of a nonlinear holographic 
recording [4], [16], [18], such as commesurability of the intensities of the partial 
reference waves with the object wave intensity, long-time exposure, and over
developing of a photolayer, provide considerable magnitude of the quadratic 
component of the hologram’s amplitude response. In the case under consideration, 
the following reference-to-object intensity ratio is chosen:

| f lJ 2 * l« B l2~ |G ^ ) l2« |G , l2 (8)
anywhere within the directly illuminated area (excluding nearest vicinity of the 
geometrical shadow boundary),

|Gd(f)|2 (9)
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anywhere within the geometrical shadow region (excluding nearest vicinity of the 
geometrical shadow boundary).

Hereinafter, we omit spatial dependence of intensities of the reference and 
geometrical optics waves assuming these intensities being constant over the areas 
where the corresponding waves are defined. At the same time, we hold dependence 
on f  for the complex (amplitude and phase) distributions as well as relevant spatial 
dependences in all equations for an EDW.

Substituting Equation (4) with G(f) specified by Eq. (7) in a power series 
expansion of the hologram’s amplitude response to the exposure degrees (1), one can 
find, among the terms of this expansion, the components responsible for the 
self-conjugation of the object wave front:

{2T2(G'd(f) + Gg(f))2QA(f) QB(f)} (10)

within the directly illuminated area,

{2T2(Gd(f))2QA(f)£2B(f)} (11)

within the geometrical shadow region.
Being read out by the part of the object wave propagating into directly 

illuminated area, Gd(f) +G g(f), the combination gratings associated with the QH’s 
partial operator (9) give rise to the reconstruction of the component of the 
self-conjugated response

{2T2(Gd{f)+G*g(f))2QA(f)QB(f)} (Gd(f)+Gg(f)) = (a0 + a1)(G^(r) +G^(r)) (12)

where a0, a1 are defined similarly to ot in Eq. (5), with <|G(f)|2> being replaced by 
<|Gd(f)|2 + |Gg|2> and {Gd(f)Gg(r) + c.c.}, respectively. Note that averaging is now 
performed over the set (if any) of the critical points of the first kind (within the 
aperture) [21], [29], and the edge retransmitters contributing to the running point of 
the registration domain with the position vector f. The term on the right-hand side of 
Eq. (12) with a0 describes the precise PC-reconstruction, while the term with cti 
describes a component of the reconstruction caused by cross-interference of the 
geometrical optics wave and the EDW which can, in principle, produce an 
intermodulation noise in the reconstructed image.

Similarly, being read out by the part of the EDW propagating into geometrical 
shadow region, the combination gratings associated with the QH’s partial oparator 
(10) give rise to the reconstruction of the component of the self-conjugated response

{2T2(Gd(f))2 QA(f)QB(f)} Gd(f) = cc Gd(r) (13)

where a is defined as in Eq. (5), with <|G(f)|2> being replaced by <|Gd(r)|2>.
Let us now compare the diffraction efficiencies of partial QH-PCMs recorded 

within the directly illuminated area and in the geometrical shadow region. Within 
the geometrical shadow region, the cross-gratings {Gd(f)i2A(f) + c.c.} and (Gd(f)i2B(f) 
+ c.c.} are characterized by the modulation percentages the proportional to the 
contrasts of partial interference patterns from the EDW and each of the two 
components of the standing reference wave
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F<SSR)(f) = 21G„(f)||flJ 
(|Gd(f)|2 + | ^ | 2+ |f tB|2)

and

v t iT i t )  = 2\Gd( f ) \ W
(|Gd(r)|2 + | ^ | 2 + |i2B|2)

(14)

(15)

respectively. Diffraction efficiency of these linear (interferentially produced) 
cross-gratings will be in proportion to the squared contrast of the corresponding 
interference pattern, in accordance with the linear holographic theory [18], At the 
same time, the modulation percentage of the combination gratings (one of the kind 
defined by Eq. (10) complemented by its complex conjugation) is always in 
proportion to the product of the modulation percentages of the constituting 
cross-gratings [31]. Thus, a partial QH-PCM for the EDW within the geometrical 
shadow region possesses the diffraction efficiency

~  [T<SSR>(r) T<£SR>(r)]2. (16)
On the other hand, the cross-gratings {G*t (f)QA(f) + c.c.} and {Gg(f)fiB(f)+c.c.} 

produced within the directly illuminated area by interference of the geometrical 
optics wave and each of the two components of the standing reference wave possess 
the contrasts:

V (n = _____________________
M (|G J2 + |G /f) |2 +  |i2 ,|2 + |i2B|2)’

v  (f)-  2\Gt{f)\\C2B\
eB ] (\Gg\2 + \Gd(f)\2 + \QA\2 + \QB\2Y

(17)

(18)

respectively, while the cross-gratings {Gd(r) (2 A(f) + c.c.} and {Gd(f)i2B(r) + c.c.} 
produced within the directly illuminated area by interference of the EDW and each 
of the two components of the standing reference wave possess the contrasts

V ^ \ f )  = 2|Ga(f)| \Qa\_______
(|G#|2 +  |G,(r)|2 +  | f l J 2 +  |DB|2)

and

(19)

V S ^ i f )  =
_______ 21 Gd(r)| ]flB|
(\Gg\2+ \Gd(f)\2 + \iiA\2+ \QB\2)’ (20)

respectively. Thus, a partial QH-PCM for the geometrical optics wave within the 
directly illuminated area possesses the diffraction efficiency

%(n ~  [VgA(f) VgB(f)Y  (21)
(accounting for Eq. (8), rjg(r) a  const, and further we omit spatial dependence of rjg), 
and a partial QH-PCM for the EDW within this area possesses the diffraction 
efficiency
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~  \_VTF\f) V E »(fj]2. (22)

Finally, the diffraction efficiency of the noise gratings {G;(f)Gg(f)-t-c.c.}, (see Eq. 
(12)) is

%Arl ~ [vgA(f) v$T(f)l2 *  lvtB(f) n r ' iO ] 2. (23)
Accounting for Eqs. (8) and (9), one can estimate the ratios of the diffraction 
efficiencies of the combination gratings constituting a QH-based PCM

Equations (24) —(26) constitute the definition of a virtual dark field [16], [30] 
incoherent in the PC-recontructions of QHs from diffraction apertures. Namely, these 
equations show that the predominant self-conjugation of the part of the EDW 
propagating into geometrical shadow region is provided by a proper choice of the 
reference-to-object intensity ratio only, rather than by the use of any “hard” (material) 
blocking screen. In other words, the dark-field imaging resulting in the edge 
-enhancement effect at the PC-reconstruction of a QH is realized in the case under 
consideration by only balancing of the diffraction efficiencies of various combination 
gratings associated with the quadratic components of the hologram’s amplitude 
response. It is clear from Eqs. (24) —(26), that i / J ^ f )  and t]gd(r) may be neglected due 
to the stronger dependences of the reference-to-object intensity ratios with respect to 
one for rj(°SR\  Let us emphasize that owing to large ratio r/iGSR)(r)/>7g(J(f) an 
intermodulation noise at the PC-response caused by cross-interference of the 
geometrical optics wave and the EDW (see the text following Eq. (12)) vanishes.

Note that the virtual dark-field effect discussed above is, in consequence, equivalent 
to the “soft blocking” of DC (direct current) term in Fourier optical systems realized 
using electron-trapping films [32]. In fact, in both cases, part of the readout radiation 
propagating to the directly illuminated area (in the case of Fourier-transform 
hologram, one focused within the central diffraction maximum and its nearest vicinity) 
is lost, but the apodized pupil function [16] corresponds to the transfer function of the 
imaging device that provides elimination of undesirable secondary maxima at the 
resulting contoured image. Obviously, “natural” soft filtering of the DC term by 
balancing the diffraction efficiencies of partial holographic gratings is preferable, since 
it does not require the use of any special materials and procedure, being implemented 
with commercially available high-efficient phase holographic photoplates.

Consider the peculiarities of a near-field QH-based virtual dark-field effect in more 
detail. In comparison with the well-known classical enhancement of high-frequency
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interval of a spatial frequency spectrum by a proper choice of the reference-to-object 
intensity ratio that is commonly used for optimization of coherent recognition 
[33] —[35], a QH-based virtual dark-field effect turns out to be much more 
pronounced. In fact, within the framework of a linear holographic theory 
[32] —[34], the edge-enhancement effect in a holographic reconstruction is deter
mined by the factor R ~  [ 1 (r  ̂[/Gd(r") |]2, if expressed in terms of the present paper.
It means that a linear hologram recorded with the reference-to-object intensity ratio 
(8) for the exposing waves, being read out by the uniform in intensity reference wave, 
provides R — fold gain of intensity at the image of a rim in comparison with the 
image of a diffraction aperture. However, if such a hologram is read out by the object 
wave in the matched filtering regime, i.e., if part of a hologram corresponding to the 
directly illuminated area (with lower diffraction efficiency) is read out by the wave of 
higher intensity, and part of a hologram corresponding to the geometrical shadow 
region (with higher diffraction efficiency) is read out by the wave of the lower 
intensity, then

so that the resulting intensity of the image of the edge is only “pulled” to the intensity 
of the image of the aperture. In other words, the edge is enhanced at the image but is 
not dominating in intensity. On the contrary, a QH-based self-conjugation is 
characterized by the relation

so that only the rim of the diffraction aperture is imaged for the reference-to-object 
intensity ratio that is large enough (that determines a diffraction efficiency tjJ.

Thus, the ratio of the diffraction efficiencies of a QH-PCM within the directly 
illuminated area and at the geometrical shadow region, being proportional to the 
second, the third and the fourth degrees of intensities of the geometrical optics wave 
and the EDW (see Eqs. (24) —(26)) are not compensated by the intensity ratio of the 
parts of the readout wave. Let us emphasize again that Eq. (25) explains the fact that 
the observed reconstruction does not result from readout of a hologram by the 
geometrical optics wave, but it is just the self-conjugated replica of a part of the 
EDW propagating into the geometrical shadow region.

The QH-based virtual dark-field effect has recently been discussed and demon
strated for the case of a thin off-axis QH recorded in a far field of a diffraction 
aperture [16], [30]. Namely, a QH was recorded at the plane where the primary 
quasi-point source was imaged. In such an arrangement, the directly illuminated area 
(within which the geometrical optics wave is only defined) is reduced to the central 
diffraction maximum of a Fraunhofer pattern, while the rest of this pattern is 
uniquely determined as the result of an intermodulation among the wavelets 
associated with different edge retransmitters of the obstacle. In the case of a far-field 
QH, both components of the EDW, that are ouf-of-phase by n, are involved into 
holographic imaging providing the combination gratings of equal diffraction

(27)

(28)
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efficiencies. As a result a two-lobe PC-image is reconstructed, being in quite an 
agreement with the predictions made when accounting for the known phase 
structure of the EDW [8]. Therefore, it has been shown that the use of the quadratic 
component of the hologram’s amplitude response for the case corresponding to 
Eq. (28) (when the part of a hologram with lower diffraction efficiency is read out by 
the wave with higher intensity and vice versa) provides much better edge enhance
ment in the resulting image than the use of the linear cross-gratings even if these 
gratings are illuminated by the beam of uniform intensity. Amplification of the 
virtual dark field effect is naturally explained if Eq. (24) is taken into account.

Note that the double-contouring effect has also been observed in some recent 
implementations of the newest optical wavelet-transform technique [36]. However, 
this effect does not find any physical explanation in the cited work. In our opinion, it 
is unambiguously connected with the Young-Rubinowicz interpretation of diffrac
tion phenomena, one of the consequences of which is developed in the present study.

Let us point out here an important distinguishing feature of the near-field 
QH-PCM reconstruction following from Eq. (25). In accordance with the above 
consideration, the part of the EDW propagating in the directly illuminated area 
records its partial hologram with a standing reference wave at the powerful 
background produced by the geometrical optics wave. In contrast, a partial PCM for 
the EDW recorded in the geometrical shadow region is not affected by the primary 
wave and, as a consequence, possesses much higher diffraction efficiency (see 
Eq. (25)). Thus, it is just the component of the EDW propagating into geometrical 
shadow region that gives the main contribution to the self-conjugate response of 
a QH. In other words, a unilateral integral transform [37], [38] of the 
self-conjugated replica of the object wave corresponding to its propagation from the 
QH domain to the image plane is realized. For this reason, one can expect the 
singly-contoured self-conjugate reconstruction of a near-field QH recorded with 
a standing reference wave and read out by the object wave.

3.2.Z Distributivity of a holographic recordings

Let us explicate once more the consequences of the Young-Rubinowicz concept of 
diffraction phenomena relevant to the case of a near-field QH-based self-conjugation, 
taking account of the SPP. In contrast to the self-conjugation of a field produced by 
a diffuse object [3], in the case of a QH-based PC of a near-field diffraction wave, the 
combination gratings with the wave vectors JF^e (see Fig. lc) are formed only in 
separate areas of the recording media, as may be shown by applying the “reflection 
rule” [9], [25] to the diffraction device of certain configuration. In other words, the 
combination gratings resulting from a nonlinear mixing of the transmitting and 
reflectance cross-gratings of different edge retransmitters are weakly represented at 
the spatial-frequency structure of a hologram being of negligible diffraction 
efficiency. As a consequence, a holographic recording distributivity intrinsic to 
holograms of speckle-fields [18] turns out to be considerably reduced. In fact, the 
information on an amplitude and phase of each edge retransmitter is coded in the 
parameters of an interference pattern (= holographic cross-grating) only along the
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axis that is perpendicular to the tangent of the diffraction obstacle’s rim at the 
corresponding critical point of the second kind and to the ray drawn from the 
primary quasi-point source to this critical point [10]. In this sense, the holographic 
recording distributivity reduces from two-dimensional to one-dimensional one. Thus, 
the probability for several wavelets associated with different edge retransmitters to 
have significant amplitude at any common point of the geometrical shadow region 
(that would provide sufficient intermodulation for associative properties of such 
a recording) is negligible, as it is seen from a “fanning” structure of a diffraction 
pattern [25]. Considering the “light fans” [25] associated with each of the edge 
retransmitters, one can see predominant overlapping of them within the directly 
illuminated area, i.e., just within the region of low diffraction efficiency of a partial 
hologram of the EDW (for the reasons explained in Sect 3.2.1). As a result, the 
wavelets with the wave vectors fcg, fcp are rescattered predominantly into their own 
phase-conjugated replicas, whose wave vectors are — kf, —kp, respectively (see the 
first and the third fragments in Fig. Id). Thus, a near-field QH-based PCM possesses 
the reduced associative properties. The last conclusion found unambiguous (al
though indirect, in the context of a quadric holography) confirmation in a linear 
referenceless Young fractalography technique [15].

4. Experiment
The possibility for the EDW to be self-conjugated by using a near-field QH-PCM 
has been verified by us experimentally in the arrangement shown in Fig. 2. 
A coherent radiation from a He-Ne laser L (2 = 0.6328 pm, power ~  30 mW) is

Fig. 2. Experimental arrangement for recording a QH-PCM and implementing self-conjugation of the 
EDW: L — laser, M l, M2, M3 — mirrors, BS1, BS2 — beam splitters, BE — beam expander, IT 
— inverse telescopic system, AM — autocollimating mirror, KE — diffraction obstacle (profiled 
knife-edge), HP — holographic plate, OP — observation plane.
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split by the beam-splitter BS1 into two beams of considerably different intensities. 
The beam of higher intensity, being expanded using a beam expander BE consisting 
of a microobjective (20 x ) and a pinhole as a spatial filter (diameter «  14 pm), 
illuminates a diffraction device, an opaque metallic profiled knife-edge in our first 
experiment (see Fig. 3a). The resulting diffraction field behind the screen G(f) lends 
itself to recording a near-field Young hologram, as shown in [10]. But now we use 
two complementary reference beams to form a QH-PCM. Namely, another beam of 
lower intensity passing through an autocollimation system (an inverse telescopic 
system, IT, and an autocollimating mirror, AM, just behind the holographic 
photoplate) produces two counterpropagating plane reference waves. The regis
tration domain is chosen in such a manner that all three exposing waves are 
mutually coherent. The mean reference angles in our experiments were 0.25 rad for 
a partial transmittance hologram {G*(r)S2A(f) + c.c}, and (7t—0.25) rad for a partial 
reflection hologram {G*(f)i2B(f) + c.c}. The reference-to-object intensity ratio is 
properly chosen to provide a nonlinear holographic recording; namely, 
\QA\2 K\QB\2:\Gg\z \-.\Q2 within the directly illuminated area, and \flA\2 
«  |fiB|2:| Gd( f ) f ~  1:1 for the diffraction angle 9diff a  0.06 rad in the geometrical 
shadow region.

Fig. 3. Diffraction obstacle (a) and the self-conjugation reconstruction produced by the QH-PCM (b).

Holograms were recorded using the holographic photoplates Micratt LOI-2 
exhibiting complex (amplitude and phase) modulation of the readout wave, with the 
predominant phase component of a photoresponse. Exposure time was ~1 min, 
and development duration using a holographic developer GP-2 was ~  10 min. 
Under such conditions, a nonlinear holographic recording is provided, and the set of 
combination gratings, including ones with the wave vectors and P(q ) (see 
Fig. lb), arises in the spatial-frequency structure of a hologram. We checked the 
presence of the valued nonlinear component of the hologram’s amplitude response 
before performance of the self-conjugation of the object wave front through
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illumination of the developed and fixed hologram with the plane wave and 
observation of the higher diffraction orders (up to the third, in our experiment) in 
transmittance.

Then, a nonlinearity recorded hologram returned to its initial position (HP, in 
Fig. 2) and read out by the object wave, in the absence of the reference beams. The 
beam-splitter BS2 (introduced already at the recording stage to avoid undesirable 
phase distortions of the recorded =  read out object wave) now serves to decouple the 
PC reconstruction at the observation plane OP. As is seen from Fig. 3 b, this 
reconstruction is contoured. A careful study of the imaging process for this case (by 
blocking different parts of a hologram) shows that the area of a hologram 
corresponding to the geometrical shadow region of the recorded near-field pattern 
possesses predominant diffraction efficiency t]d, in accordance with the predictions in 
Sect 3.2.1. It has been found that the maximal diffraction efficiency of a QH-PCM 
for a partial hologram of the EDW in the geometrical shadow region reaches 3% in 
the vicinity of the diffraction angle 3diff a  0.06 rad corresponding to the refere- 
nce-to-object intensity ratio at the recording stage close to unity. At the same time, 
a diffraction efficiency measured in the directly illuminated area did not exceed 
0.01%. It explains the fact that the singly contoured image is observed at the PC 
reconstruction rather than the doubly contoured one, as it would be expected 
proceeding from the Rubinowicz’s representation of a diffraction integral (see Sect. 3, 
and refs. [8], [9], [12], [16]). The precisely measured transfer function of a near-field 
QH-PCM will be reported elsewhere; here we only note the result of qualitative 
observations consisting in gradual decreasing of a diffraction efficiency of the QH 
both for larger diffraction angles and for smaller ones in respect of the 9diff which 
corresponds to the maximal QH-PCM’s reflectivity. Let us note that the rather 
moderate diffraction efficiency of the QH-PCM of the EDW corresponds to the 
dark-field reconstruction, so that the contour image observed at dark background 
always possesses a contrast close to unity. Besides, owing to the above mentioned 
conditions of a nonlinear holographic recording, a QH is read out by relatively 
powerful object wave that results in acceptable energetic parameters of the 
QH-based self-conjugation process. At last, a diffraction efficiency of a QH-PCM can 
be undoubtedly increased if any thicker recording media are used, i.e., if the length of 
interaction of the readout wave with a hologram structure [2], [5], [18] is increased.

Bearing in mind the promising applications of the Young hologram technique 
to preprocessing of fractal-containing optical signals [13], [15], [16], on the one 
hand, and for the sake of comparison of the obtained results with the early 
demonstrated near-field Young hologram reconstructions from a closed aperture 
[10], on the other hand, we performed one more experiment using the fractally 
bounded aperture (for definition and properties see [39], [40]) as the input signal. 
An aperture shown in Fig. 4a is bounded by the triadic Koch curve of the second 
level. Note that the structural self-similarity intrinsic to fractals is now associated 
just with the aperture’s rim having a non-integer dimension, while the aperture 
itself has an Euclidean dimension “two”. In this experiment, the fractally bounded 
aperture replaces the profiled knife-edge used in the previous experiment. Thus,
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Fig. 4. Fractally bounded aperture (a), its partial version (b), and the self-conjugated reconstructions 
produced by the QH-PCM read out by the whole stored signal (c) and its part (d).

the wave parameter defined [41] as the ratio of radius of the central Fresnel zone 
constructed at the aperture plane from the center of a hologram plane to the mean 
linear size of an aperture (estimated as the mean value among the radii of the 
inscribed and overscribed circles with respect to the fractal’s initiator [15]) was 
*5  x 10“ 2 «  1, i.e., a near-field approximation was valid. All other parameters of the 
experiment were the same as in the previous case. Figure 4c demonstrates the 
PC-response of a QH reconstructed by the whole input signal. One can see again the 
pronounced contouring effect in this reconstruction. Besides, it has been observed 
that when part of the diffraction aperture is blocked, the corresponding fragment of 
the PC image disappears also. This is shown in Fig. 4d demonstrating the result of 
a PC-reflection of a half of the stored memory shown in Fig. 4d from a QH. This 
result confirms the conclusion that the near-field QH-PCM does not possess the 
associative properties due to reduced distributivity of a holographic recording in the 
case of interest, as it has been predicted on the basis of the SPP (see Sect 3.2.2).

5. Conclusions and discussion

It has been shown that a nonlinear holographic recording of a near-field diffraction 
wave with a standing reference wave provides a self-conjugation of the object wave. 
In such a manner, the ability of a static nonlinearly recorded hologram to produce 
a PC-replica of the wave that does not obey Gaussian statistics has been
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verified. In contrast to a self-pumping SBS-PCM, the PCM-properties of a QH are 
provided by the use of two counterpropagating reference waves. Namely, the object 
wave produces cross-gratings with each component of a standing reference wave, and 
a nonlinear mixing (spatial-frequency heterodyning) of these cross-gratings due to 
the quadratic component of a QH’s complex amplitude response results in the 
combination (2k —^ gratings constituting a PCM and satisfying the Bragg con
dition.

Further, it has been shown that a proper choice of the reference-to-object 
intensity ratio for a QH recording, on the one hand, and exploiting the quadratic 
component of a QH’s complex amplitude response, on the other hand, provide 
predominant self-conjugation of the EDW and result in the contoured 
PC-reconstruction of a QH. Thus, the virtual dark-field effect is realized owing to 
a strong dependence of diffraction efficiency of the combination gratings on the 
modulation percentage of these gratings (the actual dependence turns out to be equal 
to the squared one inherent to linearly recorded holograms).

In comparison with the initial version of the Young hologram technique 
introduced in [10], [11] and based on a linearly recorded near-field diffraction 
pattern, the technique substantiated here possesses several important advantages. 
At first, implementation of the “soft” blocking of a powerful primary wave by 
balancing diffraction efficiencies of partial holographic gratings rather than the use of 
any “hard” blocking screen provides better (more uniform in intensity) contour 
reconstruction that may be seen from comparison of Figs. 3 and 4 with the 
referenceless Young hologram reconstructions shown in Figs. 4 and 5 in [10], 
respectively. Actually, as it may be shown using a SPP, the parts of the rim of the 
profiled knife-edge which are perpendicular to the edge of a hard blocking screen are 
not reconstructed or, at least, are characterized by much lower intensity than the 
parts of the rim parallel to the edge of a blocking screen. On the contrary, the area of 
a QH recorded with a standing reference wave where diffraction efficiency of the 
combination gratings constituting a partial PCM for the EDW reaches maximal 
values is “self-tuned” towards the profile of the diffraction obstacle, being involved as 
a whole in the reconstruction process. Besides, the implementation of apodized pupil 
function corresponding to the known angular dependence of the EDW’s amplitude 
function relieves the self-conjugated image of undesirable secondary diffraction 
maxima often observed in referenceless Young hologram reconstructions. Further, 
the QH-based contour imaging is more flexible than the referenceless Young 
hologram-based one being implemented without any restrictions at the distances 
from the primary quasi-point source to the registration plane and from the 
diffraction device to this plane. (Let us remind that in [10] special recording 
geometry was implemented to provide the real conjugate image, for which 
a dark-field observation would be realized by the use of a blocking screen at the 
Young hologram plate). Finally, in the case of a QH-PCM the EDW is reconstructed 
mainly by the part of a hologram corresponding to the geometrical shadow region, 
while in the case of a referenceless Young hologram the EDW is reconstructed by the 
part of a hologram corresponding to the directly illuminated area. In both cases,
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a singly contoured image is reconstructed, as only one of two components being 
out-of-phase by n of the EDW is involved into imaging process. However, diffraction 
efficiency of a referenceless Young hologram elsewhere far from the geometrical 
shadow boundary occurs to be rather low due to large intensity ratio of the 
geometrical optics wave and the EDW. On the contrary, a diffraction efficiency of 
the QH-PCM for the EDW may reach considerable magnitude at any areas within 
the geometrical shadow region (where Eq. (9) is valid) being limited, in principle, only 
by saturation of a photoresponse of the recording material used.

In comparison with far-field referenceless Yound hologram [12], [15], one can 
note (apart from the above mentioned singly contoured image as the result of 
unilateral integral transform of the object wave) reduced distributivity of holographic 
recording explained as a consequence of validity of the SPP, and following from it 
reduced associative properties.

One more comparison may be performed, just with a quadric thin off-axis Young 
hologram [16], [30]. As it has been pointed out in [16], the edge-enhancing 
conjugate self-imaging based on such a hologram exhibits admissible aberrations 
(first of all, astigmatism of inclined rays and field curvature) only in the case when the 
double mean reference angle is small enough. This conclusion follows from the 
well-known statements of geometrical optics of holograms [42] —[44], according to 
which only the main image is aberration-free even if a hologram is read out in the 
wave length and geometrical conditions of the recording, and aberrations intrinsic to 
the conjugate reconstruction are minimized only in the case of paraxial imaging. It is 
clear that the self-conjugated response of a QH-PCM is aberration-free as the 
reconstructed beam differs in direction from the readout one by 180°, so that 
paraxial approximation is provided automatically.

In conclusion, let us point out some promising areas of application of the 
QH-PCM technique. Firstly, a QH-based PCM may be used in a PC-microinterfero- 
metry [45] to accurate measurements of the object’s macro- and microforms. Most 
of the advantages of using a QH-PCM in comparison with a common holographic 
interferometry are shared by the technique introduced in [45]. However, since a QH 
is read out only by the object wave rather than two counterpropagating reference 
waves (as in [45]), the system operates in a one-channel regime, and its sensitivity to 
environmental disturbances as well as to optical misalignments becomes consider
ably lower. Secondly, the technique introduced may form the basis of improved 
fractalographic methods [46], both for revealing the self-similar components of the 
object of interest, and for pre-processing of fractal-containing signals.
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