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While reflecting a wave front from a rough surface we can find areas with multi-valued defined 
phase (the same phenomena are present when the wave front passes through inhomogeneous or 
rough object). These regions — singularities — have the specific features and may cause a number 
of interesting phenomena to occur. We can treat them as well defined physical beings. We can also 
try to set optical instruments based on the birth, propagation and detection of singularities. One of 
such instruments under development is superresolution phase image microscope (SUPHIM). 
In the paper, we present briefly some basic information on singularities. Next, we give some 
information about SUPHIM. We also show examples of the experimental results that have been 
taken with SUPHIM working prototype.

1. Introduction
The first well known criterion of resolution was proposed by Rayleigh. The next well 
known resolution criterion based on the spatial frequencies cut-off was derived from 
the Abbe theory of imaging. The resolution criteria of Rayleigh and Abbe fixed the 
classical limit of resolution. Every instrument exceeding this limit is recognized as 
super- or ultra-resolving.

From the very beginning a number of ideas have been put forward to overcome 
the classical resolution limit. As an example we would like to refer to papers by 
Lukosz [1] — [3]. He has suggested some other way of understanding the resolution 
limits. According to Lukosz, in the optical systems the number of degrees of freedom 
must be conserved. Sacrifying the resolution with respect to one variable (for 
example, field of view) we can exceed the resolution with respect to other ones (for 
example, spatial frequencies).

In the absence of noise there are possibilities to get much better resolution than it 
is defined by Rayleigh, Abbe or Lukosz criteria [4], In fact, the noise is the main 
reason of the resolution limits. And all criteria listed above do not consider noise. 
Cox and Sheppard [5] have defined the resolution limit starting with the formula 
for informational capacity of the optical channels. Then they added to the formula 
a factor describing noise of the optical system. This seems to be promising way to 
follow for searching the general theory of resolution. The last step in this research
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program might be connecting the resolution criteria with the second law of 
thermodynamics. Theory of resolution founded on the entropy concept could be 
sensitive not only for noise, but also for a priori information, which is an important 
part of the theory of modern superresolution instruments.

We would like to distinguish between instruments which exceeding the classical 
resolution limits, are still limited by other factor than noise (for example, Lukosz 
method is limited by frequency cut-off, but at the higher level than it results from 
Abbe criterion). In such a case we will say ultraresolution. The instruments in which 
resolution is limited by noise we will call superresolving. The example of working 
superresolving instruments is scanning near field optical microscopy [6], The other 
example is SUPHIM. The SUPHIM microscope is based on the analysis of the 
singularities in the optical wave fronts. In the next section we want to give some 
basic information concerning wave singularities. The last section is devoted to the 
SUPHIM.

2. Phase singularities
The wave front can contain points or lines where it is not single-value defined. These 
singular points may be considered as separate physical beings within the wave front. 
A well known type of singularity is phase jump by n — edge singularity [7]. It 
appears when the part of the wave front is shifted by angle n against its other part. 
Other interesting kinds of singularities are screw and mixed (edge-I-screw) ones [7]. 
We want to explain a bit more the phenomena of screw singularities.

Screw singularities appear at the points where the phase is totally undetermined. 
That means that the imaginary and real parts of the complex amplitude have to meet 
the conditions [8]:

From the above conditions we can find that the light intensity at the singular 
point equals zero.

The wave front with screw singularity has a helical form (Fig. 1), [9]. When the 
helix is clockwise we define the sign of its topological charge as +n (n — natural 
number), in the opposite case we have — n. Figure 1 shows the wave fronts with the 
screw singularity having topological charge (1 and 3, respectively).

The wave front with screw singularity carries a non-zero angular momentum 
L [10], which in quantum picture is equal to X-h, where h is Planck constant divided 
by 2n. The non-zero angular momentum results in structural stability of the screw 
singularities. One can destroy such a structure if its angular momentum is passed to 
some other system [11]. The other possibility is to anihilate two singularities with 
opposite sign. The set of screw singularities sharing the same wave front shows some 
more (than anihilation) charge particle like behaviours [12]. We can, for example, 
observe the stable arrangements of two or four singularities with geometry 
corresponding to electrical dipols or quadrupoles, respectively.

R e jF ix ^ z ,)}  = \E(x„y„z,)\co&(p(xg,y„zM) = 0, 
Im{£(xs,ys,zs)} =  |£(xs,ys,zs)|sin<p(xs,ys,zs) = 0.

(la)
(lb)
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Fig. 1. Wave front with screw singularity of charge: + 1  (a), —3 (b).

For the research purposes, the wave fronts with screw singularities can be 
generated by computer designed holograms [9], [11], [12], The following equation 
describes (in polar coordinates) a Gaussian beam with singularity of charge m [9]

E(p,tp,z) = E0pm e\p(im(p)e\p(F 2(z) — p2/Fl(z)) (2)

where m corresponds to the value of the topological charge. Parameters Fv(z) and 
F2(z) may be calculated by putting expression (2) into Helmholtz equation. 
Processing this equation leads to fringes pattern shown in Fig. 2.

Fig. 2. Fringes geometry of the hologram generating wave front with the screw singularities of charge 5.

3. SUPHIM
At the moment there is no good theory of SUPHIM imaging. In this situation, we 
briefly present some ideas from the theory which shows that with SUPHIM like
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instrument we can get superresolution. Following the paper of Bertero and PIKE 
[13] the relation between the object amplitude v(x) and the image amplitude u(x) can 
be written as:

«(*) = u(x') sine { ^ ( x - x ' ^ d x ' - (3)

By expanding v(x) in the eigenfunctions gt{x) of the operator acting on v(x) in 
Eq. (3), i.e., convolution by a function sine, we get

r(x) =  £  ai3i(x,5). (4)
i= 1

Then image amplitude can be written

« (* )=  E  V iff ifo S )  (5)
i = 1

where: S is the classical number of degrees of freedom [14] defined as: 
S = 2X sin0/1, (X  — size of the object domain, sinO — numerical aperture), l-t is the 
eigenvalue belonging to the i-th eigenfunction. The eigenfunctions gt(x) are the linear 
prolate spheroidal functions [15], [16]. The value of for i > S becomes very small. 
This means that in principle resolution beyond the classical limits is possible. In the 
real system the value of i is limited by the condition that l iai is sufficiently larger 
than noise amplitude, so we have

u(x) =  £  l ^ g ^ x ) (6)
i= 1

where K  is of the order of S [13].
According to this theory, the objects that can be described by eigenfunctions gt(x) 

with equal eigenvalues 1L are reproduced identically in the image (4), (6). For two 
dimensions the number of objects that are imaged identically is greater, for instance, 
objects of the form

v(x,y) = akgk(x ,s i) + bjgj{y,s2) (7)

are imaged identically when =  lj(S2)·
Instead of looking for identical reproduction of the whole object we can require 

that only points of the object are reproduced identically where the modulus of v is 
zero. In this case, functions gt(x or y) in (7) may correspond to different values of l t. 

Suppose that the real and imaginary parts of v(x,y) are given by:

Re(i;(x,y)) = akgk(x), 
Im(v(x,y)) = bjgjiy).

(8a)
(8b)

Thus for the functions gk(x) = g^y) = 0 we have a phase singularity (1). These 
singularities are reproduced in the image field. Equations (8) can be extended as 
follows:
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Re(v(x,y)) =  E akgk( x - x k), (9a)
k

Im(u(x, y)) = YJbj gj ( y -  y,·) (9 b)
j

where shifts xk, are chosen so that the eigenfunctions in the sum have a common 
zero. Then the singularity at this point is reproduced in the image field. Also the zero 
contours Re(u) = 0 and Im(u) =  0 are reproduced identically. We have taken the 
contours Re(u) = 0 and Im(u) =  0 perpendicular to each other. In the general two- 
dimensional theory this restriction would not be necessary.

The theory briefly presented above does not sufficiently explain the results 
obtained in the experiment. However, it shows that superresolution in the systems 
described below is possible. In [17], Tychinsky has reported an experiment with the 
system shown schematically in Fig. 3. In our system (Nanofocus GmbH, Duisburgh)

Fig. 3. Experimental setup (M — modulator, L — phase shift mirror, E — additional magnifying optics).

we used a modified interference microscope (Nomarski microscope produced by 
Leitz in Wetzlar, Germany). We added a laser illuminator. In the parallel laser beam 
that is directed by a neutral beam splitter to the objective we have placed an 
electrooptical modulator that produces a variable phase difference between the two 
polarization components of the illuminating wave. The illuminating wave is focused 
on the object by the objective lens, so that a small spot on the object is illuminated. 
This field reduction makes the superresolution easier. We also added a secondary 
magnification stage (40 x ) that images the diffraction spot on a CCD detector. In the 
primary image the diameter of the diffraction spot is about 50 pm. On the CCD
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detector the diameter becomes 2 mm. With a 50 x objective one pixel of CCD 
detector corresponds to about 5 nm. The phase difference between the polarization 
components is measured by introducing the phase shift of 90°, 180°, 270°, 360° (by 
modulator) and processing the corresponding images with the image processing 
software (supplied by B. Breuckman GmbH).

Fig. 4. Phase image (a) and profile (b) of the “line” object

As an example we present two phase images took by the setup described above. 
The first (Fig. 4) is a phase image of a line structure (photo-resist on silicon covered 
with thin gold layer) of 100 nm in width. The linewidth was checked by electron 
microscopy and AFM profile measurement. Figure 4 shows the pseudo-3D image 
and a cross-section. It is worth noting the steep slopes of the phase image, 
corresponding to an edge width of 3 pixels, i.e., 15 nm on the object. Figure 5 shows 
the second phase image. The object consisted of small holes in a silicon surface. 
Independent measurements gave distance between the centres of two holes equal to 
0.2 pm. The diameter of a single hole is smaller than 0.1 pm. In the phase image the 
number of holes is doubled. This means that periodic structures give artefacts in the 
phase image. Again the edges of the phase are very steep.
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Fig. 5. Phase image of the periodic “dot” object.

From this result we can draw the following questions:
— Is the edge width shown in the phase image related to edge steepness in the 

object structure?
— What are the artefacts of general non-periodic structure?
— Why do phase images with magnification by 1000—10000 times (we have 

used also a special secondary magnification system x 250) resemble so remarkably 
the object structures?

To resolve this and other questions some more study on the scattering of 
polarized light at submicron surface structures must be done.

4. Conclusions

The experiments of Tychinski, and those reported in this paper, show that 
noise-limited superresolution is possible and can be realised in interference micro­
scopy. The present theory of superresolution cannot explain sufficiently super­
resolution phase image formation. For this reason further development of this kind 
of microscopy has to be supported by progress in theory of phase imaging.

References
[1] Lukosz W., J. Opt. Soc. Am. 56 (1966), 1463.
[2] Lukosz W., J. Opt. Soc. Am. 57 (1967), 932.
[3] Bachl A., Lukosz W., J. Opt. Soc. Am. 57 (1967), 163.
[4] Di F rancia T., N u o v o  Cim., Suppl., 9 (1952), 426.
[5] Cox L J., Sheppard C. J. R., J. Opt. Soc. Am. A 3 (1986), 1152.
[6] Courjon D., Vigoureux J. M , Spajer M., Sarayeddine K., Leblanc S , , Appl. O pt 29 (1990), 

3734.



300 C. Velzel, J. Masajada

[7] N ye J. F., Berry M. V., Proc. R. Soc. Lond. A 336 (1973), 165.
[8] F reund L, Shvartsman N., Phys. Rev. A 50 (1994), 5164.
[9] Bazhenov V. Yu. L., Soskin M. S , Vasnetsov M. U., J. Modern Opt. 39 (1992), 985.

[10] Allen L , Beijersbergen M. W., Spreeuw P. J., Woerdman J. P , Phys. Rev. A 45 (1992), 8185.
[11] H e H., F riese M. E. J., Heckenberg N. R., Rubinsztein-Dunlop H., Phys. Rev. Lett. 75 (1995), 

826.
[12] Basistiy I. V., Soskin M. S., Vasnetsov M. V., O pt Commun. 119 (1995), 604.
[13] Bertero M , Pike E. R., Opt. Acta 29 (1982), 727.
[14] Paterson C., Smith R., Opt. Commun. 124 (1996), 121.
[15] Toraldo D i Francia, J. Opt. Soc. Am. 45 (1995), 497.
[16] Slepian D , Pollak H. O., Bell. Syst Techn. J. 40 (1961), 43.
[17] Tychinsky V. P., Opt. Commun. 74 (1989), 41.

Received January 6, 1999


