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Notes of some properties of interferometric zone plate
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The difference between a conventional and an interferometric zone plate operation has been 
described. It is known that the interferometric zone plate as an axis point source hologram 
possesses only two foci, whereas the conventional one possesses a large number of focal lengths, 
both positive and negative. In this letter, some imaging properties of the interference zone plate are 
shown, and the zones of gradual transitions from minimum and maximum transmission are 
considered.

1. Introduction
The conventional zone plate (Fresnel zone plate) is a device on which there is 
a central spot surrounded by concentric annular zones, alternately opaque and 
transparent, with the radii of boundaries between the zones being proportional to 
the square roots of the natural numbers. Since the wave fronts from these 
transparent zones are in phase, it gives a high concetration of intensity at the focus, 
and it may be used as a lens to concentrate the energy in a light wave or to create 
images. The operation of zone plate is based on diffraction, whereas a lens operation 
is based on refraction, therefore the performance of a zone plate is different from the 
performance of a conventional lens.

In this paper, an interferometric zone plate [1], [2] generated by the interference 
of coherent plane and spherical waves, known as the Gabor zone plate is considered. 
When the interferometric zone plate is illuminated by a plane (or spherical) wave 
front of monochtomatic light, it produces only one virtual and one real point image, 
whereas the Fresnel zone plate produces an infinite number of point images. Indeed, 
the concept of the interferometric zone plate comes immediately from the Gabor’s 
hologram theory.

2. Zones of an interferometric plate
The conventional zone plate is a kind of generalization of the pinhole camera and 
can overcome some of its disadvantages. This zone plate consists of a set of 
concentric circles with radii proportional to the square roots of whole numbers; 
when illuminated by a plane wave front of monochromatic light, the virtual and real 
images result at different points on the principal ray (optical axis). The focal length of 
such a zone plate is

/ = 4  (n =  1, 2, 3 ...), ( 1 )
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where X is the wavelength of the recording wave, and the fainter images correspond 
to the focal lengths: +f/3,  + / /  5, ± f / l ,  . . . .  Being still of weaker concentration at 
these distances, the Fresnel zone plates are not generally used in optical systems, 
because lenses that concentrate the light energy into a single focus give clearer 
images.

Fig. 1. Formation of an interferometric zone plate by a divergent (a) and a convergent (b) object wave 
front. PQ — object point source, PR — reference point source inserted at infinity (z„ -* oo).

Let us consider an on-axis hologram of a point object [3] that is produced at the 
photographic plate by recording the interference pattern of an object spherical and 
reference plane waves, both emitted from the axis point sources. Figure 1 illustrates 
this situation, where the recording plate is located in the x-y plane of the coordinate 
system. When the reference point source is inserted at the finite distance zR from the 
photographic plate, the interference patterns are given by the intersection of the x-y 
plane with the two spherical surfaces of the recording wave fronts
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[x2 +  y 2 +  (z -  zG)2] 1/2 -  [x 2 +  y 2 +  (z -  z*)2] ll2 +  (zR- z 0) =  nX (2)

where (x, y, z) are the coordinates of the intersection points of the surfaces in the 
photographic emulsion. The third term in the above equation is added to make the 
number n equal to zero at the origin of the coordinate system. Expanding as a power 
series in x and y  by setting z =  0, we obtain the first two terms in Eq. (2), 
approximately,

[x2 +  y2 +  ( z - z 0)2] 1/2 =  zQ +  ~  (x2 +  y 2) -  ~  (x2 +  y 2)2,
ZZq o20

[x2 +  y 2 +  (z - zR)2y /2 =  zR +  ~  ~ (x2 +  y 2)-  g \ ,  (x2 +  y2)2.

Therefore Eq. (2) takes the form

/ i  _  l \ ( x 2 +  y2) _ / 1 _  l \ ( x 2+>-2)2 _ ^
V o  zrJ  2 \ zq zr J 8 

or by substituting the following expressions: 

zR-*co,  z0 = / ,  x 2 +  y 2 =  r2, 

we obtain for the paraxial region

(3)

(4)

The difference between Equations (1) and (4) lies in the fact that the amplitude 
transmittance of the zone plate described by Eq. (1) is rectangular and that of Eq. (4) 
is usually sinusoidal. In other words, the n-th number of zone Eq. (1) counts both 
opaque and transparent zones (or the inner and outer boundaries of the zones, 
separately for each zone), whereas in Eq. (4), n is the number of transparent zones. In 
this case, we can observe that the fact of one half of n in Eq. (1) being identical to n 
in Eq. (4), makes the intensity distribution changes just in each diffraction order. In 
place of the opaque and transparent zones of the conventional zone plate, we have 
gradual transitions from minimum to maximum transmission. The “rectangular” 
zone plate possesses a focusing property with a large number of focal lengths, both 
positive and negative, whereas the “sinusoidal” zone plate possesses only two foci.

An optical ray tracing for image formation by means of an interferometric zone 
plate is illustrated in Fig. 2. In this respect, the Rayleigh criterion for image 
formation can be used to determine the allowable number of transparent zones, i.e., 
the error in optical path from the object to the sensibly perfect image should not 
exceed the value of 1/42. The optical path from the object point P0 to its image at Pr 
can be written as

/ =  /i +  /2 =  z0 +  zR +  nl  (5)

where n is the number of transparent zones. For a good image the optical path 
cannot vary more than the value determined by the Rayleigh criterion
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Fig. 2. Ray-tracing through an interferometric zone plate for image formation. Pc is an axial object point, 
and P, is the image. H is its zone plate produced holographically.

U t A,4 (6)

1 1 1
but r2 =  (J+nX)z —f 2 =  2nXf+n2X2, and - = ----h

J  z o ZR
On the other hand, by neglecting terms in higher powers of nX, we have

1 =  \ J z O +  rn + > /z R +  rn =  zO +  zJt +  n ^ +  ^ y ^ l  — — ·

Equating the right-hand side of the above equation with the appropriate 
expressions of Eq. (5) and the inequality (6), we obtain

1 _  n2Xf2 /  1 1 1
4 2 l / 3 z l  z l

(7)

The Rayleigh criterion for the image formation then leads to the following 
inequality:

1
4

> 1  r
zO ZRJ

) =
3 Xf 2-----

1 2 zazR

n < \zo I
y/6X(zo ~ f )

(8)

The above equation shows that the allowable number of transparent zones for 
good image is proportional to the object distance in square root and, in particular, 
for the object at infinity when the object wave is normally incident on the zone plate, 
the number of zones is not limited.



Letter to the Editor 247

3. Imaging and aberrations
Figure 1 illustrates the geometry of the interferometric zone plate recording process 
using a diverging (or converging) object wave and an on-axis collimated reference 
wave. The phase variation of the object wave at the zones plane is given by

^ , y )  =  2lV / 2 +  r„2- / )  (9)

where the second term is included in the phase function to make <P{x, y) =  0 at 
r„ =  ^ /x2+ y 2 =  0. The circular spatial frequency of the zone plate at the distance rn 
from the axis is determined as

____ 27ir„

dr" * y / f 2 +  rn

Hence the fringe spacing of the interferometric zone plate is

From Eq. (11) we can calculate the/-number of the zone plate

/-number =  -

(10)

(1 1 )

(12)

When equating the phase function (9) to 2nn, we find the annular zones whose 
radii of constant phase are well known and expressed in the form

rn =  (2nXf+n2X2)1'2.

But for f »  nl  the above expression is identical with the definition of the focal length 
of zone plate described by Eq. (4).

Let us consider an interferometric zone plate recorded as the on-axis point 
hologram illustrated in Fig. 1. The zone plate is illuminated by a spherical wave front 
emerging from a point source Pc to converge the reconstructed wave at the image 
point P r  The relation between the point source and its image distances from the 
zone plate is described by the lens equation

1 1 22
\------- 2

zc Zj rf
(13)

where the image point P , of the point source Pc is defined as the cross-point of the 
two rays that are diffracted at the points P 1(*1,y1) and P2(x2>>,2)· The coordinates of 
the three points P^Xj.y!), P(x,y)  as P 2(x2,y 2) indicated in Fig. 3 are connected with 
the radii of zones as follows:

r„ -1  =  v /( ^ - 2ctanao)2 +  (>!- zc tanao)2.

r„ = J x 2 + y 2,
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Fig. 3. Reconstruction of the interferometric zone plate by a coherent spherical wave that impinges 
normally on the zone plate at the r„ zone.

'■ «+1 =  V(x + Zc tan *o)2 + (y + zc  tan cc0 f
where a0 is an object aperture angle. The diffraction angles at the three points 
P 2, P, P 2 in the figure plane are expressed, respectively, by the following relations

We then obtain the image distance as

>/8 +  1 — yjn)
tana2 —tanat

(14)

The variation of the image distance depends on the diffraction angles of the 
incident wave. But the /-number of the interferometric zone plate is determined by 
the image distance and the aperture diameter, therefore any imaging is here 
accomplished with errors.

The errors of an interferometric zone plate can be considered as the hologram 
aberrations, since this zone plate is made as a hologram of an axial point source. The 
hologram aberrations have been studied by M EIER [4] and CHAMPAGNE [5], and 
the aberrations of a zone plate by Young  [2], who studied the optical path 
difference expanded in a power series: OPD =  r^/2/— r£/8/3 +  .. .  ; here the second 
term determines the spherical aberration of a conventional zone plate illuminated
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with parallel axial beam. The phase variation described by the function (9) can be 
applied to any area of the interferometric zone plate, for example, located about the 
point P(x,y), as shown in Fig. 3. Expanding the phase function in a power series, we 
obtain

<P(x-x,3;-y) =  y  [> / f2+ ( x - x ) 2+ ( y - y ) 2- f ]  

[(x2 +  x2) +  (y2 +  y2)] -  j  (xx +  yy)

+

2 k [ 1

y (2 /
2 71 1

y  |_ 2 f

1

8 / 3
[ ( x

[(x2+ y 2) (xx+ yy) -  (xx+ yy)2+ (x2+ y2)]

r̂ 2 , ,-2yi2 +  . . .  .

The first term of the above equation represents a spherical wave, and the second 
term changes the direction of the reconstructed wave. The remaining terms that are 
inversely proportional to / 3 determine the third order aberrations. In this way we 
determine the coma and astigmatism of the reconstructed off-axis wave front by the 
expressions: (x2 +  y2) (xx +  yy) and (xx +  yy)2, respectively.

In such an imaging, the astigmatism appeared to be the more serious aberration 
in the reconstructed wave front than coma.

References

[1] Waldman G. S., J. O p t Soc. Am. 56 (1966), 215.
[2] Young M., J. Opt. Soc. Am. 62 (1972), 972.
[3] Collier R., Burckhardt C. B., Lin L. H., Optical Holography, Academic Press, New York 1971.
[4] M eier R. W., J. Opt. Soc. Am. 55 (1965), 987.
[5] Champagne E. B., J. Opt. Soc. Am. 57 (1967), 51.

Received March 9, 1999


