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Influence of the A Priori Information about an Object 
on the Direct Recovery Procedure in Incoherent Imaging

In paper [1] the direct recovery problem for incoherent imaging was discussed and a method of solution given for the case 
of no a prioii information about the object. The present paper is devoted to a quantitative analisis of the influence of the 
a priori information on both the recovery procedure and the results.

I. Introduction

In paper [I] the problem of the direct recovery, 
understood as the image and object reconstruction 
procedure starting with their measurement represen­
tation, has been considered for the case of no a priori 
information about the object. Such a formulation of 
the problem permits to considerably simplify the 
analysis on the one hand and to clearly point out 
the basic difference between the object and image 
recovery procedures on the other. As has been shown 
in [1] this difference lies in the intrisic impossibility 
of performing a pleasing recovery of the object, 
while the corresponding image may be, in principle, 
reconstructed to the reasonably arbitrary accuracy**.

However, in practive we almost always possess 
some knowledge about the object, prior to the mea­
surement, though in many cases it may be difficult 
to represent analitically. I f  the a priori information 
may be expressed analitically, the reconstruction pro­
cedure developed in [1] may be applied after the 
corresponding modification.

Below, we will examine the applicability of this 
method to the cases when some reasonable assump­
tion about the object may be made. The analysis 
will stay in close connection with that given in [1] 
and the notation will be strictly preserved as this 
paper is in fact the second part of [1].

Π . Object of continuous intensity distribution

If the fact of continuity of object intensity distri­
bution is known, as additional a priori information,

*) I. Wilk, Instytut Fizyki Technicznej Politechniki Wro- 
clawskiej, Wroclaw, Wybrzeze Wyspiaflskiego 27, Poland.

**) Eventually at the expence of both the procedure and 
the arrangement complexity.

independently of the given set of the observed image 
points ^(α*.), k  =  1 , . . . ,  N, then it is possible to 
represent the object as a series of known, regular, 
elementary, local functions centered at the points 
a'k or ak (or any other set of N  points within the 
region <r/y?m) with unknown coefficients. These 
coefficients are to be determined by the reconstruction 
procedure. We shall illustrate the recovery method in 
this case by considering again the half-tone screen 
approximation from a view-point different from that 
in [1], After having explained that we are interested 
in the half-tone scrren approximation, we can re­
present the sought object intensity distribution in the 
forms

N
4 b (« )  =  Σ  ( la )

n=l

or

N

4b(“) =  C 'rect(a—a') (lb)
π«= 1

in those used in Eq. (18, a, b) in [1], where

rect(a—a„) =
1 for (a—a„) e Qk k = \ , . . . , N

0 otherwise

and

rect(a—a^) =
1 for (a—an) e d'k k  =  1 , . . . , N.

0 otherwise

The quantities cn and cn are unknown, but as their 
determination solves our reconstruction problem, this 
will be our goal in this section. By substituting (1) 
into (1) in [1] we can relate c„-and c'n with the observed 
image points *(«*), k  =  1.......N  as follows:
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P Pa n=l

Solving in a routine way the systems (1 a, b) of 
the linear equations with respect to cn and c'n, we 
get

K*m { — -  +  —) < p ( P i ~ a k> P 2 ~ a k ) d P i d P i d a
R  1,1 J ·· ■ > R l , n - 1 » **1 9 ^ 1  ,n h 1 » * · ■ R\,n

\  *i /
r N

RN i , . . . , Λ,ν „ | » ■Χ’λ'» 1-1 * · · · Rff .N
N Cn —

\{ * n k } \

=  ^  C" Rnk (2a) η =  1 . . . , N

and by the same argument
AT

x(ak) =  V  c^ k,*_n= 1

where

(2b)

and

*11, - *1. *■,„+ i , . · · , Ri'tf

R n A  > · · · > R -Ν ,π -  1 ) > * JV ,n +  1 > ■ ■ · · fyv.JV

KOI ; (5b)

η =  1.......iV

^nk=  J J  rect (a—an)Kim l ~  
p  p i  ' 2

<P(Pi-~ak, P 2~ » k)d p id p 2da (3a)

and

ψ(Ρι P i ak)dpidp2da . (3b)

Calling the matrices

{*nk} and { < k}, (4)

respectively, the “upper” and “lower” bound recon­
struction matrices involving the half-tone screen 
approximation, it is worth noticing that the matrices 
(4) represent certain modifications of the upper and 
lower bound matrices as determined by Eq. (15) in 
[1] for the case of absolute a priori ignorance. From 
the formal point of view the modification consists 
in replacing delta functions in Eq. (15) in [1] by 
rectangular functions. From the reconstruction view­
-point, the modification consists in the inserting of 
all the a priori information about the object structure 
in the matrix elements Rnl. and R 'nk. Thus, reconstruc­
tion matrices now contain both all the knowledge 
about the imaging and observing systems, necessary 
for reconstruction, and the a priori structural infor­
mation about the object. This increase of information 
contained in Rnk and R„k results in their greater 
complexity, when compared with Bnk and B'nk. The 
last fact is somewhat typical and will be observed 
in the next example, too. Furthermore, note that the 
matrices Rnk and Rnk have the property of representing 
the “upper” and “lower” bound reconstruction pro­
cedures only in a limited sense, which will be clear 
from the following.

Substituting the recovered values c^ and c'„N into 
the equations (1), we obtain two representations of 
the object intensity distribution

N
Cbax(«) =  Σ c" rect (6a)

n=l
N

c n(«) =  Σ  c"Vrect (®“ ®ή)> (6b>
n= 1

each of them being the recovered object intensity 
distribution consistent within the half-tone screen 
approximation, with the given set of observed points 
x(ak), k  =  1, . . . ,  N. If we assume

/ob(«) =  \  [ /ο Τ (« )-4 Τ (« )] 

i N
=  y  Σ  lcn rect (a-a„)+c'„N rect ( a - a ') ] ,  (7)

“ n = 1

as the final object representation involving the half­
tone screen approximation, then

AIob(a) =  + |  [ /Γ χ(«) -  / 0T (« )]

1 N
=  ±  — Σ  [C"  rect (α—a„) -  c ?  rect ( a - a n)\ (8)

represents the recovery error in the following sense: 
After having decided to reconstruct the object 

with the half-tone screen approximation, we are 
still free to arbitrarily localize the middle points of 
the cell texture with respect to the object region Θ 
to be recovered. Equations (1 a,b) represent somewhat 
limiting positions of these middle points; (la) repre­
senting the case when the middle points are located 
at the points (ak) mostly contributing to the correspon­
ding observed image points x(ak), while (lb) repre­
sents the case of locating them at the points (a 'k) of
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the least contributions. Thus, if (7) describes the 
recovered object distribution involving the half-tone 
screen approximation, (6a) and (6b) represent the 
extremal possible a posteriori departure from (7) 
within this approximation, due to extremal positions 
of the cell texture still consistent with the measure­
ment results.

The error of the object intensity value within one 
fourth of each cell 6k k  =  1 , . . . ,  N  due to this uncer­
tainty of texture localization may be evaluated from 
the formula (8). This does not mean that the real 
intensity distribution in the object remains within 
these limits. Therefore, the reconstruction matrices 
(4) may be considered as the matrices of upper and 
lower reconstruction procedure only in the sense 
limited to the object structures given by the half-tone 
screen approximation.

Finally, it is clear that the representation (la, b) 
of the object is only one of many possible for the 
objects known a priori as being continuous. Generally, 
we can represent the unknown object intensity di­
stribution in the form of the series

JV
1(a) =  Σ  cn f(a~  a„)

« =  I

object. The developed reconstruction procedure holds 
for all those cases and the only modification consists 
in appearing of the corresponding elementary struc­
tural function in the elements of the upper and lower 
bound reconstruction matrices. Thus the general 
formulas for Rnk and R'nk are respectively

ψ ( Ρ ι~ α^  P 2~ ak)dP id p 2da. (10)

An important example of that kind of modification 
will be discussed in the following paragraph.

III. Band limited objects

If the object is known to be band limited and the 
spatial frequency spectrum width is given, then on 
the basis of the sampling theorem, the object intensity 
distribution may be uniquely represented in the form

/ob(«> β) =

and n =  1 , . . . N
N

r (a) =  JV  c j ( a -  «')
n — l

and call the continuous functions f ( a —a„) elementary 
structural functions of the recovered object intensity 
distribution. The form and analytical properties of 
these functions must be determined by the a priori 
knowledge about the object. For instance, in the 
up-to-now considered cases the structural functions 
f ( a —an) were respectively equal to δ(α—αη) for the 
case of no a priori information (see [1]) and to rect 
(a—an) when the half-tone screen approximation was 
involved.

Good examples of other elementary structural 
functions, which may be applied in the recovery 
procedure, are the following

f (a  — a„)
sin k(a-a„)

i«—«,Π
m = 1,2, k, ... (9)

sine

where μ0 and v0 are the limits of the frequency spectrum 
in the a and β directions respectively*. The complete 
determination of the object requires estimation of

the infinite number of the intensity values /

n \
----- . As this requirement is unrealistic from the
2vo I
practical point of view, usually an approximate 
representation is used

(°- 2̂ )]sinc h  (' ( 11)

or

f ( a —an) Jq (a α„) 
I a-a„\m

J0 — denotes a Bessel function of first kind and first 
order and or similar, where the exponent values k and 
m may be adjusted to the concrete reconstruction pro­
blem according to the a priori information about the

In the last formulation the problem can be treated 
by our recovery procedure in the following way: 

Let us define the set of points (am, βπ) in the
m n

object plane by letting am =  ----- , β „ = ----- : and,
2μ0 2v0

* We resign here for a moment, of abbreviated notation 
a =  (a, β) to be able to consider the general case when N  Φ M  
in (11) below.
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find the corresponding points (am =  yim am, 
bn = γ ίηβ„) in the mage plane*. The locating of 
the observing system at those points (am, bn) results 
in determination of the observed image points x  
(am,b„)n =  —N0, ·.., +Nlj,m  =  —M0, ..., + M 0 
being the product of the transformation

Mo No
x(ak, bk) = V  £  Ι(α„,βπ) J J  sine [2μ0(α-α„)\

- M o - N o  PoP

( β ~ β η ) ] Κ 1η
-

a
H--------

9 i
5

\ Z 2 Ζχ Z 2

I p ^ , a 9 2  .

L )* im  —  + 1 ? —  +
\ * 2 Z i *2 Z 1 /

e ·
(12)

9>(Pi~a„qi—bt, p2~ a t, q2—b,)
Mo No

dpidq idp2dq2 da dft =  V  £  I(am, β„)Β,kmn
- M 0 - N 0

t = —M, M  k  = - Ν , . , . , Ν .  (13a)

By the same arguments applied to the intermediate 
points (a'm, β’η), we have

M 0 No

x(a„bk) =  £  ] y l ( a m^ „ ) K kmn· (13b)
- M 0 - N o

Here, the corresponding expressions for the upper 
and lower bound reconstruction matrix elements 
*tkmn and R'tkmn are respectively

*tkmn= /  sine [2μ0(a—am)]sine [2ν0(β-β„)] (14a)
Po

B(a, β ,α , ,^ )ά α ά β ,

Kkmn= J  sine [2μ0(α—arsine [2ν0(β—β 'η) ]
Po

Β(αβ, αχα^άαάβ, (14b)

where

B(a, β, at bk) =  f +
J  \ z 2 Ζχ Z 2 Z J /

\ z 2 z2 z2 Ζχ I

ΨO i— a„qx- b k ,p 2- a t,q 2- b k)dpxdp2dqxdq2 (15)

(see (9) in [1]). Thus, the reconstruction problem is 
reduced to solving the systems (13a, b) of linear 
equations with the reconstruction matrices (14a, b)

containing the elementary structural functions 
sine [2//0(a—am)] and sine [2ν0(β—βηι)] of the object. 
Again, the matrix (14a) may be considered as the 
“upper” bound reconstruction matrix, while the 
matrix (14b) as the “lower” bound reconstruction 
matrix both in the limited sense discussed above. 
Substituting the required values

βη) and I%M° (am , β '„), (16)

into (11), we get

x

and

Mo No

/ r x)(«, β) =  Σ Σ ^ ^ β η )
- M o  - N 0

X sinc[2/io( a - a m)]sinc[2vo03-a„)] (16a)

Mo No

n r \ a , β)  =  ς  Σ  ^ Μ ο ( « : ,  / Ο χ
— Mo —N 0

X sinc[2^o(c^c4)]sinc[2i’o(/S-<4)], (16b)

as upper and lower bound object estimations and 
finally

/ob(«, β) =  i ^ T x)(«, / ? ) + 4 Γ ’(α, β)] (17)

as reconstructed object distribution.
For the sake of comparison with the formerly 

obtained results, it will be convenient to restrict our 
considerations to the case, where M 0 = N0 and to 
shorten the notation by renumerating the scanning 
point coordinates in the image and object planes as 
follows :

(ak, b,) =  {as)

( “ * .  β η )  =  « , )

(«m. β'η) =  (a'r)

S = \ , . . . , N  

A = (2 M 0+ 1)2 

r =  1.....JV

Then the formulae (13)-(17) may be written in a more 
compact form

N  No

x (as) =  2 ’ /(a r)/?rs=
r=  1 r= 1

(13'a)

N N 0

X( i s) =  ς  = Σ c?R”
r = l  r — 1

(13'b)

RrS =  J sine [2/t0 (a—ar)]S(«, as)da
P

(14')

N
7 Γ Χ)(«) =  j ^ / ( « r)sinc[2^0( a - 5 r)]

r = l

(16'a)

N
7obin)(«) =  ^7(«r)sinc[2/i0( a - a r)] (16'b)

r=l

* This definition of (am , β„) implies rectangularity of the / 0b(a ) =  i  Î ob aX) (a) +  ̂ ob'n) (a)] (17')
recovered object area.
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A 1(a) =  ± *  [/<Γ*>(α) -  l £ ° \ « r)} r =  l , . . . . , N ,  (18) where

where An(p) =  Jrect (a—an)<p(p,a)da

sine [2μ0 (a—ar)] =  sine [2μ0 (a —ar)] sine [2 v0 (β— fir)]

μ0 =  (/i0,v0). A 'n(P) =  /  rect ( a - a n)<p(p,a)da,
Po

IV. Remarks on the reconstruction accuracy

All the analysis developed so far consists as mat­
ter-of-factly in different realizations of the same 
recovery method with modifications due to the 
a priori information about the object. It may be 
interesting to compare the accuracy of each particular 
reconstruction procedure for both the image and object 
intensity distributions in all the considered cases. To 
do so, let us return for a moment to the image reco­
very problem. Having determined the object intensity 
distribution in the form (7) for the case of the half-tone 
screen approximation or in the form (17) for the case 
of band limited objects respectively, we can readily 
obtain the corresponding formula for the reconstruc­
ted images by substituting successively (7) or (17) 
into (2) and (10) in [1], and then estimating the 
reconstruction error from Eq. (11) in [1]. This yields!

(B) For band limited objects:

From (14' a, b)

C ax)(p) =  /  ΐ Τ χ\α)ψ(ρ,α)άα
Po

N

=  c* J sine [2/ι0(α—a„)]<p(p,a)da (23)
n = l  Po

N

= Σ ° Ν" Bn(P)’
π = 1

l \T \p )  =  f  l£ 'n)(a)<p(p,a)da
Po

N

=  /  sinc [2/i0(«-»r) ψ (p ,a) da
n =  1 Po

N

= Σ ^ Β 'η(Ρ), (24)
n = 1

(A) For half tone screen approximations:

I T X)(P) =  /  1 ^ ( ά ) ψ (ρ ,α ) ά α
Pa

Σ  cn f  rect(a-a„)<p(p,a)da
n=  1 P o

N

=  ^ X ( p )>

(19)

/,m(p) =  i t f i r t o + ^ i p ) ]
N

= ± Σ  ^ Bn( p ) + c'rN B'„(P )], (25)
π — 1

N

δ ι μ  =  ±  1 1 (26)

k = l , . . . , N ,
where

Ι ! Γ }(Ρ) = f  C ' n)(a)cp(p,a)da
Po

N

=  Σ  cn J rect(a — a)<p(p,a)da
η - 1 Po

N

=  Σ  c'"A»(p)> ( 2 ° )«=1

4 »(p) =  i t C ax)(P) +  C in)(p)l
N

= (21)
η  —  1

N

δ / im(%) =  ±  i  j 2 1 ! (22)
Λ= I

k = l , . . . , N ,

Bn(p) = f  sinc[2μ0(α-α„)] <p(p ,a)da,
Po

B'nP = J sinc [2v0 («—««)] Ψ ( p ,«) da .
Po

For the sake of comparison, let us recall the cor­
responding expressions valid for the case, when no 
information about the object is available before 
measurement.

(C) Objects of no a priori information:

N

C ax)(p) = Σ  c« V p ,«„)> (27)
η  — 1

N

^ in)(p) = Σ  0'ηψ(Ρ’< )’ (28)
η = 1
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N

riw(p) =  <1φ(ρ,αη) + ̂ φ (ρ ,α '„ )  (29)
η — 1

N

AIim{ak) = ± 1 \ Σ  ^ f i ak^n) -  « 7 ? & & ) } | .
n= 1

k = l , . . . , N  (30)

Now, imagine that an object has been imaged by 
an imaging system and then scanned by an observing 
system within the region <5. As a result, we obtain 
a set of observed image points x(ak), k  =  1,
If we apply to this object the reconstruction procedures 
(C), (A) and (B) and thus treat it as absolutely unknown 
(case C), as known to be a half-tone screen structure 
(case B), and finally as known to be band limited 
(case A), respectively, we can obtain some quali­
tative expressions being a good measure of the a priori 
information about the object from the reconstruction 
viewpoint. There are, at least, two ways of defining 
these measures.

For an established scanning point (as) we can 
write down the formulas (22), (26) and (30).

N

\ M M \ a = i  I Σ {c™ -  c-° ;
n^l

N

\ Δ Ι Μ \ „  = \ \ Σ  w *  Bn(*s) -  c l  B’n(as)} |
n= 1

N

M A m K H c  =  i  j  Σ {C»c(p(“s,an) -  c? M a s,a'n)} | ,

where c l ,c l  and c* and the corresponding primed 
values refer to the reconstruction procedures (A), 
(B), (C). Now defining the ratios

Y acids'
M /imK ) | c and Ybc(as)

M 4 n (« ,)lr .

(31)

we can accept them as qualitative measures of the 
usefulness of the a priori information about the 
object for our reconstruction procedure at the point 
(os), with the following meaning. As seen from (12), 
(13) in [1] as well as from the formulas (1 a, b) and 
(6 a, b) of the present paper our a priori knowledge 
about the object was introduced into consideration 
by accepting a particular set of elementary structural 
functions to represent the object. This acceptance 
by itself does not give any quantitative measure 
allowing to judge, which a priori information is 
greater for the recovery purposes, except for some 
qualitative feeling. The assumption of (31) solves the 
problem quantitatively, because each choice of ele­
mentary structural function results in the value of

the relative image reconstruction error (31) taken 
with respect to the corresponding error in the case 
of absolute ignorance. It is obvious that yac{as) and 
ybc(as ) are the greater the more valuable the a priori 
information is.

For the whole reconstructed region, the corre­
sponding measures for problems (A) and (B) could 
be defined respectively by:

« = I
Vac N

Σ l ^ m( « l c Σ M 'im W Ic
and ybc =

Σ \ Μ Μ ' α Σ \ δ ι · Μ \ „
1

(32)

Thus, yac and ybc are measures of value of the 
a priori information for the general reconstruction 
procedure when compared with the state of complete 
ignorance.

On the other hand, the formulas (31) and (32) 
giving the quantitative answer to the discussed problem 
for each concrete reconstruction procedure are very 
difficult to handle with on the up-to-now accepted 
level of generalization. For example, it cannot be ge­
nerally stated which of the quantities yac{as) or yab(as) 
is greater, since it depends, in a complex way, on the 
relation of scanning step to the degree of concentration 
of the elementary structural functions around the 
object scanning points.

As far as the object is concerned, the relationship 
between the said three reconstruction situations is 
even more complex. For example, if we have no 
a priori information about the object (case C), we 
have no reasonable measure of reconstruction error 
as the latter can be infinitely great in all the recon­
structed object points. The formulas (8) for the case 
(A) and (17) for the case (B), give the measure of 
object reconstruction errors at the object scanning 
points under the assumption that the elementary 
structural functions are given. The errors estimated 
from these formulas can be compared with each other 
but no quantitative relation to the case (C) may be 
obtained.

V. Generalization of the recovery procedure
In the up-to-now considerations we have implicitly 

assumed that 1) imaging system and observing systems 
are stationary; 2) configuration of scanning points 
creates a regular, rectangular lattice; 3) scanning points 
in the image and the recovery points in the object 
plane are related with each other by the formula

(«,) =  7im(«r)· r =  Ι , . , . , Ν  (33)

and 4) we have assumed monochromacy of the light.
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In the following we will get rid of those restrictive 
assumptions.

As to the stationarity of the imaging system, it 
has been assumed by derivation of the formula (1) 
in [1] as the latter involves Fourier transformation 
operations. However, it may be easily seen that in 
developing the recovery procedure we have never 
made use of the assumption. Thus, if we get rid of 
it in the starting expression (1) in [1], we obtain 
more general reconstruction problems. The simplest, 
though not quite consistent method of doing it is 
by replacing

ship (34) by a more exact one, if the imaging system 
is given by its amplitude spread function (35). The 
most natural, though complicated, way of doing it 
is the following.

Suppose for a moment that the imaging system 
transforms an incoherent object of uniform intensity 
into the image plane. Then, for each given scanning 
point (ak) we can find the object point (ak), which 
contributes mostly to the observed image point x(ak). 
This may be done in the following way. From (7) 
in [1] by denoting 1(a) =  I0 and G" 10 =  C we have:

-*(«*)
p„p '

+

by the general amplitude spread functions

K,m (P i,«) and K^m(p 2,a), (34)

of the imaging system. Thus, we can introduce in our 
consideration the non-stationary effects in the image 
plane. A similar operation may be performed on the 
formula (6) in [1] by replacing

K obs and P 2 - « \

A  I ’

by the general amplitude spread functions
' V ____ ____  ____ ____

^obs(u . P i - « )  and A ^ s(u,jt>2- a ) .  (35)

In the last case, however, if the integrating element 
is located on the axis of the observing system and 
is small in comparison with the scanned area, the 
assumption of stationarity is well justified, and the 
gain in accuracy due to this replacement is usually 
small.

It may be interesting to notice that the generalization 
in this direction may be consistently introduced 
within the strictly incoherent approximation of the 
recovery problem, consisting in neglecting the partial 
coherence in the image plane. This has been done 
in [4],

As to the scanning points configuration, it is 
obvious that usually we are not restricted to the rectan­
gular lattice. In particular, the a priori knowledge 
about the object may be used also to determine the 
optimal configuration adequate to that information. 
For example, if we can distinguish the areas of 
greater and smaller interest within the examined region, 
then the scanning point density should be proportional 
to the numerical measure of the interest. It is obvious 
that such redistributing of scanning points will 
influence the reconstruction error distribution in favor 
of the areas of greater interest.

Next, we can readily replace the assumed relation-

x =  <P(Pi~<*k, p - a k)dpl dp2da. k =  1 ,2 , . . . ,N  

Defining

/ ( a .  a) =

X p iP i-a * , P 2 ~ a k)dpl dp2. (36)

k =  1 , 2 ,  . . . ,7V

We want to find these points a =  ak, which maximize 
the corresponding functions (36). If analytical or 
tabular form of Kim, K*m and φ are known the task 
may be fulfilled in a routine way, and thus the re­
covery points ak corresponding to each point ak are 
strictly determined by the criterion of maximal con­
tribution.

Finally, the generalization to the non-monochro­
matic case consists of integrating all the formulas 
with respect to the wavelength with a weighting 
function describing spectral intensity distribution of 
the used light source.

VI. Concluding remarks

As indicated in the introduction, the aim of the 
present paper was to clarify the recovery procedure in 
the sense of finding the relationship between what 
is really given by the measurement and what is con­
cluded about. The introducing of the integrating 
element into consideration makes the analysis more 
realistic and more complex at the same time. To 
discover the said relationship, a simplified model of 
measurement situation has been accepted as shown 
in Fig. 1 in [1]. It has been found that even for this 
simplified model the relation between the results of 
measurement given in the form of the observed image 
points and the intensity distribution in the image 
and the object, is by no means simple. In particular,
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lack of immediate connection between the observed 
image points and the image intensity distribution as 
shown in the paper [1] is a surprising result. Thus, 
the necessity of special procedure (called here direct 
recovery procedure) for reconstruction of both image 
and object is evident.

The developed direct recovery method requires 
knowledge of the amplitude spread function Kim(p ,a ) 
of the imaging system, of the instrumental function 
q.(p1—a, p 2—a) of the observing system and the set 
of the observed image points* x(ak) , k  =  1, . N. 
Furthermore, if any a priori information about the 
object is available before the measurement, it must 
be analytically expressible to be of any value for 
the recovery procedure proposed in the paper. On 
the base of the above knowledge, the upper and 
lower bound reconstruction matrices may be cal­
culated. These matrices contain all the information 
about the imaging and observing systems, the scan­
ning configuration and all the a priori knowledge 
about the object, and thus determine completely the 
recovery procedure. It is worth noticing that all the 
mathematical operation necessary to calculate re­
construction matrices may be easily computized, pro­
vided the necessary characteristics of imaging and 
observing systems are really available. Then the 
recovery procedure consists of the following:

The deck of input data contains the observed image 
points x(ak) k = 1, N. The output may consist 
of:

(A) As far as image reconstruction is concerned, 
we may obtain real image points / im (ak) estimated 
jointly with the error of their reconstruction AIim(ak) 
and tabulated image intensity distribution Iim(p ) in 
the recovered region. This is available for all the cases 
independently of the kind of the a priori knowledge 
about the object.

(B) As far as object recovery is concerned we must 
distinguish two cases.

If no a priori knowledge about the object is avai­
lable, the only information after the measurement is 
that both the representations (18a) and (18b) in [1] 
and an infinite number of other in-between represen­
tations are consistent with the observed image points 
established by measurement. No reasonable measures 
of reconstruction errors may be obtained as the error 
is infinitely great** at all the recovered points. This

* Note that the set of observed image points x(ak), 
k  — 1 , . . . ,  N  contains information on both the measurement 
results and the configuration of the scanning points.

** Strictly speaking the situation is slightly better, because 
the recovered object distribution

N

4b (ά) = Σ  ck't(a -  o-k)
k= 1

is one more proof of the well-known fact that some 
a priori information about the object is necessary for 
its successful reconstruction (but not for the recovery 
of its image).

If some a priori information is available then, as 
shown in the case of half-tone screen objects and band 
limited objects, the reconstruction procedure results 
in reasonable estimations of the intensity in the 
recovery object points 4b (ak) jointly with the error 
estimation formulas. It must be emphasized, however, 
that the error formulas are valid within the assumed 
object structure only the latter being determined by 
the acceptance of a particular set of the elementary 
structural functions. The error due to an incorrect 
choice of elementary structural functions is here not 
taken into account. Furthermore, the procedure 
provides some natural interpolation processes in the 
form of expressions (7) and (17) for evaluating the 
object intensity between the recovery points.

A serious inconvenience of the proposed method is 
the fact that it requires the knowledge of the ampli­
tude spread functions of both the imaging and obser­
ving systems. As those functions are not always 
known, the incoherent approximation approach to 
the recovery problem, as formulated in [2], may be 
of considerable practical value. This approach ignores 
the partial coherence in the image plane and conse­
quently the reconstruction procedure is described in 
terms of intensity spread functions of both the imaging 
and the observing systems.

Another essential lack of the developed theory is 
the over-simplification of the measurement model 
assumed for consideration. In reality, the image is 
often recorded on a photographic plane before being 
subjected to scanning by observing systems. In this 
case such properties of the emulsion like nonlinearity 
and noise must be taken into account. Noise may be 
introduced in many other places of the recovery 
arrangement including electric noise in the part behind 
the integrating element. In general, however, the 
developed relations are essentially true and may be 
a good theoretical basic for more detailed treatment.

Finally, from the theoretical point of view, the 
direct recovery procedure is more realistic than the 
methods based on the Fourier transforming, as the 
last operation involves assumption of stationarity of

may be interpreted in such a way that the functions <5(a —ak) 
describe the position of the recovered object points while the 
coefficient denote the respective values of the local intensity. 
Consequently, the error of reconstruction even in the case of 
complete ignorance is no greater than and so finite. Refor­
mation of the recovery procedure in this spirit might be interesting 
though no essentially new results may be expected.
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the optical system, the requirement which is never 
mat strictly by the optical systems.

Influence de l’information a priori 
sur le precede de la reconstruction immediate

Resume

Dans le travail [1] on a 6tab!i la methode be la re­
construction immediate dans le casou avant la mesure auc- 
une information sur 1’objet n’est connue. Le prdsent travail 
est consacri d. une analyse quantitative de l’influence de 
l’information a priori tant sur le pi ocede de la reconstruction 
que sur ses r6sultats.

BjIHHHHe ΗΗφορΜΒΙΙΗΗ Λ ρΓΙΟΓΪ O npe/lMeTe Ηβ ΙφΟΙΙβ- 
flypy nenocpeACTneHHOH peKoncipyKitHH η HeKorepetrr- 

hom oToSpaacemm

B ρβδοτβ [1] πρηβολητοι mctoa HenocpeflCTBeHHoii ρβκοΗ- 
CTpyKitHH flJia cjiynaa, Korfla He 6h jio  ηηκβκοΉ ΗΗφορΜβιΐΗΗ

ο πρβΛΜβτε nepefl H3MepeHHeM. 3T a pa6oTa nocBjrmeHa kojih- 
necTBeHHOMy aHanmy bjihahha ηηΦορμβηηη a priori KaK Ha 
npoueaypy peKOHCTpyKUHH, Tan h Ha ee pe3yjn>TaTbi.
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