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Wavelet-based digital signal processing technique was applied successfully to tunable diode laser
absorption spectroscopy (TDLAS) in the infrared spectral range. By applying the wavelet-based
digital signal processing technique to simulated and real TDLAS signals, spectral signal-to-noise
ratios have been significantly enhanced, which is very useful for atmospheric trace gas detection
and molecular spectroscopy study. It is worth specially pointing out that the determined precision
of spectroscopic parameters by wavelet-based de-noising technique was distinctly improved,
especially for the spectra corrupted by the annoying etalon fringes. Typically, the fitting precision
of 2-5 times was achieved for the selected absorption line P10e of CO, near 2.064 um. The primary
results show that the proposed filtering technique have a great potential for various laser
spectroscopy applications.
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spectroscopy.

1. Introduction

Removing or deducing noise levels is a very important task in laser spectroscopy for
obtaining highly accurate data. A differential absorption technique is the most common
method used for suppressing noises in laser absorption spectrometry [1], it involves
splitting the light signal into an absorption signal and a reference signal. In theory,
this technique assumes that the noises have equal effects on both signal channels by
subtracting or dividing the two signals to remove excess noises. In practice, such
assumption is not always correct and therefore using a receiver or divider does not
provide the expected results. Moreover, the most common method for increasing
the signal-to-noise ratios (SNR) in laser absorption spectrometry is to chop the laser
beam or modulate the laser current and detect the signal with a look-in amplifier (also
known as a phase-sensitive detector). This technique (including amplitude modulation,
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wavelength modulation and (or two-tone) frequency modulation) [2—4] provides very
good results but its implementation requires a very sophisticated electro-optical design.
Another approach is a multi-signal averaging technique [4]. Generally, for the typical
white noise, it can be reduced up to the limits of the instrument stability, thus to gain
a satisfactory SNR by averaging a set of laser scans. The optimal stability time before
the instrument drifts, the influence of the averaging can be determined by the Allan
variance technique [5]. However, the multi-signal averaging technique is time consum-
ing and thus unsuitable for some special applications which require a high temporal
resolution.

An alternative for improving instrumental precision and accuracy is to digitally
process signals delivered by the measuring equipment. From a practical standpoint,
numeric filtering is easy to implement, since it requires no modifications or additions
to the apparatus hardware and can be easily adapted to any experimental configu-
ration. Mathematical filtering techniques for on-line noise reduction or off-line data
processing of recorded spectra may be a better choice when temporal resolution is
crucial.

Traditional filtering techniques in most cases rely on the identification of
frequencies of noise contributions obtained in the stationary power spectrum. For
example, Gaussian filter and Wiener filter exploit prior knowledge of parameters
characterizing the noise, specifically the mean and variance. In recent years, wavelet
transform has become very popular in many application fields such as physics,
engineering, biomedical, signal processing, mathematics and statistics. Wavelet trans-
form has been proved as a powerful tool for signal processing mainly due to its
multi-resolution characteristics, i.e., dividing the frequency contents of a signal into
low and high sub-bands. Unlike the Fourier transform which considers only a single
set of basis functions (sines or cosines), wavelet transforms use an infinite set of
possible basis functions (i.e., mother wavelets) with different properties. Thus, wavelet
analysis provides immediate access to information that can be obscured to other
time-frequency methods such as Fourier analysis. According to the pertinent litera-
ture [6], there is a tendency to use wavelet filters to filtrate spectroscopic signals as
they provide multi-resolution analysis in both time and frequency domains, and
preserve the characteristics of the original signal to the greatest extent [7-10].

In this paper, we present a new approach (i.e., wavelet based filtering) for
eliminating or minimizing various noise sources (such as Gaussian, optical fringe
noise, etc.) commonly encountered in a tunable diode laser absorption spectrome-
ter (TDLAS) which can be used for quantifying trace gas concentration measurement
or molecular spectroscopy study. The ultimate goal was to improve the TDLAS
spectral SNR, further to increase system sensitivity, measurement precision and
accuracy; wavelet transform-based digital filtering was thus used. To facilitate
evaluating this technique, it was applied to artificially created CO, absorption signals
and real TDLAS signals. Spectral SNR was quantified and compared with different
thresholding policy and against a traditional filter approach.
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2. Wavelet-based filtering

The continuous wavelet transform (CWT) is computed by changing the scale of
the analysis window, shifting the window in time, multiplying by the signal, and
integrating over all times. The CWT of a signal x(¢) is given by [11]:

W, (55) = J|1_| jmx(z)li’(t_sf)dz (1)
Ky —oo

where 7 and s are the so-called translation (or time location) factor and the scaling (or
dilation) factor, respectively. The factor |s|™"/? is for energy normalization across
the different scales, whereas ¥, ((¢) is the so-called continuous wavelet or mother
wavelet:

'Pz',s(t) = Jﬁ? y/(t;T)

For each scale s and location 7, the wavelet coefficient W (z, s) represents the infor-
mation contained in f(#) at that scale and position.

Discrete wavelet transform (DWT) coefficients are usually sampled from the CWT
on a dyadic grid, by choosing parameters of translation 7= n2", and scale s = 2",
thus the mother wavelet in DWT (i.e., discrete wavelet) is defined by:

1 t—n2"

P n(t) = 5”( m J 2
N2" 2

DWT analyzes the signal by decomposing it into its approximation and detailed

information, which is accomplished by using successive high-pass and low-pass
filtering operations, on the basis of the following equations:

Prign () = S x(m)g(2k = m) 3)

VowB) = S x(m)h(2k ) (4)

where ypi,(k) and y,,, (k) are the outputs of the high-pass and low-pass filters with
impulse response g and 4, respectively, after subsampling by 2. This procedure is
repeated for further decomposition of the low-pass filtered signals. A so-called
pyramid algorithm introduced by Mallat for calculating DW coefficients is widely used
for signal processing [12]. Starting from the approximation and detailed coefficients,
the inverse discrete wavelet reconstructs the signal, inverting the decomposition step
by inserting zeros and convolving the results with the reconstruction filters. Therefore,
the whole WT process involves signal analysis and reconstruction, i.e., wavelet analy-
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Fig. 1. Thresholding policy of wavelet coefficients.

sis involves filtering and down sampling while reconstruction involves oversampling
(up sampling) and filtering. Finally, we can recover the signal by applying the inverse
discrete wavelet transform (IDWT) to the thresholded coefficients.

Usually, two different thresholding approaches are applied to signal de-noising:
hard thresholding or soft thresholding [13]. The hard thresholding method consists in
setting all the wavelet coefficients below a given threshold to zero, while in soft
thresholding the wavelet coefficients are reduced by a quantity equal to the threshold
value. The so-called soft thresholding function has the well-known and desirable
properties of smoothness and adaptation, which might reduce the signal amplitude due
to the constant presence of a bias at the wavelet coefficients w higher than the threshold
(lw| > Th). The hard thresholding operation keeps the amplitude constant before and
after de-noising, but might induce some Gibbs oscillation at the edges due to its
discontinuity. In view of these issues, a compromise thresholding policy has been
proposed on the signal processing in this paper, as shown in Fig. 1. Their mathematical
expressions are given as:

— Hard thresholding:
t for t)| >Th
0 for  |f(¢)| <Th

— Soft thresholding:

sign(/(0)[1/0] = Th]  for 1)l > Th
for [f(#)| <Th

fsoft(t) = (6)

— Compromise thresholding:

sign(f(t)) [If(z)l —ax Th} for | f(t)l > Th
fcompromise(t) = (7)
0 for [f(t)| <Th
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Among them ¢ € [0, 1], which is the on-soft and hard compromise threshold of
a wavelet coefficients estimator. When & =0 or ¢ =1 it becomes a hard and soft
threshold method, respectively. For general terms « € [0, 1], the method estimated
the threshold coefficient between hard and soft methods.

There are many possible approaches to estimate the threshold [14]. The universal
threshold known as the most popular one is based on statistical properties of white
Gaussian noise, and is used in our study, which is defined as Th = o[2log(N)]"/?, where
N is the signal length and o is the standard deviation of the noise, which can be
estimated from the median of the detailed coefficients at the first level of signal
decomposition ¢ = |median(detail)|/0.6745.

The computations were performed with MATLAB scripting language for Windows
version, using our own programs. The MATLAB Toolbox for wavelets was used as
the library of wavelet filter coefficients.

3. Results and discussion
3.1. Using wavelet for de-noising of simulated TDLAS signal

A computer program has also been written in the numerical script language MATLAB
to simulate the TDLAS absorption profiles under a variety of conditions (including
temperature, pressure, gas concentration and optical path length) by extracting related
spectroscopic parameters from the Hitran08 database [15]. From the viewpoint of
practical applications, a CO, absorption line near the wavelength of 4845.64 cm™!
was very attractive for atmospheric CO, measurements. Therefore, relative spectro-
scopic simulation of absorption signals covering this spectral region was made. All
the simulated signals contain 1024 sample points. To evaluate the performance of
the wavelet-based signal filtering technique, each spectrum was purposefully cor-
rupted with Gaussian distributed white noise to simulate an instrument-based signal.
Spectra SNR are used as the evaluation criteria and defined as follows:

SNR = 10log[ e e o) } ®)
Std(Signalnoiseifree - Signalwaveletﬁdenoised)
where std means the standard deviation, signal,gise free and signaly,yeie denoised 1€

ideally simulated spectral signal and wavelet filtered spectral signal, respectively.
Figure 2 depicts the basic principle of discrete wavelet decomposition of a simulated
TDLAS signal. For decomposition of the signal it is very important to choose a suitable
mother wavelet. The shape of the mother wavelet has to be very similar to the signal
to be analyzed. Generally, it should fulfill the following properties: symmetry,
orthogonality and feasibility for DWT, efc. In order to achieve the best performance,
a group of mother wavelets has been tested: Daubechie (db) family wavelets (db1 to
db20, 20 elements), symlet (sym) family wavelets (sym2 to sym20, 19 elements),
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Fig. 2. Principle of discrete wavelet decomposition of a simulated TDLAS signal.

coiflet (coif) family wavelets (coifl to coif5, 5 elements), biorthogonal (bior) and
reverse biorthogonal (rbio) family wavelets (biorl.1 to bior6.8, 5 elements, and rbiol.1
to rbi06.8, 5 elements), as well as Haar’s wavelet (1 element), and the discrete Meyer
wavelet (i.e., dmey wavelet, 1 element).

As an example, Fig. 3 shows the simulated signal under different noise levels and
wavelet db10 filtered results with compromise thresholding (for this study « = 0.5).
For comparison, the filtered results of the classic filter technique, i.e., fast Fourier
transform (FFT), were also presented. It is obvious that the wavelet filter shows
the best results and keeps the maximum approximation degree. The calculated SNR
corresponding to each case is also inset in the corresponding panel. After many
experimental trials with each wavelet family, the best wavelets and their performance
under different thresholding policy are complied in Tab. 1. As can be seen from this
table, the proposed compromise thresholding is superior to other two commonly used
methods. Obviously, the enhancement factor of SNR depends on the noise level,
the poorer the original signal, the higher the SNR gain factor. Moreover, we found that
the optimal decomposition levels have slightly shifted between level 5 and 7 following
the variation of the SNR. It is worth mentioning that the purpose of an optimal filter
is to recover the de-noised signal without degrading the approximation degree between
the real signal and the reconstructed signal. Wavelet-based filtering is a data dependent
process. Improper choice of the mother wavelet can cause distortions and artefacts in
the reconstructed signal, such as haar wavelet (not shown here) [16, 17]. In addition,
sometimes the difference of the best SNR obtained between the so-called optimal
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Fig. 3. Comparison of simulated noisy transmittance signals and db10 wavelet filtered results with

compromise thresholding (o = 0.5).

wavelet and others is really very small, as can be seen from Tab. 1. Nevertheless all
the mother wavelets listed in the Tab. 1 except dmey and haar wavelet can be selected
as a good candidate for de-noising applications to the experimental TDLAS spectra in

this work.

Table 1. The best SNR obtained by the optimal wavelet in each wavelet family under different
thresholding policy and the corresponding optimal decomposition level.

Thresholdin, ain timal
Wavelet Raw_SNR Soft Hard Cimpromise gctor ((i)elfcomposition level
db10 15.24 15.31 15.90 1.72 5
sym17 15.02 15.09 15.72 1.70 5
coif2 15.12 15.18 15.94 1.73 6
bior2.8 9.22 15.24 15.36 15.54 1.68 7
rbio5.5 15.24 15.32 15.58 1.69 7
dmey 14.35 14.39 14.55 1.58 5
haar 12.45 12.39 12.65 1.37 6
db10 9.17 9.34 9.74 4.36 6
sym17 8.97 9.09 9.35 4.17 6
coif2 9.33 9.52 9.88 4.42 6
bior2.8 2.23 8.97 9.20 9.23 4.13 7
rbio5.5 9.18 9.44 9.59 4.29 7
dmey 8.70 8.77 8.16 3.65 6
haar 7.47 7.50 7.67 3.43 6

Note: Gain factor = Compromise thresholding/Raw_SNR.
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3.2. Using wavelet for de-noising of real TDLAS signal

For further evaluation of the wavelet-based filtering technique for noise reduction, we
applied the proposed wavelet algorithm (db10 wavelet with compromise thresholding
a =0.5) to actually recorded CO, absorption spectra. The experimental set-up is
similar to Lepére’s system [18]. The measured TDLAS signals are very noisy,
especially corrupted by the optical etalon fringes. Figure 4 presents a typical applica-
tion of wavelet filtering to an experimentally recorded CO, absorption spectrum near
4845.64 cm™! and corresponding Voigt fit (lower panel). For clarity, a zoom-in data
between 4845.2-4845.4 cm™! (upper panel) illustrates the detailed comparison. As can
be seen, after the application of wavelet filtering, the annoying etalon fringes which
often occurred in TDLAS system have been significantly removed. The calculated
SNR before and after wavelet filter are 13.07 and 17.08, respectively. Thus a SNR
enhancement factor of 1.31 is obtained. These results prove that the proposed wavelet
filter in this work is a very effective de-nosing tool not only for common Gaussian
noise but also for optical etalon fringes.

The present work aims to demonstrate wavelet-based filtering for TDLAS spectral
signal improvement for molecular spectroscopy study (i.e., spectroscopic parameters
measurement), and currently no attempt has been made to optimize the sensitivity of
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Fig. 4. Typical example of experimentally determined TDLAS signal (pressure = 836.47 mbar, path
length = 2400 cm, mixing ratio = 1.49%) and db10 wavelet filtered results with compromise thresholding
(o = 0.5). For clarity, a zoom-in data between 4845.2-4845.4 cm™! (upper panel) illustrates the detailed
comparison.
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the TDLAS system for trace gas detection. To perform precise line shape studies, it is
necessary to have enough spectral SNR, thus spectroscopic parameters can be retrieved
with high precision and accuracy. For this purpose, series of experimental spectra of
line transition P10e of CO, between 4845 and 4846.5 cm™! under different conditions
are recorded, and the standard Voigt model is used to fit the experimental CO, ab-
sorption spectra before and after the application of a wavelet filter for line intensity
and air-broadening coefficients determination.

To determine the absolute line intensity, the CO, absorbance was numerically
integrated over the entire spectral contour, the fitted integrated absorbance area 4 was
divided by the product of the CO, concentration and the path length to obtain the line
intensity at experimental temperature, then converted to the standard temperature using
the lower state energy and the vibrational and rotational partition functions for
intercomparison. However, an air-broadening coefficient can be directly determined
form the slope of the fitted Lorentzian line width versus pressure. A detailed
description of the fitting procedure used for the analysis of the spectra and the data
reduction can be found in related publications [19].

Figure 5 shows a typical application of a wavelet filter on a mixture spectrum of
CO, in air at the pressure of 762.20 mbar and mixing ratio of 1.54%. The upper panel
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Fig. 5. An example of the application of wavelet filter on a CO, absorption spectrum under
the experimental conditions of pressure = 762.20 mbar, CO, mixing ratio in air = 1.54%, temperature =
= 293 K. The smooth curve is the best-fitted curve with the Voigt profile function. Lower panel shows
the corresponding residuals. The fitted parameters are also inset in the corresponding panel, Y, denotes
background offset, x, means absorption line central position, 4 means the integrated absorbance area,
wg and w; are Doppler and Lorentzian FWHM (full width at half maximum), respectively.
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shows the raw experimental spectrum (upper left panel) and wavelet filtered spectrum
(upper right panel), the smooth curve is the best-fitted curve with the Voigt profile
function. The lower panel shows the residuals of the raw experimental spectrum
(bottom left panel) and wavelet filtered spectrum (bottom right panel), respectively.
The fitted parameters are also inset in the corresponding panel. From this figure, we
can see that the spectral SNR has been significantly improved after the application of
the wavelet filter. The fitted spectroscopic parameters are almost identical, but the fit
precisions of those with the application of the wavelet filter are obviously better than
those without the application of the wavelet filter. The same procedure is also followed
for the other experimental spectra recorded under different pressures.
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Fig. 6. The fitting precisions of line intensity (upper panel, left axis) and Lorentzian FWHM (lower panel,
right axis) in both cases (with and without wavelet filter) for the line transition P10e of CO, as a function
of total pressure, as well as the corresponding enhancement factor (unfiltered/filtered, right axis).

For better comparison, Fig. 6 presents the fit precisions in both cases (with and
without the wavelet filter) and the corresponding enhancement factors (unfiltered/fil-
tered) of fit precisions as a function of total sample pressures. From this figure, we can
see that the fit precision enhancement between 1.5 and 3.5 for line intensity, and from
1.5 to 5.5 for Lorentzian FWHM (full width at half maximum) depends on noisy
spectral characteristics have been achieved. Note that the W-shaped residuals that
occurred at the absorption line center (see Fig. 5) can be effectively removed by using
advanced line shape models, such as Rautian profile [20] and Galatry profile [21],
which take into account the Dicke narrowing effect, lead to a better fit than the one
obtained from the Voigt profile [22].

Finally, the absolute line intensity and the air-broadening coefficient of CO, line
transition P10e near 4845.64 cm™' achieved before and after the application of
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Table 2. Line intensity and air-broadening coefficient of CO, P10e line transition obtained with and
without wavelet filter, and comparison with the main atmospheric database Hitran08.

Line intensity at 296 K [x1072? cm™!/(moleculexcm™2)] Line position [cm™]
Hitran08 2.125
Raw data 2.101
» Uncertainties [%] 0.077
S Discrepancies [%] ~1.129 4845.637
£ Wavelet 2.104
& Uncertainties [%] 0.036
Discrepancies [%] —0.899
Air-broadened coefficients [cm™'/atm]
Hitran08 0.0816
Raw data 0.0812
. Uncertainties [%] 0.108
§ Discrepancies [%] —0.490 4845.637
E Wavelet 0.0814
& Uncertainties [%] 0.047
Discrepancies [%] —0.245

Note: The reported uncertainty corresponds to one standard deviation obtained by averaging different
measurements; Discrepancies is the error percentage ratio defined as [(Hitran08 data — this work)/
(Hitran08 data)]x100%.

the wavelet filter in this study are summarized in Tab. 2 and compared with the main
atmospheric database Hitran08. For each item, our uncertainty corresponds to one
standard deviation obtained by averaging different measurements. The discrepancies
between our results and Hitran08 data are also presented in Tab.2. Both CO,
spectroscopic parameters (line intensity and air-broadening coefficients) determined
before and after the application of the wavelet filter are in quite a good agreement with
Hitran08 values. The slight discrepancy is mainly due to TDLAS spectral baseline
process, and errors result from some experimental parameters (temperature, path
length and pressure) measurements. Anyway, data obtained with the wavelet filter
show better uncertainty and discrepancy. Indeed, for those data with poorer SNR, the
efficiency of the wavelet filter is more prominent.

4. Summary, conclusions and outlook

Digital signal processing is easy to implement and well adapted to various experimental
configurations without any physical modifications or additions to the TDLAS system.
The application of wavelet filtering for TDLAS is presented on the example of infrared
absorption spectroscopy of CO, transition P10e near 2.064 um. By applying the wave-
let-based digital signal processing techniques to simulated and real TDLAS signals,
spectral SNR have been significantly enhanced depending upon the qualities of origi-
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nal signals and noise characteristics. For molecular spectroscopy study, the retrieval
precisions of CO, spectroscopic parameters after the application of the wavelet filter
were distinctly improved. The results achieved in this study prove that the proposed
wavelet-based filter is a very effective de-nosing tool not only for common Gaussian
distributed white noise but also for the annoying optical etalon fringes.

We are currently improving this technique and integrating an adaptive matched
filter (such as Kalman filter [23]) with the proposed wavelet filter for atmospheric
trace gas sensing and other applications. Furthermore, we are taking great care in
the baseline correction and normalization of TDLAS spectra by wavelet transform to
avoid artificial bias and drifts as well as other interfering sources, since the contribution
of the wings of the absorption profile (especially for weak absorption) could be under-
estimated or overestimated during the baseline processing and normalization [24],
which is very important for the estimation of an unbiased integrated absorption area
of the absorption line in molecular spectroscopy study. These primary results show
that the proposed filtering technique have a great potential for other laser spectroscopy
applications, high-precision analysis of atmospheric trace gases, isotope ratio and eddy
covariance measurements.
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