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1. Introduction 

In the lectures of calculus the direct proof of the theorem that the series 

∑
∞

=1

1
n nα  is convergent for α<1  is rarely introduced. The knowledge about 

the convergence of this series is used in exercises but the proof of the con-
vergence of this series is presented on the whole by the integral criterion. In 
standard textbooks of calculus it is difficult to find a direct proof of conver-
gence of the series. This paper presents a direct proof of convergence of the 
series. This text is a supplement for numerous books of calculus.  

Theorem. The series  

∑
∞

=1

1
n nα  

is divergence where 10 ≤< α  and convergence where α<1 .  
For the proof of the theorem it is necessary to show a lot of lemmata.  

Lemma 1. The harmonic series ∑
∞

=1

1
n n

 is divergent. 
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Proof. The harmonic series is equal such that: 
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It is possible to group the terms of harmonic series: 
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The harmonic series is equal 
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It is obvious that 
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here the result below is true:  

∑
∞

=

++>
1

...
2
1

2
11

n n
, 

i.e. the harmonic series ∑
∞

=1

1
n n

 is divergent.  

Proof of the theorem: the series ∑
∞

=1

1
n nα  is divergence for 10 ≤< α . 

If α is a number such that 10 << α  then for natural numbers the ine-

quality nn <α  holds, hence the unequal αnn
11

<  holds too, i.e. the harmo-

nic series ∑
∞

=1

1
n n

 is a minorant of series ∑
∞

=1

1
n nα  for 10 << α . Hence the 

minorant is a divergence series the series (1) is divergence for 10 << α . 
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Lemma 2. For each natural number n the expression is true:  
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Proof by induction. 

For 1=n  the left side is equal 
2
1  and the right side is equal 

2
1  too. 

Suppose that for some n the expression above holds. It is necessary to prove 
that  
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The left side of the equality above by the induction assumption is equal 
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it is obvious that 
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so the proof of the lemma is complete. 

Corollary. The series ( )∑
∞

= +⋅1 1
1

n nn
 is convergent, the sum is equal to 1.  

Proof. Because ( )∑
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= +⋅1 1
1

n nn ( ) 1
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thesis of the corollary is true. 

Lemma 3. The series ∑
∞

=1
2

1
n n

 is convergent and the sum of this is less 

than or equal to 2.  
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Proof. By this expression the conclusion below holds: 
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The lemma is true. 

Lemma 4. The series ∑
∞

=1

1
n nα  is convergent for 

2
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Proof. It is necessary to see the expressions:  
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It is possible to write some obvious inequalities  
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and generally 
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By this the inequality 
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is true. For every natural number k the expression 
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i.e.  
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Because the series ∑
∞

=1
2

1
n n

 is convergent, by lemma 3, so the series  

∑
∞

= ⋅1

1
n nn

 is convergent too. The sum of the series is less than or equal to 6.  

Lemma 5. If the series ∑
∞

=1

1
n nα  is convergent for s2

11+=α  where s is 

some natural  number, then it is convergent for 12
11 ++= sα  too.  
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Proof. Let for Ns∈   to be ( ) ss
2
1

=β . It is necessary to show that the 
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by the comparison test for convergence of infinite series the series 

( )∑
∞

=
+⋅1

1

1
n

snn β  is convergent if the series ( )∑
∞

= ⋅1

1
n

snn β  is convergent. The sum 

of the series ( )∑
∞

=
+⋅1

1

1
n

snn β  is less than or equal to 132 +⋅ s . By mathematical 

induction there is the finish of  lemma 5.  

Proof of the theorem: the series ∑
∞

=1

1
n nα is convergence where α<1 .  

If α<1  that there is a natural number s such that α<+ s2
11  i.e. 

[ ] αβ <+ s1  so for each natural n it is ( ) αβ nn s <+1  and consequently  

( )snn βα +< 1

11 ,  

by this the series ( )∑
∞

= ⋅1

1
n

snn β  is a majorant of the series ∑
∞

=1

1
n nα  and conse-

quently the series ∑
∞

=1

1
n nα  is convergent. The proof of the theorem is finished.  

Usually the proof of the theorem is shown by the integral test for  
convergence:  

On the interval [ )∞,m  where Nm∈  the function ( )xf  is positive and 

decreasing then the series ( )∑
∞

=mn
nf  and the integral ( )∫

∞

m

dxxf  are both at the 

same time convergent or divergent.  
Proof of the theorem with use the integral test for convergence. 

The integral dx
x∫

∞

1

1  is divergence because ( ) ∞=
∞→

tf
t
lim . For 1≠α  the 

indefinite integral is equal: ∫ −⋅
−

= α
α α

1

1
11 x

x
. The value of the antideriva-

tive at the point 1=x   is equal 
1

1
−α

, the limit α−

∞→

1lim x
x

 is equal to zero for 
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α<1  and it is infinity for 10 << α . So dx
x∫

∞

1

1
α  equals 

1
1
−α

 for α<1  and 

infinity for 10 << α . This conclusion finishes the proof of the theorem. 

The direct proof of the convergence of the series ∑
∞

=1

1
n nα  for α<1  in  

another way is presented in [Fihtenholz 1978, vol. 2, p. 227], the proof of 
the divergence is presented in the same way as in this paper.  
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