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Abstract

In financial markets, we are facing big data problems. Loads of information are stored almost
every second, but usually standard methods have problems to process them all. With growing
number of observations, the probability of outlier presence also rises. That is the reason of
increase in importance to work with sufficiently robust methods. As it is known, standard
methods are not able to work correctly with outliers and consequently standard estimates are
usually biased. ARMA processes are frequently used in financial mathematics and one of the
important steps is to estimate the order of a given process. Usually it is the second step in
Box-Jenkins method after solving stationarity and seasonality. In this paper we present robust
methods for ARMA order estimating and we compare them using a simulation study. For the
simulation study we are using the R statistical software.
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1. Introduction

Autoregressive moving-average (ARMA) processes are well known and widely used in the
financial world. They are one of the basic econometric tools for modeling time series. To
estimate an ARMA process from time series data, firstly it is necessary to solve stationarity
and seasonality of the given time series, what is often done by decomposing the process.
Another important step is to determine the order of the ARMA process. After the order
determination, we can estimate the process parameters themselves.

However, due to extensive exploiting of big data nowadays, we face problems related to an
increased probability of outlier presence. The outliers complicate the ARMA process
estimation because they can cause an estimator to be biased. There are several robust methods
for ARMA order estimation that take into account outlier presence. For example Maronna et
al. (2006), Rousseeuw and Croux (1992), and others suggest different approaches that should
help with the problem. Naturally, every method has certain advantages as well as
disadvantages. We choose four of these approaches, and after their brief introduction, we
compare them by performing a simulation study.

In Section 2, we establish the notation that we work within this paper. In Section 3, we
introduce two basic outlier models: the additive outlier model and the innovative outlier
model. In Section 4, we give a brief introduction to the robust methods that we work with. In
Section 5, we show results of the simulation study used to compare the methods.
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2. Definitions and notation

Let us define white noise, which is a zero mean mutually uncorrelated time series
{e,, n € Ny} with an unknown constant variance 05 > 0.
We define an autoregressive process AR(p) by the equation:

Xn = (pan—l + (szn_z + ...+ (prn—p + En (1)

where @1,9,.., @, € R are parameters, {€,, n € N} is white noise and ¢,, # 0.
We define a moving-average process MA(g) by the equation:

Xp=¢,+ 01601+ 02605+ ..+ 0460y, 2)

where 64,0,,..., 6, € R are parameters, {e,,n € Ny} is white noise and 6, 0.
We define an autoregressive—moving-average process ARMA(p,q) by the equation:

Xp=01Xn 1+ ot Xy + &+ 0160+ .+ 0480, 3)
where @4,..., 9,,01,..., 0, € R are the parameters, {¢,, n € Ny} is white noise and coefficients
Pp0q # 0.

We define an autocovariance function of lag k R(k) of stationary process {X,, n € N} as:

R(k) = E(X) — W) (Xo — ), 4)

where u is the expected value of the process.
We define an autocorrelation function (ACF) of lag k of stationary process {X,,, n € N} as:

R(k) 5
Ox
where 0)2( is the variance of the process.

Let us define a partial autocorrelation function (PACF) of lag £ of stationary process
{X,, n € Ny} as:

p(D), k=1, (6)
a(k) = > >

corr(X, — X,.Xo — Xo), k> 1,
where corr is a function for correlation and Xj, respectively X, , is a projection of X,
respectively X, onto the Hilbert’s space spanned by X4, X5, X3,..., X;_1.
3. Outlier models

There are several models for simulating outliers in a time series (e.g. Maronna et al., 2006).
Let us introduce two of them: the additive outlier model and the innovative outlier model.
3.1 Additive outliers

The additive outlier (AO) model was originally introduced by Fox (1972). In the AO
model, we assume that we do not observe the process of our interest {X,, n € Ny}, but we
actually observe a process{Y,,, n € Ny} defined as:

Yo =Xn+ 2y, (7
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where processes {X,, n € Ny} and {Z,, n € N} are assumed to be independent of one another.
Let {Z,,n € Ny} be a process with independent and identically distributed random
variables that have a normal mixture distribution with a degenerate central component:

Zp~ (1= B)8o + BN (uz,07), ®)

where 6, is the point mass distribution located at zero, and we assume that the normal
component N (,uz,oé) has a variance significantly higher than the process {X,, n € N}, aé >

2
o%.

X

The probability of an outlier occurrence is represented by [, which is usually small.
Consequently, the probability of an occurrence of 2 outliers in a row is a much smaller 2,

which means that the AO model generates mostly isolated outliers.

Figure 1: Example of an additive outlier.
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3.2 Innovative outliers

The innovative outlier (I0) model was originally introduced also by Fox (1972), who used
the term “type II outliers”. The IO model works with a highly specialized form of outliers that
can occur in a linear processes such as AR(p), ARMA(p,q) or ARIMA(p,d,q).

Figure 2: Example of an innovative outlier.
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For simplicity, we introduce only a special case that we use for this paper. The white noise
process {€,,n € Ny} from the definitions of AR(p), MA(q) or ARMA(p,q) is sometimes also
called the innovations process. The IO model generates outliers directly in the innovations
process. For the 10 model, we assume independent identically distributed (i.i.d.) random
variables in the process {t,, n € Ny} with a normal mixture distribution

T,~ (1 — B)N(0,6%) + BN(0,0?), )

135



20th International Scientific Conference AMSE
Applications of Mathematics and Statistics in Economics 2017
Szklarska Poreba, Poland 30 August 2017 — 3 September 2017

where Gf > 02, The 10 outlier affects not only the current observation but also subsequent
observations.

4. Robust methods

There is only a limited amount of robust methods for ARMA order estimates. Principally,
we only need to estimate the autocorrelation function of the process because there is a
theorem expressing the relation between the autocorrelation function p(l) and the partial
autocorrelation function a(k) (e.g. Yafee, 2000):

1 p(1) - plk—=2) p(1)
p(1) 1 - pk—=3) p(2)
plk—1) ptk—=2) - pA) pk) (10)
a(k) = k> 1,
) 1 o - e D
p(1) 1 - plk=2)
plk=1) p(k—=2) - 1
where || represents determinant. Having the ACF and the PACF of the process, we can

estimate orders of the ARMA(p,q) process.
We introduce 4 methods, which we briefly describe, and we compare them by means of a

simulation study. For an overview of robust methods for ACF estimates, you can see Diirre et
al. (2015).

4.1 Method based on median correlation

The method based on median correlation was introduced by Chakhchoukh (2010). This
method is quite intuitive because instead of using the mean, we work only with the median
from equation (4). The median is well known as a robust estimator of location. Firstly we
centre our observations X, X1, ..., X, by:

X = X —med(Xo, X1, oo X)), (11)

where med( - ) gives the median of the observations.
Then we estimate the ACF using:

med()~(0, X1, o0 Xm) (12)
med ()’?02, )?12, . )’?mz)
For a consistent estimation of p(k), a nonlinear transformation of p,,,.4(k), which has to be

determined numerically, is necessary (Diirre et al., 2015). This nonlinear transformation can
be based on a Monte Carlo simulation.

ﬁmed (k) =

4.2 Method based on trimming

The method based on trimming is described in several papers (e.g. Diirre et al., 2015). This
method is based on omitting some terms in the calculation of the standard ACF. Firstly we
estimate an autocovariance function:
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m—k
1 (13)
@ _ D\ @7 @
RY (k )——Zm CHE > (K= XO) Koy = XONLLOLE, |,
i+k \ i=0
where
14
X(T) —ZX L(T) andL(T) {L Xt<X <Xm t ( )
ym 1@ 0, else
i=0"i i=0

with t=|t(m+1)] -1 for some 0<7<0.5 . Chan and Wei (1992) proposed
0.01<t<0.1, depending on the suspected percentage of outliers.

The ACF estimator pmm(k) is calculated as the ratio of trimmed autocovariance and

trimmed variance R(T) ., (0). Similarly, as for Pp,.q(k), a nonlinear transformation is necessary
to obtain a consistent estimation of p(k) . In addition, pP,.q(k) is a limiting case of

Perim(K) =2 Pmea(k).

4.3 Method based on the Gnanadesikan-Kettenring approach

The method based on the Gnanadesikan-Kettenring approach, named after the researchers
who introduced it (Gnanadesikan & Kettenring, 1972), exploits an idea that can be formulated
as:

1 (15)
R(k) = Z(UQT(XO + Xk) - var(XO - Xk))
This method is also called a scale approach. Equation (15) is written here already in a
simplified form. For a more general formula, you can see e.g. Huber (1981).

In the context of scale estimation, Rousseeuw and Croux (1992) proposed a robust
estimator Q,,:

.. 16
n= X=Xl i <], (16)
where c is a factor included for consistency, at the Gaussian distribution ¢ = 2.2191 and [-],
is k-th order statistic and k is defined as:

. Cl+2+1, (17)

where function |-] denotes the integer part and m is the number of observations.
Using the formulas above, we get an estimator:

(18)
_ Q¢ wtv) -0 (u—v)
Pl = @)
where u is the vector (X,—r, Xm—k+1, --» X;n) and v is the vector (X, Xy, ..., X). The method
of this robust ACF estimator was presented by Ma and Genton (2000).
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4.4 Method based on robust filtering

The method based on robust filtering was described by Maronna et al. (2006). This
approach takes the time series structure into account. The idea is to have robustly filtered
values instead of the original observation and to calculate ACF from these filtered values.
Principally, we replace outliers by some reasonable values.

Firstly, we estimate the order of the AR process which we use for robust filtering. It can be
done by a robust AIC criterion that was proposed also by Maronna et al. (2006). Or we can
use a “long” AR process instead.

Secondly, we obtain fitted values using the robustly filtered z-scale estimate. Finally, we
calculate autocorrelation function.

5. Simulation study

The simulation study was designed in the software R (R Core Team, 2013) and we use the
R package robts (see Diirre, 2016). However, the package was still not approved by CRAN at
the time of the study, so certain functions were coded by the authors of this paper to validate
the correctness of the package. After the validation was succesfull, we used functions from the
package to obtain estimations in the simulation study.

To determine whether an autocorrelation function of the order £ is still significant, we use
Bartlett’s approximation (Bartlett, 1946):

142y 5(i)? 19
f)(k)~N(0, Zy;l‘lp()>,k>k0, (19)

if p(k) = 0 for k > k. Therefore, we search for a k that holds:

lp(k)| = 2

1425 5(i)?2 (20)
j %lp() k> k.

Similarly, for partial autocorrelation function, we use Quenouille’s approximation

(Quenouille, 1949):
1 21)
la(k)| = 2\/:, k > k.
m

ARMA process is known as a process without the ky in (20) and (21). There always is
some ko (for stationary ARMA process) that will hold both inequalities (21) and (22), but
long orders are not preferable from the practical point of view. We choose maximum value of
ko equal to 6. If there is no ky < 6, we assume there exists no k at all.

For every examined case, we run 1000 simulations and have 1000 observations. The
percentage of outliers present in a single simulation is chosen randomly with an uniform
distribution, i.e. w~U([0.00,0.05]).

All 4 described methods are applied to each simulation as either an AR process with the
order p between 1 and 6, an MA process with the order g between 1 and 6, or a general
ARMA process. In the case of the simulations for the AR process, we put results of the MA
processes of all orders into a single category. Analogously, for the simulations for the MA
process, we put results of all AR processes into a single category. The simulations are
evaluated according the rules mentioned above.
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5.1. Autoregressive process AR(3)

Absolute values of the parameters of the AR(3) process are generated randomly with an
uniform distribution, i.e. ¢;~U((0.2,1.0)). Values of ¢; being close to zero are not taken into
account because they are difficult to observe. The sign of the parameters is generated
randomly with Bernoulli’s distribution with the probability of success p = 0.5. Subsequently,
we check whether these parameters lead to a stationary process and we repeat the procedure
until it is necessary.

Results for the AO model (6; = 10) can be seen in Table 1.

Table 1: Process AR(3) with data contaminated by the AO model.

Model Median Trim GK Filter
AR(1) 0.0% 0.0% 0.0% 0.0%
AR(2) 0.0% 0.2% 0.0% 0.0%
AR(3) 2.6% 0.2% 30.3% 70.2%
AR(4) 3.5% 0.9% 8.7% 8.1%
AR(5) 7.7% 1.7% 10.9% 8.8%
AR(6) 11.3% 5.4% 15.2% 6.1%

MA 20.5% 20.8% 9.0% 2.8%
ARMA 54.4% 70.8% 25.9% 4.0%

Source: The authors’ work

We can see that the method based on trimming is the worst. More than two thirds of the
simulations are considered as ARMA process. As the second worst, we can consider the
method based on median. At least 2.6% of the simulations are evaluated correctly, but this
percentage should be much higher. There is a notable difference between these two simple
methods and the method based on GK approach. Almost one third of the simulations are
evaluated correctly, and another third of the simulations are considered to be AR processes.
Clearly, the best method is the one based on robust filtering (section 4.4). More than two
thirds of the simulations are evaluated correctly and only 6.8% of the simulations are not
considered as an AR process.

Figure 3: Process AR(3) with data contaminated by the AO model.
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Results for the IO model (o; = 10) can be seen in Table 2.
If we take into account only simulations with w < 0.01, which means only less than 1%
contamination, then the results will not be much different. It means that the methods are
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robust enough because they are not much affected by outliers. On the other hand, the results
are not as good as we would expect. Satisfying results are given only by the robust filtering
method and possibly by the method based on GK approach.

We can see the results also in a graphical form in Figure 3 where we put all AR processes
except the correct one AR(3) into a single category.

Table 2: AR(3) process with data contaminated by the 10 model.

Model Median Trim GK Filter
AR(1) 0.0% 0.0% 0.0% 0.0%
AR(2) 0.0% 0.1% 0.1% 0.0%
AR(3) 1.9% 1.0% 12.9% 32.9%
AR(4) 2.6% 1.2% 6.3% 10.7%
AR(5) 4.7% 1.7% 8.1% 22.6%
AR(6) 11.4% 4.1% 14.1% 22.2%

MA 20.0% 18.8% 13.3% 3.8%
ARMA 59.4% 73.1% 45.2% 7.8%

Source: The authors’ work

We can see that all the methods give worse results in comparison to the additive outlier
model. This is caused by the fact that the innovative outliers are more difficult to process. The
method based on trimming is the worst again, and only 1% of the simulations are evaluated
correctly. Almost 2% of the simulations are evaluated correctly for the method based on
median and only 30% of the simulations are considered as AR processes. The method based
on GK approach provides correct identification for 12.9% of the simulations, but almost 60%
of the simulations mislead to MA or ARMA. The method based on robust filtering evaluates
one third of the simulations correctly as AR(3), meanwhile only 11.6% of the simulations are
not evaluated as AR process.

In Figure 4 we can see the results in a graphical form.

Figure 4: AR(3) process with data contaminated by the IO model.
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In Table 3, only simulations with percentage of contamination less than 1% are shown. We
can see that the results are similar to those shown in Table 1. It means that even a quite small
portion of outliers can affect the estimation. This is caused by the fact that innovative outliers
affect not an only observation but the next several observations as well.
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Table 3: AR(3) process with data contaminated by the IO model with € < 0.01.

Model Median Trim GK Filter
AR(1) 0.0% 0.0% 0.0% 0.0%
AR(2) 0.0% 0.5% 0.0% 0.0%
AR(3) 1.5% 0.5% 25.1% 63.1%
AR(4) 2.6% 1.5% 6.7% 11.8%
AR(5) 3.6% 3.1% 8.7% 10.3%
AR(6) 12.8% 5.1% 14.4% 8.7%

MA 24.1% 21.5% 11.3% 3.6%
ARMA 55.4% 67.7% 33.8% 2.6%

Source: The authors’ work

5.2. Moving-average process MA(4)

Similarly as for the AR(3) process, absolute values of the parameters of the MA(4) process
are generated randomly with an uniform distribution, i.e. 8;~U((0.2,1.0)). Values of 8; being
close to zero are not taken into account because they are difficult to observe. The sign of the
parameters is generated randomly with Bernoulli’s distribution with the probability of success
p = 0.5.

Results for the AO model (6; = 10) can be seen in Table 4.

Table 4: MA(4) process with data contaminated by the AO model.

Model Median Trim GK Filter
MA(1) 0.1% 0.0% 0.0% 0.0%
MA(2) 0.5% 0.0% 0.2% 0.3%
MAQ3) 4.9% 2.2% 4.3% 4.3%
MA(4) 56.1% 21.0% 76.6% 77.7%
MA(S) 8.8% 15.4% 5.4% 4.7%
MA(6) 10.1% 20.0% 3.0% 3.1%

AR 9.9% 9.5% 7.4% 7.1%
ARMA 9.6% 31.9% 3.1% 2.8%

Source: The authors’ work

Figure 5: MA(4) process with data contaminated by the AO model.
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The results are markedly better than for the AR(3) process with additive outliers. The worst
result are observed again after using the method based on trimming, but the percentage of
correct estimates is 21% (only 0.2% for the AR(3) process with the AO model). Much better
results are obtained with the method based on median. More than a half of the simulations are
evaluated correctly, that is 56.1%. Only 19.5% of the simulations are not evaluated as MA
processes. The remaining two methods perform similarly well, both of them yield correct
evaluations for approximately 77% of the simulations. Only approximately 10% of the
simulations are not evaluated as MA processes.

In Figure 5 we can see the results in a graphical form. We put the MA processes of all
orders into a single category, except for the correct MA(4) process.

Results for the IO model (g; = 10) can be seen in Table 5.

Table 5: MA(4) process with data contaminated by the IO model.

Model Median Trim GK Filter
MA(1) 0.0% 0.0% 0.0% 0.0%
MA(2) 0.3% 0.3% 0.0% 0.2%
MAQ3) 4.0% 1.4% 4.5% 5.7%
MA(4) 60.7% 22.1% 80.0% 75.9%
MA(5) 8.6% 15.9% 3.2% 3.6%
MA(6) 7.8% 19.4% 2.5% 2.9%
AR 9.2% 8.5% 6.3% 8.7%
ARMA 9.4% 32.4% 3.5% 3.0%

Source: The authors’ work

Figure 6: MA(4) process with data contaminated by the IO model.
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We can see in Table 5 that innovative outliers are not so effective in the case of the MA
process. The results are much better in comparison with Table 2. As always, the worst results
are given by the method based on trimming. This method leads to correct determination in
22.1% of the simulations. The method based on median provides correct determination in
60.7%, which is the best result for this method in our simulation study. Only less than 20% of
the simulations are not evaluated as MA processes. The method based on robust filtering is
not the best for the first time in this simulation study, but it still leads to correct identification
almost in 76% of the simulations. The best method is the one based on GK approach in this
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case. It enables correct identification in 80% of the simulations and only less than 10% of the
simulations are not evaluated as MA process. In Figure 6 we can see the results in a graphical
form.

6. Conclusion

We introduced two models for outliers. The additive outlier model generates mostly
isolated outliers. On the contrary, the innovative outlier model affects not only current
observation but also subsequent observations.

We introduced four robust methods for ACF estimation. Every robust method is based on a
different idea which we briefly described. When we have ACF robust estimators, we can
robustly estimate PACF, too. Subsequently we are able to estimate orders of the ARMA
process.

We performed a simulation study in which we compared the four chosen methods. We
noticed that the most difficult case for the assessment is the AR process with innovative
outliers. For this process, the results were the worst with every method. On the other hand, the
innovative outliers do not affect the MA process so distinctively.

The method based on trimming led to the worst results. In the case of the AR processes, it
does not provide almost any correct identification. For the MA process, the results were better,
but the correct determination rate of approximately 20% is still insufficient.

The median-based method led to slightly better results, however, for the AR processes, the
evaluation was correct only in 2% of the simulations. In the case of the MA processes, we
reached the level of almost 60% of successful determinations, what can be considered as a
quite positive result.

The two simple methods, the results of which are summarized above, were markedly worse
in comparison to more sophisticated methods. One of the sophisticated method we used is
based on the GK approach. It led to 30% of correct identification in the case of the AR
process with additive outliers, respectively to 12% of correct identification in the case of the
AR process with innovative outliers. For the MA processes, it yielded results similar to the
best method, and in the case of the MA process with innovative outliers, it was actually the
best method with 80% of success in the identification.

Overall, the best results were obtained by using the method based on robust filtering. In
three out of four cases, it provided the highest successful identification rate, in the fourth case
it was very close to the best result. Using this method, more than 70% of identifications were
successful every time, except for the AR process with innovative outliers. For this special case,
the evaluations were correct for approximately 33% of the simulations.

In order to conclude, based on the presented results of the performed simulation study, we
consider the method based on robust filtering as the most appropriate to estimate orders of
ARMA processes.
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