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SAMPLING INSPECTION PLANS
FROM NUMERICAL POINT OF VIEW**

The paper concerns the acceptance sampling plans when the remainder of rejected lots is in-
spected. Two types of AOQL plans are considered – for inspection by variables and for inspection by
variables and attributes (all items from the sample are inspected by variables, the remainder of re-
jected lots is inspected by attributes). These plans are compared with the corresponding Dodge–Ro-
mig AOQL plans for inspection by attributes. An algorithm allowing the calculation of these plans
(with the use of software Mathematica) was presented. From the results of numerical investigations it
follows that under the same protection of consumer the AOQL plans for inspection by variables are
in many situations more economical than the corresponding Dodge–Romig attribute sampling plans.
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1. Introduction

In [2] sampling plans are considered which minimize the mean number of items
inspected per lot of process average quality, assuming that the remainder of rejected
lots is inspected
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under the condition

Lp
pp =

<<
)(AOQmax

10
(2)

(AOQL single sampling plans), or under the condition L( pt;n,c) = 0.10 (LTPD single
sampling plans), where N is the number of items in the lot (the given parameter), p  is
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the process average fraction defective (the given parameter), pL is the average outgo-
ing quality limit (the given parameter, denoted AOQL), pt is the lot tolerance fraction
defective (the given parameter, denoted LTPD), n is the number of items in the sam-
ple (n < N), c is the acceptance number (the lot is rejected when the number of defec-
tive items in the sample is greater than c), L( p; n, c) is the operating characteristic
(the probability of accepting a submitted lot with fraction defective p), AOQ( p) is the
average outgoing quality (the mean fraction defective after inspection when the frac-
tion defective before inspection was p). The average outgoing quality (all defective
items found are replaced by good ones) is approximately
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Therefore condition (2), which protects the consumer against the acceptance of
a bad lot, can be rewritten as
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The Dodge-Romig LTPD and AOQL plans can be used under the assumption that
each inspected item is classified as either good or defective (acceptance sampling by
attributes). The problem to find LTPD and AOQL plans for inspection by variables
has been solved in earlier papers, see [4] and [5]. In this paper, we shall report on an
algorithm allowing calculation of two types of AOQL plans1:

a) For inspection by variables – all items from the sample and all items from the
remainder of rejected lot are inspected by variables.

b) For inspection by variables and attributes – all items from the sample are in-
spected by variables, but the remainder of rejected lots is inspected by attributes only.

Solution to the problem of finding the AOQL plans by variables and AOQL plans
by variables and attributes is considerably difficult. We shall use an original method.

2. AOQL plans by variables and comparison
with the Dodge-Romig plans

In this paper, it will be assumed that measurements of a single quality characteri-
stic X are independent, identically distributed normal random variables with unknown
parameters µ and σ 2. For the quality characteristic X is given either an upper specifi-
                                                     

1 For calculation of the LTPD plans by variables and the LTPD plans by variables and attributes and
tables of these plans, see [6] and [7].
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cation limit U (the item is defective if its measurement exceeds U), or a lower specifi-
cation limit L (the item is defective if its measurement is smaller than L). It is further
assumed that the unknown parameter σ is estimated from the sample standard devia-
tion s (unknown standard deviation plans), no use is made of the average range as an
estimator of σ. The inspection procedure is as follows (e.g. [1]):

1. Draw a random sample of n items and compute
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2. Compute s
xU −  for an upper specification limit, or s

Lx−  for a lower specification
limit.

3. Accept the lot if
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The problem is to determine the sample size n and the critical value k. There are
different solutions to this problem. In the present paper we shall look for the accep-
tance plan (n,k) minimizing the mean inspection cost per lot of process average qu-
ality Cms under the condition (4). Inspection cost per lot, assuming that the remainder
of rejected lots is inspected by attributes (the inspection by variables and attributes),
is *

mnc  with probability L( p; n, k) and [ *
mnc  + (N – n) *

sc ] with probability [1–L( p; n,
k)], where *

sc  is the cost of inspection of one item by attributes, and *
mc  is the cost of

inspection of one item by variables. The mean inspection cost per lot of process ave-
rage quality is therefore
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Now, we shall look for the acceptance plan (n, k) minimizing
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instead of Cms (both functions Cms and Ims have a minimum for the same acceptance
plan, Cms = Ims *

sc ) under the condition
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For these AOQL plans for inspection by variables and attributes (the type (b)) the
new parameter cm was defined, see (8). This parameter must be statistically estimated
in each real situation. Usually, there is

1>mc . (11)

Putting formally cm = 1 into (9) (Ims in this case is denoted by Im ) we obtain
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i.e., the mean number of items inspected per lot of process average quality, assuming
that both the sample and the remainder of rejected lots are inspected by variables.
Consequently we shall study the AOQL plans for inspection by variables (the type(a))
as a special case of the AOQL plans by variables and attributes for cm = 1. From (12)
it is evident that for the determination of AOQL plans by variables it is not necessary
to estimate cm (cm = 1 is not a real value of this parameter).

Summary: For the given parameters N, p , pL and cm we must determine the ac-
ceptance plan (n, k) for inspection by variables and attributes, minimizing Ims in (9)
under the condition (10).

First, we shall deal with the solution of equation (10). The operating characteri-
stic, using the normal distribution as an approximation of the non-central t distribu-
tion (see [3]), is
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The function Ф in (13) is a standard normal distribution function and u1-p is

a quantile of order 1 – p, i.e., ∫ ∞−
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unique root of the equation Ф(u) = 1 – p). The approximation (13) holds both for an
upper specification limit U and for a lower specification limit L. The equation (10),
using (13), has an (approximately) equivalent form
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Let n, N, pL be given parameters (for the given n we shall write Mn(k) instead of
M(n, k)). At first we shall look for the critical value k for which (15) holds, i.e.,

( )N
n

Ln pkM −= 1/)( . (17)

Theorem 1. Let n, N, pL be given parameters, pL < 4
1 - N4

7 . If

Npn L )41(,7 −∈ , (18)

then each solution k of equation (17) is nonnegative, i.e., k ≥ 0.
Proof. If k < 0, then L( 2

1 ) = Ф(–k/A) > 2
1  and Mn(k) > 4

1 , but the right hand side of

(17) is for Npn L )41(,7 −∈  less or equal to 4
1 . □

Remark 1. The assumption (18) is not limiting one from practical point of view.
From numerical investigations it follows that for most of the given parameters N, p ,
pL and cm the assumption (18) is valid. If assumption (18) is not valid (very small
lots), AOQL plans for inspection by variables and attributes are not considered for
economical reasons.

Let us denote2
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Theorem 2. Let pL be the given parameter, Npn L )41(,7 −∈ . If for n,

( ) Ln pn ≤−− 2)1(Φ , (20)

holds, then the function Mn(k) is decreasing in Kn.

Proof. See [8]. □
Remark 2. For usually chosen pL the assumption (20) holds. The left hand side of

(20) is decreasing function of n and for n = 7 the left hand side of (20) is approxima-
tely 0.0007 (minimum value of AOQL in [2] is pL = 0.001).

From Theorem 2 it follows that each solution of equation (17) is unique. Since an
explicit formula for k does not exist, we have to solve (17) numerically. We use
Newton's method3, therefore we must determine Mn(k) and the derivative )(kM n′ .
According to (16) one has
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2 If k ∉ Kn, then k is not a solution of equation (17).
3 Numerical investigations show that the function Mn(k) is also convex in Kn (if we choose start value

k0 = 0, then Newton's method is always convergent).
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where pM ∈ (0,1) is the value of p, for which the function G( p; n, k) in (16) has
a maximum. Evidently, it holds that G(0; n, k) = G(1; n, k) = 0 and G( p; n, k) > 0 for
p ∈  (0, 1). Since the function G( p; n, k) is continuous for p ∈  <0, 1>, the value pM
exists. We determine the value pM as a solution of the equation G'( p) = 0, i.e.,
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Theorem 3. Let n be the given parameter, Npn L )41(,7 −∈ , nr nk 2)1( −= . If
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Proof. See [8]. □

Instead of pM we shall look for ))((1 MMpM xpux
M

−== − Φ  as a solution of the
equation G'(x) = 0, i.e.,
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The equation (24) must be solved once more numerically. From Figure 1, it is evi-
dent that numerical solution of the equation G'(x) = 0 depends on good first approxi-
mation x0. Under assumptions of Theorem 4, solution xM of equation (24) is between
xr and xa, where
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Fig. 1. The function G'(x) for n = 60 and k = 2.2

Using (25) we choose for x0 the following point (numerical investigations show
that this point is a good start value for solution of equation (24))
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If we find xM for which (24) holds, then we determine Mn(k) from the formula
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and the derivative )(kM n′  from the formula4
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Determination of the acceptance plans (n, k) for which (17) holds is in comparison
with the solution of the equation L( pt; n, c) = 0.10 in a previous paper (see [4]) consi-
derably more difficult. From these plans we must choose the acceptance plan (n, k)
minimizing α)( nNncI mms −+= , where
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is producer’s risk (the probability of rejecting a lot of process average quality). We
shall solve this problem once more numerically.

                                                     
4 We obtain )(kM n′  from (21) using the fact that (20) holds for xM.
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For the comparison of AOQL plans by variables and AOQL plans by variables and
attributes with the Dodge-Romig plans from an economical point of view we use pa-
rameters E and e defined by relations

100
s

m

I
IE = ,   100

s

ms

I
Ie = . (30)

If cm is statistically estimated and 100<mEc , then the AOQL plans for inspection
by variables are more economical than the corresponding Dodge–Romig AOQL plans.
The AOQL plans for inspection by variables and attributes are more economical than
the corresponding Dodge–Romig plans when e < 100 (see [5]).

3. Numerical solution

For calculation of the AOQL plans by variables and attributes we shall use softwa-
re Mathematica, see [9].

Example. Let N =1000, pL = 0.0025, p  = 0.001 and cm = 1.8 (the cost of inspec-
tion of one item by variables is higher by 80% than the cost of inspection of one item
by attributes). We shall look for the AOQL plan for inspection by variables and attri-
butes. Furthermore we shall compare this plan and the corresponding Dodge-Romig
AOQL plan for inspection by attributes.

According to (14), (24), (25) and (26) we have

In[1]:= << Statistics`NormalDistribution`

In[2]:= ndist = NormalDistribution[0, 1]

In[3]:= cm = 1.8

In[4]:= pL = 0.0025

In[5]:= pbar = 0.001

In[6]:= nbig = 1000

In[7]:= A[n_, k_] := Sqrt[1/n + k^2/(2n - 2)]

In[8]:= G'[x_, n_, k_] := CDF[ndist, (x - k)/A[n, k]] - CDF[ndist,

-x]* Exp[-((1 - A[n, k]^2) x^2 - 2k x +
k^2)/ (2A[n, k]^2)]/A[n, k]
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In[9]:= xr[n_, k_] := k/(1 + A[n, k])

In[10]:= xa[n_, k_] := (k + A[n, k]*Sqrt[k^2 - 2(1 - A[n, k]^2)*

Log[A[n, k]]])/(1 - A[n, k]^2)

In[11]:= x0[n_, k_] := ((100 + n)*xr[n, k] + n*xa[n, k])/(2n + 100)

In[12]:= FR[n_, k_] := FindRoot[G'[x, n, k] == 0, {x, x0[n, k]}]

In[13]:= xM[n_, k_] := x /. FR[n, k]

Using Newton’s method (see (27) and (28)) with start point o = 1.6 and (29) we
have

In[14]:= c[n_, k_] := -(CDF[ndist, -xM[n, k]]*CDF[ndist, (xM[n, k]

-k)/A[n, k]] – pL/(1 - n/nbig))/ (-

CDF[ndist, -xM[n,k]]*(1/n + k xM[n, k]/ (2n

- 2))*Exp[-(xM[n, k] - k)^2/(2A[n, k]^2)]/

(A[n, k]^3*Sqrt[2Pi]))

In[15]:= o = 1.6

In[16]:= fRecAux[n_,i_]:= fRecAux[n,i]=fRecAux[n,i-1]+c[n,

fRecAux[n,i-1]]; fRecAux[n_,0]=o

In[17]:= k[n_]:=fRecAux[n,7]

In[18]:= a[n_] := CDF[ndist, (k[n] - Quantile[ndist, 1 - pbar])

/Sqrt[1/n + k[n]^2/(2n - 2)]]

In[19]:= Ims[n_] := n cm + (nbig - n)*a[n]

In[20]:= Plot[Ims[n], {n, 10, 100}]
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In[21]:= Table[{n, k[n], Ims[n]}, {n, 40, 50, 1}]

In[22]:= TableForm[%]

Out[22]//TableForm=

  40 2.56734 126.755

 41 2.56613 125.879

 42 2.56501 125.157

 43 2.56397 124.579

 44 2.56302 124.135

 45 2.56214 123.815

 46 2.56133 123.61

 47 2.56058 123.515

 48 2.55988 123.52

 49 2.55923 123.621

 50 2.55863 123.81

The AOQL plan for inspection by variables and attributes is (minimum of the
function Ims is Ims = 123.515)

n1 = 47,    k = 2.56058.

The corresponding AOQL plan for inspection by attributes can be found in [2].
For given parameters N, pL and p  we have

n2 = 130,   c = 0.

For the comparison of these two plans from an economical point of view we use
parameter e (see (30)). The Mathematica gives

In[23]:= n1 = 47

In[24]:= k = 2.56058

In[25]:= Ims = 123.515

In[26]:= n2 = 130

In[27]:= c = 0

In[28]:= e = 100*Ims/(nbig - (nbig - n2)Sum[Binomial[nbig*pbar, i]*

Binomial[nbig - nbig*pbar, n2 - i]/Binomial[nbig, n2],

{i, 0, c}])

Out[28]:= 50.8083
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Since e = 50.8083%, using the AOQL plan for inspection by variables and attri-
butes (47, 2.56058) there can be expected approximately 49% saving of the inspection
cost in comparison with the corresponding Dodge–Romig plan (130, 0).

Further we compare the operating characteristics of these plans (see (13))

In[29]:= L1[p_] := CDF[ndist, (N[Quantile[ndist, 1 - p], 16] - k)/

Sqrt[1/n1 + k^2/(2*n1 - 2)]]

In[30]:= L2[p_] :=Sum[Binomial[nbig*p,i]* Binomial[nbig-nbig*p,n2-i]/

Binomial[nbig,n2],{i,0,c}]

In[31]:= Table[{p, N[L1[p], 5], N[L2[p], 5]}, {p, 0.001, 0.031,

0.002}]

In[32]:= TableForm[%]

Out[32]//TableForm=

0.001 0.959165 0.87

 0.003 0.730845 0.658207

 0.005 0.51999 0.497674

 0.007 0.36707 0.376067

 0.009 0.260801 0.284003

 0.011 0.187205 0.214346

 0.013 0.135854 0.161675

 0.015 0.0996376 0.121872

 0.017 0.0738028 0.0918112

 0.019 0.0551687 0.0691225

 0.021 0.0415875 0.0520083

 0.023 0.0315927 0.039107

 0.025 0.0241711 0.0293876

 0.027 0.0186145 0.0220699

 0.029 0.0144223 0.0165638

 0.031 0.0112372 0.0124235

For example, we get L1 )( p  = L1(0.001) = 0.959165, i.e., the producer’s risk for
the AOQL plan for inspection by variables and attributes is therefore approximately

=α 1 − L1 )( p  = 0.04.

The producer’s risk for the corresponding Dodge–Romig plan is

=α 1 − L2 )( p  = 1 − 0.87 = 0.13.

Finally, let us present the graphic comparison of the operating characteristics of
these plans (see Figure 2):
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In[33]:= oc1 = Plot[L1[p], {p, 0, 0.03}, AspectRatio -> 1.3,

 AxesLabel -> {"p", "L(p)"}]

In[34]:= oc2 = Plot[L2[p], {p, 0, 0.03}, AspectRatio -> 1.3,

 AxesLabel -> {"p", "L(p)"}]

In[35]:= Show[oc1, oc2]

Fig. 2. OC curves for the AOQL sampling plans:
1 – for inspection by variables and attributes (47, 2.56058),

2 – for inspection by attributes (130, 0)

Conclusion

From these results it follows that the AOQL plan for inspection by variables and
attributes is more economical than the corresponding Dodge-Romig AOQL attribute
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sampling plan (49% saving of the inspection cost). Furthermore the OC curve for the
AOQL plan by variables and attributes is better than corresponding OC curve for the
AOQL plan by attributes, see Figure 2 (for example, the producer’s risk for the
AOQL plan by variables and attributes =α  0.04 is less than that for the correspon-
ding Dodge–Romig plan =α  0.13).
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Statystyczne plany odbiorcze z numerycznego punktu widzenia

Artykuł dotyczy statystycznej kontroli odbiorczej z wykorzystaniem schematów próbkowania dla po-
zostałości po odrzuceniu wadliwych partii. Rozważane są dwa typy planów odbiorczych AOQL: według
oceny liczbowej właściwości oraz według zadanych charakterystyk (wszystkie elementy próbki są weryfi-
kowane z użyciem właściwości liczbowych, reszta – po odrzuceniu wadliwych partii – według zadanych
charakterystyk). Przedstawione plany odbiorcze porównano z odpowiadającymi im planami odbiorczymi
Dodge–Romiga według zadanych charakterystyk. Algorytm numeryczny dotyczący przedstawionych
planów został dołączony do artykułu (zaimplementowany w programie Mathematica). Analiza właściwo-
ści numerycznych zaproponowanych rozwiązań pozwala stwierdzić, że przy tym samym poziomie ochro-
ny konsumenta plany odbiorcze według oceny właściwości liczbowych są bardziej ekonomiczne od pla-
nów Dodge–Romiga dotyczących zadanych charakterystyk.

Słowa kluczowe: AOQL, schematy próbkowania, plan odbiorczy, aspekty ekonomiczne, program Mathe-
matica


