e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 35-44, DOI 10.5277/e-Inf130104

Reusable Object-Oriented Model

Jaroslav Za¢ek*, Frantisek Huiika*

*Faculty of Science, University of Ostrava

jaroslav.zacek@osu.cz, frantisek.hunka@osu.cz

Abstract

This paper analysis approaches and possibilities of executive model aimed to MDA approach. The
second part of the article proposes guideline to create executive model, describes basic interactions
to object oriented approach and shows possibilities of creating a core of executable model in Java
programming language. Annotations are used for executive model object extension. Reflection
concept is used for model execution and synchronization provides extended Petri net formalism
defined in [1]. The model has been tested on LFLC software package developed by IRAFM,

University of Ostrava to prove the whole concept.

1. Introduction

In present days model transformations in
object-oriented programming are focused to
speed and automation. The criteria for trans-
formation are concrete programming language,
model expressivity and domain usability. In ad-
dition the elevation of abstraction should be ap-
plied to make modeling easy and simple. Main
advantages of this approach are noticeable dur-
ing initial analysis of application or when user
needs to automate some processing. During key
requirement identification the higher abstraction
level is needed. Reducing model abstraction con-
cretizes this initial design with transformations.
Transformation ends on source code level and
model becomes platform dependent. But in any
time the user can transform model to higher
abstraction level and make necessary changes.
All these tasks can be done using automated
tools and changes are applied on lower source
code level. This approach is very useful in agile
programming methodologies and enables very
fast model changes. One option is to divide mod-
els to different levels of abstraction and make a
transformation between them. Model transfor-
mation process is described in [2] specifications

and it is know as a Model-driven architecture
(MDA). MDA is a registered trademark of Object
Management group. The MDA architecture was
established in 2001. A lot of transformation tools
for platform independent model (PIM) to plat-
form specific model (PSM) were developed since
2001. Tools allows to transfer abstract model to
concrete using with technologies such as Web Ser-
vices, EJB, XML/SOAP, CSharp, CORBA and
others. In addition another standard established
in the past such as MetaObject Facility (MOF),
Unified Modelling Language (UML),Common
Warehouse Metamodel (CWM) and XML Meta
Interchange (XMI) are available for MDA sup-
port. MDA architecture consists of 4 layers spec-
ified as a MO — M3 and every layer in this specifi-
cation represents a different level of abstraction.
MOF is used for initial domain identification.
MOF is specified as a M3 layer in a MDA speci-
fication. This layer is a domain specific language,
which is used for metamodel description. By this
language user can describe M2 lower layer. We
can consider UML as an object-oriented meta-
model and Web Services or Petri’s nets as a
non-object-oriented metamodel. Models based
on MDA architectures are not focused on model
execution. These models are focused on platform

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_7/eInformatica2013Art4.pdf

36

Jaroslav Zacek, Frantisek Hutika

independent model transformation to platform
specific model and changing level of abstraction.
Executable UML (also known as xUML or
xtUML) is a part of UML specification and aimed
to execution compared to regular UML diagram
and offers needed standard extension for execu-
tion.
Executable UML is defined by these elements:
— Class diagram — defines classes and interac-
tions between their associations for the do-
main
— Statechart diagram — defines the states, activ-
ities and state transitions for a class instances
— Domain chart — describes a modeled domain
and relations to other domains
— Action language — defines the actions or op-
erations that perform processing on elements
In fact the Executable UML is an extension
to MDA platform and enables making execu-
tive models on M1 level from elements described
above. An executive model on a higher level of
abstraction is created and this model is trans-
formed to programming language source code,
mostly 3rd generation programming language.
A framework called M3 action has been de-
veloped to make executive modeling easy. This
framework has been transformed to open-source
project called MXF (Model eXecution Frame-
work). Framework extends model with so called
action scripts, which express model execution se-
mantic. By these extensions user is able to change
model quickly without any implementation or
compilation.

2. Problem formulation

Basic formulation of executive modeling has been
described in introduction. As a context of prob-
lem we consider MDA architecture on Fig. 1. A
bottom layer contains data and is an instance
of M1 layer, which creates a model. There is no
execution on MO layer because M0 contains data
with no context and therefore higher abstrac-
tion to express interactions. Interaction between
data is realized on M1 layer, where the classes
and their relationships are described. These re-
lationships realize method calling. Fast relation-

ship changing is suitable for modeling. By the
thought of changing relationship means change
any method calling in any object in the model.
Ideally user is able to change relationships and
inner class attributes during simulation.

MOF (Metamodel) M3
)
linstance of
,,,,,,, b
Metamodel M2
m
‘I“smn:co!
Model M1
1
|Instance of
,,,,,,, S e e
Data M0

Figure 1. MDA architecture

This execution approach is usually realized
on M1 level, which is closed to platform indepen-
dent model. User can examine classes and their
attributes state, make a direct relationship to
another class, step the simulation process and
ideally read class values in the real time.

2.1. The MDA

The MDA architecture introduced by OMG
group was developed to support model-first soft-
ware development. At first a very abstract model
is created, then model is transformed to lower
levels of abstraction. Transformations end when
model is suitable to generate application source
skeleton in corresponding programming language.
Automated tools to speed up the process and re-
duce errors caused by writing code by program-
mer are available and support this approach.
Model doesn’t concern execution and ensures
just metadata reflection of workflow. According
to [2] MDA is defined by these points:
— Models
— Abstraction
— Platform
— Model Transformation
— The MDA value proposition
MDA specification defines model as a formal
specification of functions, structure and system
behavior. UML has been chosen as formalism.

Reusable Object-Oriented Model

37

According to OMG definition the source code
can be concern as a model because this code
has a formal specification (all code structures
has an exact semantic) and models real machine
code, which is available as a program language
transformation by compiler or interpreter. This
point of view is not interested for object-oriented
approach and therefore this model will be con-
sidered as a UML model.

Referential model for open distributed pro-
cessing (MR-ODP) is marked as a suppression
of irrelevant detail according to ISO 10746-2 [3].
Model with a high level of abstraction has natu-
rally less detail a posteriori to realization than
model with a lower level of abstraction. MDA has
been created to start development on a higher
level of abstraction and then transform created
model to lower level of abstraction until source
code is generated. Therefore model drives entire
software architecture development.

2.2. Model transformation

MDA generates source code by model transfor-
mation. Initial model is platform independent
with higher level of abstraction and determined
by following points:
— Represents business functionality not tight
to technological platform.
— s a detailed model (mostly UML).
— Independent on programming language or
operating system.
— Creates baseline to platform-specific model.
PIM is transformed to platform-specified
model (PSM) and is adapted to use with target
platform. PSM model includes information about
business platform and creates PIM mapping to
target platform, creates source code skeleton and
associated artifacts. As an artifact we can con-
sider deployment descriptor, documentation and
build files.
This description implies that we can define
a PIM, which can be reusable for different plat-
forms, appropriate PIM to PSM mapping and
PSM to source code compiler to target platform
as well. In additional this process can by autom-
atized by tools. This transformation is one way
only. If the change on lower PSM layer is realized

this change cannot be applied on a higher levels
in automate process. However, this change could
be in a direct conflict with initial modeled pur-
pose. Conversion between PIM to PSM model
cannot be realized fully automatically. For exam-
ple tools cannot determine if account must be
marked as an entity EJB or session EJB during
the translation.

2.3. The MDA Value proposition

Programming language is an instrument to execu-
tive model expressed in UML. This fact has been
considered as a disadvantage of model transfor-
mation because by this transformation model be-
comes platform dependent on operating system or
specific programming language. Programming lan-
guage lifetime is limited and when new program-
ming language becomes in use old source code is
become useless and must be transferred. Presently
using platform independent on operating sys-
tem approach minimizes the risk of boundedness
source code to platform. Using Java technology
in these days minimizes boundedness risk. Com-
pany’s processes are changing and PIM must re-
spond to these changes. The MDA advantage is to
preserve high-level views to solve problems — PIM.

2.4. The MDA Execution

In original MDA architecture design was no exe-
cution at all. Modeling starts at higher layer and
by concretizing model and decomposing (model
transformation) the new code is generated. Gen-
erated code contains class skeleton. Function in-
teractions between classes are represented by
UML relationships only and class itself carries
no executive information, instantiation approach
or input and output methods. Main disadvantage
of this approach is that model cannot use com-
ponents developed before and model cannot be
executed and debugged. PSM to PIM transforma-
tion can be made from class diagram (low model
view), but this transformation is difficult, cannot
be done automatically and for right model identi-
fication archetype patterns [2] must be used. To
make MDA architecture running automatically
an Executable UML extension must be applied.

38

Jaroslav Zacek, Frantisek Hutika

2.5. M3 Action — Model Execution
Framework

M3 action, mostly known as a MXF, is a
project focused on executive modeling on a higher
level of abstraction (M3). A new language has
been defined to describe interactions between
elements [4]. Language is based on UML Ac-
tions/Activities. From executive point of view,
a more abstraction view is available compare to
Executable UML. MXF and Executable UML
cannot change level of abstraction and creates
executable models on a single layer. Metaob-
ject instantiation is performed in M3 abstraction
level; therefore tool cannot identify a design pat-
tern of the implementation. Compare to UML
the MXF supports aspect-oriented programming
due to M3 abstraction level.

One of the main goals of object-oriented
programming is reusing components. In all ap-
proaches described above there is no mecha-
nism to integrate reusable components to model
or make model with reusable components. Ap-
proaches discuss creating class skeleton of model
in programming language with no direct execu-
tion. Model created that way cannot be debugged
without changing source code and add some new
functionality. MDA architecture is able to gen-
erate model from bottom to up (elevate level
of abstraction) by using the archetype patterns,
but this model lost executive ability by perform
this transformation. Executable UML tries to
minimize MDA disadvantage by adding more in-
formation to object interaction in the model. By
applying these techniques an executable model
with higher abstraction level from reusable com-
ponents cannot be created.

3. Defining a new modeling approach

MDA, Executive UML and MXF don’t include

the requirements to executive model:

— Create model form reusable components.

— Concerning design patterns.

— Flexible change when component is replaced.

— Function and debugging with no code compi-
lation.

— Change the level of abstraction.

These requirements can be realized with min-
imal generality reduction by extension of object
metamodel and applying a reflection tool.

3.1. Reflection

Reflection as a term in information science means
ability to read and change program structure and
behavior during the program running. Consid-
ering to object-oriented programming approach,
reflection means ability to read and change object
attributes, read and execute the object methods,
passing calling results and instantiate new ob-
jects. Generally the reflection is able to read
object metamodel during program running with-
out changing any object attributes. Reflection
is widely used with Smalltalk programming lan-
guage and scripting languages. Reflection can be
used as a universal tool to make object persis-
tent [5] or to generate project documentation.

Reflection enables creating a new object in-
stance entered by name during program run-
ning. Following source codes are in Java program-
ming language, but same function can be done
with .NET platform and languages defined under
Common Language Specification. Basically there
are two requirements to programming languages:
— Ability to read object metadata and

work with them as a metamodel (object

self-identification).
— Some tool to enable object metamodel exten-
sion.

The metamodel that carries information
about class must be discovered before instan-
tiation.

Fig. 2. shows a representation of metamodel
reference. That reference has been found during
program running by providing his name — String
data type. Execution wrapper is a standalone
class. Inner attribute saves metamodel references
and instantiated object. For every object is cre-
ated his instance, special cases as a Library Class
are covered by metamodel extension explained
in 3.2.2.

At first a constructor must be found to instan-
tiate a class. A simple model has been created
for model testing purpose. Model is limited to

Reusable Object-Oriented Model

39

public boolean setReflectObjectByName (S5tring name)

throws ClassNotFoundExcep
NoSuchMethodException, Il
IllegalAccessException, I
InstantiationException {
boolean instanceLimit false

L
’

S5tring instanceMetchod
int pool =-1;
this.reflectClass

= th
(Annotation annotation :

Annotation[] annotations
for

if (annotation instanceof !

Mod port type
if (type.designPatter
instanceLimit t

instanceMethod
pool = 1;

} else if (cype.desig
instanceLimit = t

instanceMethod

pool = type.pool(
} else {

instanceLimit

£

if (instancelimit) {
return createInstanceLimi

return createInstance():

tion,
legalirgumentException,
nvocationTargetException,

SecurityException,

Class. forName (name) ;

is.reflectClass.getAnnotations () ;
annotations)
ort)

I

annotation;
f

n{).equals("Singleton”™)) {
rue;
type.instanceMethod() ;
nmPattern() .equals("PFool™)) {
rue;
type.inastanceMethod ()

o

=

alse;

t (instanceMethod, pool);

Figure 2. Pointer to object metamodel

non-parametric constructor. During instantiation
the metamodel is searched and first constructor
is called. Result of instantiation is saved to class
realizing execution. A method to create instance
with no instantiation number limit is described
in Fig. 3.

More complex instantiation method is ex-
tended by instance count parameter and factory
method name. Factory method specification is
presented in virtue of factory method name in-
consistency [6].

3.2. Analyzing class

Reflection can read all object metadata, all in-
ner attributes, methods, input parameters and
return value can be identified. A new class has
been created (Fig. 4.) to metamodel verification.
Reflection is applied to find the metamodel and
all methods are called one by one. Metamodel
contains a list of all methods including methods
marked as a private by modifier.

Discovered metamodel will be used as an
input information to create a graphic model rep-
resentation. In this graphic representation an
order of method calling can be changed if all in-
put attributes and return values have same type.

Eleven modifiers are defined by Java program-
ming language. Modifiers can be characterized
as a possible access to objects. In Fig. 3. the
modifier is set to private therefore a violation
of object-oriented programming is occurred. But
it isn’t a mistake from instantiation point of
view. According to Library Class design pattern,
the constructor is defined as an empty construc-
tor therefore Library Class instantiation doesn’t
change inner state of object. Other classes using
a factory method to instantiation requires at
least a metamodel extension for factory method
identification. Change can be done on graphic
model representation level as well. According to
reflection all identifiers can be changed, which
gives user powerful tool to make changes during
the program/model running.

40

Jaroslav Zacek, Frantisek Hunka

private boolean createlInstance ()
NoSuchMethodException,
IllegalAccessException,
InstantiationException {

throws SecurityException,

IllegalArgumentException,

InvocationTargetException,

Constructor[] constructors = this.reflectClass
.getDeclaredConstructors () ;

for

(Constructor constructor

constructors) {

if (!'Modifier.isPublic(constructor.getModifiers())) {
constructor.setAccessible (true) ;

this.reflectCbhbject = this.reflectClass.newlInstance():

break;

retarn true;

Figure 3. Basic instantiation method

public boolean invokeAllMethods() throws IllegalArgumentException, IllegalAccessException,

Method[] allMethods =
for (int 1=0; i<allMethods.length; 14+) {
Method oneMethod = allMethods[1];

InvocationTargetException {

this.reflectClass.getDeclaredMethods();

Class<Type>[] parameters = (Class<Type>[]) oneMethod.getParameterTypes();
Object[] defaultValues = new Object[parameters.length];

for (int j=0; j<parameters.length; j++) {
Type type = parameters[j];
defaultValues[j] = getDefaultType(type);
}

Object returnObj = oneMethod.invoke(this.reflectObject, defaultValues);

if (returnObj.getClass().isArray(})

System.out.println("Calling method according to type, return value is array.");

else

System. out.println("Calling method according to type, return value is

}

return true;

" 4 returnObj.toString()});

Figure 4. Invoking methods

If reflection is used to create executive model
a question of speed of entire executive lifecycle
needs to be consider. Supporting class ensures
not just initial instantiation but calling methods
and passing parameters as well. According to
some sources reflection API is slow. Confirmed
by [5] this affirmation is not based on true. By
application of Amdahl’s law a formula is derived:

Rtime + Work

1 =
Slowdown Ntime + Work

where Rtime is a micro benchmark measurement
of a reflection solution and Ntime is a micro
benchmark measurement for nonreflective solu-
tion. Work is a relative amount and can be in-
terpreted as a Work = Ntime * x , where x is a
factor of scaling, which determines time spend
with other things. By substitution a formula to

slowdown can be derived:

Rtime n
— 4=
Ntime

Slowdown =
1+«

This interpretation of Amdahl’s law en-
ables to set referential unit of performance.
Rtime/Ntime ratio should be about the same
for processors no matter the speed at which the
clock is running. After value substitution of in-
stantiation dynamic proxy the ration is equal
to 329.4 and slowdown is about 1900% when
work is less than 17 times NTime. This num-
bers seem high but to print “Hello World!” in
Java programming language the value of work is
equals to 36,000 times Ntime, which a slowdown
is under 1%. Therefore there is no noticeable
slowdown if reflection technique is applied.

Reusable Object-Oriented Model

41

3.3. Class metamodel

According to [7] a metamodel is a domain-specific
language oriented towards the representation of
software development methodologies and endeav-
ours. After adjusting to class diagram metamodel
we can say that metamodeling is an ability to
express interactions between classes from meta-
model — inner object state. Metamodeling is the
act and science of engineering metamodels. Ba-
sic metamodel contains information necessary
to class representation in concrete programming
language.

Two approaches can be use to get metamodel.
Model can be obtained from descriptors made
before which are tight with created class. This
form of implementation is very simple, however
descriptor maintenance becomes difficult. When
descriptors are defined in high amount the main-
tenance becomes confusing. If the class doesn’t
contain descriptors, it cannot be used for meta-
model purpose. This type of approach is applied
in object-relation mapping known as a Hibernate
project.

Second option is use a reflection and read
entire object metamodel. This information is
obtained during program running and therefore
enables dynamic 3rd part library linking with no
additional library changes. When class name is
provided the reflection interface can read all class
attributes, methods, return values and modifiers
and pass these values to process on a higher level,
typically GUI. In some cases detail information
must be known to use class metamodeling. Ba-
sic metamodel is not sufficient therefore a new
tool for user metamodel extension needs to be
found. Reflection must be able to use these exten-
sions during object instantiation and modeling.
Annotations are a quiet suitable for user meta-
model extension. Annotations are special type
of syntactic metadata, which can be add to class
source code and extend metamodel expressivity.
Metamodel expressivity extension is shown on
Fig. 5.

Interface on Fig. 5. is implemented by a class
and extends user description part. Reflection
allows reading these values and directly decides
during program running. In this case a definition

of instance is presented. Class carries information
about instantiation limit in the metamodel and
solves interaction between design patterns and a
class model.

ion {RetentionPolicy. RUNTIME)
yet (ElementType . TYFPE)

public @interface ModelSupport {
public String designPattern():
public String instanceMethod():
public int pool():

Figure 5. Metamodel extension

A model can be realized based on previous
recommendations. For a low price — less general-
ity — model solves all problem points identified
above. Model will support to plug 3rd part com-
ponents, design patterns will be instantiated in
a right way. Model is executable in any time and
brings immediately operational picture of mod-
eling reality. This model is realized by reflection
as a supporting mechanism for execution and
debugging during program running. Reflection
makes model free to use 3rd part components.
Model makes instantiation of these components
and other classes, calls corresponding methods
defined in model and passes parameters.

3.4. Basic entity view

Graphics representation of basic model scheme
suggests Fig. 6. Final list of atomic classes are
available. This list represents single classes but
relationships are simplified from methods to ob-
ject links. In simplified model an antecedent has
only one consequent and antecedent pass result
process directly to consequent. Reflection realizes
a passes of result and instantiation in right way
with interaction to design patterns. Design pat-
tern accuracy ensures the extended metamodel.
Model input and output is defined. Every element
in model has only one input and one output.
More complex metamodel presents Fig. 7.,
which is extension of basic model. This model is
closer to reality because some entities presented
in the model has more then one input. Output is
limited to one because of programming language
limitation. A synchronization problem occurs if
method has more then one input. In this case we

42

Jaroslav Zéacek, Frantisek Hurka

Input

Output

Entity Box

Figure 6. Basic model

Figure 7. Extended model

must apply object-valued Petri net introduced
in [1].

3.5. Class view

For an executive model representation based on
reflection and annotations is more useful to cre-
ate a class view. This class view shows Fig. 8.,
where every entity from Fig. 7. is transformed
into the class. UML notation is chosen willfully
because of wide using in practice. Every class
contains an internal and external method. Inter-
nal methods are marked with private modifier,
external with public modifier. Same approach
is applied to attributes. Modeling process starts
when user enters initial values and the small-
est stem in simulation is one executed method.
An internal state of object is changed during

method execution or when the return value is
generated. Returned value is passed to the next
class. User can observe every object attribute
and read return value after every step of execu-
tion. This feature enables reflection. User can
also change interactions between objects during
program running. User is able to use internal
methods by changing modifiers. Internal state
of the object can be edited as well. These fea-
tures give user ability to create the executive
model with no source code writing. This can be
advantageous when result cannot be predicted
but result might influent consequent components
— chaining calculation. Nowadays many examples
can be found. User gets possibility to create more
complex structures and debug these structures
after every step with no compiling. Model al-
lows plugging some new classes during simulation.

Reusable Object-Oriented Model

43

Input 1

Input 2 = j—

A

Input 3| 1 .

g

ey

Figure 8. Extended model

74

Entity Box

Figure 9. Level of abstraction

Metamodel, read by reflection, allows creating
graphical object representation in a model. Final
relationships between classes can be saved by
structured XML document. XML assigns unique
identifiers to classes, defines inputs and outputs
and mutual return value passing.

3.6. Elevate level of abstraction

Very important model feature is ability of ele-
vate model of abstraction. In strict metamodel-
ing framework an instance-of operator is allowed
only within layers in a same linguistic level. How-
ever if we consider ontological level we can use
instance-of operator on any layer. By linking on
different layers new entities arises. These entities
describe [7], namely Clabject (class-object) and
Powertypes. On Fig. 9. is shown a mechanism
to elevate level of executive model abstraction.

Model created by user consists of several classes
and interactions between them. Classes are part
of the entity box. This executive model is trans-
formed to single entity after debugging and test-
ing and carries description of significance and
defines input and output point. Entity becomes a
part of entity box as a single atomic element and
therefore is available to future modeling of exec-
utive models. User can edit created entity and
modify internal relationships or whole classes.

4. Conclusion

This paper introduces a practical proposal of new
executive modeling approach introduced on [8§].
First part of the paper defines problem domain
and related approaches to create executive mod-
els. Following paragraph describes a reflection

44

Jaroslav Zacek, Frantisek Hutika

application to executive model, which enables
component integration. All proposals are pro-
grammed and integrated with Java programming
language. Reflection can slow model processing
therefore an Amdahl’s law is applied to prove
that there is no significant computer processing
slowdown. Created model has been verified on
LFLC software and brought a significant speedup
during changing inferential mechanism. By im-
plementing object-valued Petri net formalism
introduced in [1] synchronization problems in
complex models has been managed well. Para-
graph 3.6 clarifies a possibility of elevate level
of abstraction of the new executive model where
the future work will continue.

Acknowledgement

This paper is supported by IGA no. 6141, Faculty
of Science, University of Ostrava.

References

[1] J. Z&cek and F. Hutka, “Object model synchro-
nization based on petri net,” in Mendel 2011:

17th International Conference on Soft Computing,
June 15-17, 2011, R. Matousek, Ed. Brno: Brno
University of Technology, 2011, pp. 523-527.

J. Arlow and I. Neustadt, Enterprise patterns
and MDA: building better software with archetype
patterns and UML. Boston: Addison-Wesley,
2004.

“ISO/IEC 10746-2:1996 information tech-
nology — open distributed process-
ing - reference model: Foundations,”
1996. [Online]. http://standards.iso.org/ittf/
PubliclyAvailableStandards/index.html

M. Soden, “Operational semantics for MOF
metamodels.” [Online]. http://www.metamodels.
de/docs/tutorial__draft_ v1.pdf

I. R. Forman and N. Forman, Java reflection in
action. Greenwich, Conn.; London: Manning;
Pearson Education, 2005.

E. Gamma, Design patterns: elements of reusable
object-oriented software. Reading, Mass.:
Addison-Wesley, 1995.

C. A. Gonzélez Pérez and B. Henderson-Sellers,
Metamodelling for software engineering. Chich-
ester, UK; Hoboken, NJ: John Wiley, 2008.

J. Zatek and F. Huika, “CEM: class
executing modelling,” Procedia Computer
Science, Vol. 3, 2011, pp. 1597-1601.

[Online]. http://www.sciencedirect.com/science/
article/pii/S1877050911000561

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://www.metamodels.de/docs/tutorial_draft_v1.pdf
http://www.metamodels.de/docs/tutorial_draft_v1.pdf
http://www.sciencedirect.com/science/article/pii/S1877050911000561
http://www.sciencedirect.com/science/article/pii/S1877050911000561

	Introduction
	Problem formulation
	The MDA
	Model transformation
	The MDA Value proposition
	The MDA Execution
	M3 Action – Model Execution Framework

	Defining a new modeling approach
	Reflection
	Analyzing class
	Class metamodel
	Basic entity view
	Class view
	Elevate level of abstraction

	Conclusion
	Acknowledgement
	References

