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Abstract. The aim of the following article is to present some facts about Benford’s distri-

bution. Its main focus is on selected descriptors of this distribution (such as mean, variance 

and skewness) and its two major properties, i.e. base invariance and scale invariance. At the 

end of the paper some applications of Benford’s distribution are presented. 
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1. Introduction 

From the historical point of view, Benford’s distribution is connected 

with a certain discovery which was made in the nineteenth century by 

a Canadian astronomer and mathematician – Simon Newcomb. The results 

of his observations were included in a two-page article published in 1881. 

In this paper Newcomb states “that the ten digits do not occur with equal 

frequency must be evident to anyone making much use of logarithmic  

tables, and noticing how much faster the first pages wear out than the last 

ones. The first significant figure is oftener 1 than any other digit, and the 

frequency diminishes up to 9” (Newcomb, 1881, p. 39). 

The same observation, probably independently of Simon Newcomb, 

was made by another scientist, an American physicist − Frank Benford. The 

results of his research were published in his paper (Benford, 1938). The 

analysis of twenty various data sets (the collected data concerned, among 

other things, addresses, American League baseball statistics, numbers ap-

pearing in Reader’s Digest articles, mathematical tables from engineering 

handbooks, including nearly 21,000 observations) led him to draw the con-

clusion that the ten digits do not occur with the same probability. 
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In general, Benford’s distribution refers to the probability distribution 

of the occurrence of significant digits in numbers. In order to explain some 

terms, it should be stressed that the first significant digit of a certain number 

is the first non-zero digit, counting from the left side of this number, where-

as the second significant digit and further ones can also take 0. For example, 

the first and the second significant digit of number 0.204 equals 2 and 0, 

respectively. 

The probability that the first significant digit D1 of a number equals d1 

is calculated according to the following formula: 

 
1

1 1 10 1( ) log (1 ),P D d d      (1) 

where: }9 ..., 2, ,1{1d . 

Likewise, the probability for the second significant digit D2 being d2 is: 

 
9
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where: }9 ..., 1, ,0{2 d .  

The presented problem can be generalized. Let Dk be the k-th signifi-

cant digit of a number. In this case, the probability that Dk equals dk is given 

by the equation (3). 
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where: }9 ..., 2, ,1{1d , }9 ..., 1, ,0{jd , kj  ..., 3, 2, . 

It should be emphasized that it is possible not only to calculate the 

probability for individual digits, but also to calculate the common probabi-

lity of two or more digits. So as to do this, the following formula is used: 
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where: }9 ..., 2, ,1{1d , }9 ..., 1, ,0{jd , kj  ..., 3, 2, . 

For example, the probability that the first, second and third significant 

digit of a number equals 1, 3 and 5, respectively, is calculated in the     
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following way: 
1

1 2 3 10( 1,  3,  5) log (1 (135) ) 0,0032.P D D D        

In this article only the analysis of individual digits is going to be presented. 

2. Some descriptors of random variable Dk 

Formulas given by the equations from (1) to (3) presented in the previous 

section are probability mass functions of a random variable Dk (k = 1, 2, ...). 

It takes values either from the nine-element set consisting of the digits: 1, 2, 

3, 4, 5, 6, 7, 8, 9 (in the case of the first significant digit distribution) or the 

ten-element set which, apart from the just listed nine digits, additionally 

contains digit 0 (in the case of the second significant digit distribution and 

further ones). The obvious question that should be posed here concerns 

some descriptors of the random variable Dk. In particular, the numerical 

values of three descriptors (the mean, variance and skewness) are computed 

in this paragraph. 

In order to calculate the mean and variance of Dk when k equals 1, these 

expressions are used: 

 
9
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
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In the case of k taking the values greater than 1, the first moment (the mean) 

and the second central moment of Dk are calculated using the following 

formulas: 
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and 
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So as to assess the asymmetry of the probability distribution of Dk, the 

following formula is used: 

 3

3/2
,

[ ( )]kVar D


   (9) 
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where 
3  is the third moment about the mean which in the case of k taking 

the value 1 is defined as follows: 

 
9
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while for k greater than 1, 
3  is given by: 
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The outcomes of the conducted calculations for Dk, where k changes 

from 1 to 5, are presented in Table 1. In the second and third column of the 

table, both the means and variances are given in brackets if the distribution 

is uniform. 

Table 1. Mean, variance and skewness of Dk for selected k 

 k E(Dk) Var(Dk) γ(Dk) 

1 3.44023696712 (5.0) 6.05651263 (6.67) 0.7956 

2 4.18738970693 (4.5) 8.25377862 (8.25) 0.1331 

3 4.46776565097 (4.5) 8.25009436 (8.25) 0.0137 

4 4.49677537552 (4.5) 8.25000095 (8.25) 0.0014 

5 4.49967753636 (4.5) 8.25000001 (8.25) 0.0001 

Source: own calculations. 

As shown in Table 1, the random variable D1 has the mean of 3.44 and 

the variance of 6.06. Taking into account the mean and variance of Dk for    

k greater than 1, one can observe that these two moments are approaching 

4.5 and 8.25, which are the first moment and the second central moment,   

respectively, if the distribution is uniform. Analyzing the computed values 

of skewness, one can see that the first significant digit distribution is skewed 

to the right and the asymmetry is moderate. In addition, the further a signifi-

cant digit distribution is considered, the weaker asymmetry is observed. 

The same conclusions regarding asymmetry can be drawn using the 

graphical presentation of probability mass function of Dk. Fig. 1 shows the 

first significant digit distribution, whereas Fig. 2 presents the distribution of 

further significant digits. 
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Fig. 1. Distribution of the first significant digit 

Source: own calculations. 

 
Fig. 2. Distribution of the k-th significant digit for k = 2, 3, 4, 5 

Source: own calculations. 

Taking the first digit distribution into account, a moderate positive 

skewness is noticeable. Moreover, it can be observed that the k-th signifi-

cant digit distribution approaches the uniform distribution when .k  
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3. Properties of Benford’s distribution 

When discussing Benford’s distribution, it is important to emphasize 

some of its characteristic properties. In this section, two such properties are 

going to be discussed − base invariance and scale invariance. 

So far all the presented remarks regarding Benford’s distribution have 

concerned the situation when only the most common numeral system was 

taken into consideration, i.e. the decimal system. Nevertheless, Benford’s 

distribution refers also to other numeral systems, which makes this distribu-

tion base invariant. 

Let  b denote a base. Then, for any base b )1( Nbb   the probability 

mass function for the first, second and − generalizing the problem –            

k-th significant digit is given by the following equations: 

 1

1 1 1( ) log (1 ),bP D d d     (12) 

where: }1 ..., ,1{1  bd ; 
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where: }1 ..., ,1{1  bd , }1 ..., ,0{  bd j , kj  ..., 3, 2, . 

If we substitute 10 for b (i.e. the decimal system is considered), then the 

above written equations are the same as the ones which were presented in 

the first section (see equations (1), (2) and (3)). 

As an example, let us concentrate on the first significant digit distribu-

tion, but this time taking a different base. The computed probabilities        

for various bases are presented in Table 2. Additionally, Fig. 3 shows the 

probability distribution for selected even bases from 2 to 10. 
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Table 2. Distribution of the first digit for bases from b = 2 to b = 10 

     b 

d1 
10 9 8 7 6 5 4 3 2 

1 0.30103 0.31546 0.33333 0.35621 0.38685 0.43068 0.50000 0.63093 1.00000 

2 0.17609 0.18454 0.19499 0.20837 0.22629 0.25193 0.29248 0.36907  

3 0.12494 0.13093 0.13835 0.14784 0.16056 0.17875 0.20752   

4 0.09691 0.10156 0.10731 0.11467 0.12454 0.13865    

5 0.07918 0.08298 0.08768 0.09369 0.10176     

6 0.06695 0.07016 0.07413 0.07922      

7 0.05799 0.06077 0.06422       

8 0.05115 0.05361        

9 0.04576         

Source: own calculations. 

 
Fig. 3. Distribution of the first significant digit for various bases 

Source: own calculations. 
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the probability that the first significant digit is 1, equals 1. It is a well-known 
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Furthermore, not only is Benford’s distribution base invariant but also 

scale invariant. From a practical point of view, this property means that if 

e.g. the first significant digit distribution of a certain data set stays in    

accordance with Benford’s distribution (in literature this kind of data set is 

sometimes called the Benford set), then multiplying each element of this 

data set by a positive constant leads to a new Benford set, as was shown by 

Roger Pinkham (see Pinkham, 1961). Despite conducting the mathematical 

proof of this property in the aforementioned paper, a simple empirical   

example explaining this characteristic is presented below. 

In order to create a data set, six hundred numbers were taken from the 

Statistical Yearbook of the Malopolska Voivodeship (2009) at random. 

Then, the data set (data set A) was analyzed with special attention to the 

first significant digit distribution. Fig. 4 shows the observed relative fre-

quencies of each digit. The chi-square test based on differences between 

observed and expected frequencies was used as well, which yielded the 

following results: χ
2
 = 1.0386; df = 8; p = 0.9980. 

 

Fig. 4. Distribution of the first significant digit for data set A 

Source: own calculations. 
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which are the results of multiplying each element of data set A by 7.8. Fig. 5 

and 6 present the first digit distribution for the new sets of data. In both 

cases for α = 0.05 the chi-square goodness-of-fit test did not permit to reject 

the null hypothesis (for data set B: χ
2
 = 1.3949; df = 8; p = 0.9943; for data 

set C: χ
2
 = 4.5504; df = 8; p = 0.8044), stating that the observed distribution 

of the first significant digit conforms to Benford’s distribution. 

 
Fig. 5. Distribution of the first significant digit for data set B 

Source: own calculations. 

 

Fig. 6. Distribution of the first significant digit for data set C 

Source: own calculations. 
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Scale invariance seems to be a very important property, especially when 

converting data expressed in various units. For instance, there is no       

difference whether share prices are expressed in dollars, yen or any other 

currency. 

4. Applications 

On the one hand, Benford’s distribution is very interesting as an exam-

ple of a certain discrete probability distribution. However, while discussing 

this distribution, it seems important to point out some of its practical imple-

mentations as well. Undoubtedly, the most popular application of Benford’s 

distribution is fraud detection. For this reason, this distribution is especially 

interesting for auditors who try to identify errors in accounting data. 

The first papers that concern the accounting application of the distribu-

tion appeared in the late 1990s. Two studies derive from this period. Charles 

Carslaw analyzed earnings numbers of New Zealand companies. In his 

paper (Carslaw, 1988), he found that managers tended to round these num-

bers up (if a company had, for instance, earnings equal to 697,000 USD, it 

would be rounded up to 700,000 USD) because of the fact that the numbers 

did not conform to Benford’s distribution taking into consideration the 

second significant digit distribution − there were too many 0s and too      

few 9s. A similar analysis can also be found in the paper (Thomas, 1989).  

In this case the author carried out his studies using data that concerned 

earnings of American companies. 

Mark Nigrini had a great impact on the application of Benford’s distri-

bution in detecting fraud. He broadly described many analytical procedures 

which can be very useful for auditors when analyzing data sets that contain 

accounting numbers. Nigrini proposed, among other things, some tests 

based on the digital analysis such as: first digit test, second digit test, first-

two digits test, last-two digits test, etc. The basic information regarding the 

use of Benford’s distribution in practice is included in the following papers: 

(Nigrini, Mittermaier, 1997; Drake, Nigrini, 2000; Nigrini, 2000). 

Detecting fraud in accounting data, however, is not the only application 

of Benford’s distribution. There are also known attempts to use it to help 

identify tax evaders and check the reliability of held elections. 
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5. Conclusion 

Comments on Benford’s distribution presented in the article (i.e. mo-

ments and some characteristic properties) have been made with an assump-

tion that Benford’s distribution is a discrete probability one. It is also im-

portant to emphasize that it is possible to make a generalization of this 

distribution. Those interested in this problem should take into consideration 

for example the following paper (Scott, Fasli, 2001). 

When conducting empirical analysis, the necessityof checking data con-

formity with Benford’s distribution arises very often. In this situation, 

commonly applied methods can be used, such as: chi-square goodness-of-fit 

test, Z-statistic test, Kolmogorov-Smirnov test, Kuiper test, Mean Absolute 

Deviation or regression analysis. There are also available some modified 

tests described in (Morrow, 2010). 
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