
DIDACTICS
OF

 MATHEMATICS
11(15)

The Publishing House 
of Wrocław University of Economics 

Wrocław 2014 



Reviewers cooperating with the journal  
Maria Balcerowicz-Szkutnik, Giovanna Carcano, Igor Dubina,  

Ewa Dziwok, Salvatore Federico, Marian Matłoka,  
Włodzimierz Odyniec, Anatol Pilawski,  

Tadeusz Stanisz, Achille Vernizzi, Henryk Zawadzki,  

Copy-editing 
Elżbieta Macauley, Tim Macauley, Dorota Pitulec 

Proof reading 
Barbara Cibis 

Typesetting 
Elżbieta Szlachcic 

Cover design 
Robert Mazurczyk 

Front cover painting: W. Tank, Sower  
(private collection) 

This publication is available at: www.journal.ue.wroc.pl and www.ibuk.pl  
BazEkon, http://kangur.uek.krakow.pl/bazy_ae/bazekon/nowy/advanced.php  

Dolnośląska Biblioteka Cyfrowa, http://www.dbc.wroc.pl/ 
The Central European Journal of Social Sciences and Humanities, http://cejsh.icm.edu.pl/  

Ebsco, https://www.ebscohost.com/ 

Information on submitting and reviewing papers is available on  
the Publishing House’s websites  

www.dm.ue.wroc.pl; www.wydawnictwo.ue.wroc.pl 

The publication is distributed under the  Creative Commons Attribution 3.0  
Attribution-NonCommercial-NoDerivs CC BY-NC-ND 

 

 
© Copyright by Wrocław University of Economics 

Wrocław 2014 

ISSN 1733-7941 
 e-ISSN 2450-1123 

The original version: printed 

Publication may be ordered in Publishing House  
tel./fax 71 36-80-602; e-mail:  econbook@ue.wroc.pl  

www.ksiegarnia.ue.wroc.pl 

Printing: TOTEM 

http://www.dm.ue.wroc.pl/
http://creativecommons.org/licenses/by/3.0/
mailto:econbook@ue.wroc.pl


 

TABLE OF CONTENTS 
 

 

Marek Biernacki  

Does math education in Poland teach creative thinking? ...................  5 

Barbara Pieronkiewicz  

On the importance of affective dimensions of mathematics          

education  ...........................................................................................  13 

Anna Pyzara  

Creating an algorithm of a real-life situation as a form of         

mathematical modelling  ....................................................................  25 

Bożena Rożek, Władysław Błasiak, Magdalena Andrzejewska,  

Małgorzata Godlewska, Paweł Pęczkowski, Roman Rosiek,  

Mirosława Sajka, Anna Stolińska, Dariusz Wcisło 

The eye-tracking research method in the process of solving            

mathematical tasks requiring drawing analysis  .................................  43 

Antoni Smoluk 

The graph of the cosine is an ellipse  .................................................  59 

Izabela Solarz  

A modern tool for a modern student. Video games in the              

exploration and learning of mathematics  ..........................................  65 

Krzysztof Zajkowski  

Penney’s game between many players  ..............................................  75 

 

* 

Antoni Smoluk 

Nauka i sztuka ....................................................................................   85 

 



D  I  D  A  C  T  I  C  S     O  F     M  A  T  H  E  M  A  T  I  C  S 

No. 11
 
(15) 2014 

 
Krzysztof Zajkowski 

Institute of Mathematics, University of Bialystok, Akademicka 2, 15-267 Bialystok, Poland.  

E-mail: kryza@math.uwb.edu.pl 

 

 

PENNEY’S GAME  

BETWEEN MANY PLAYERS 

 
Krzysztof Zajkowski 
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1. Introduction 

In (2012), Wilkowski drew attention to the role of Penney’s game in 

teaching probability at an elementary stage in economics. The purpose of 

the paper is to show a precise combinatorial approach to this subject. We 

think that questions that deal with Penney’s game are also a good 

introduction to (discrete) stochastic processes. 

Let us toss an ’unfair’ coin with probabilities p for heads ( H ) and 

=1q p  for tails (T ) and wait for the appearance of some chosen string of 

heads and tails. What is the expected number of tosses until this string 

occurs? 

Let 1 2= ... lA a a a  be a given pattern (a string of heads and tails) of the 

length l . By ( )P A  we will denote a value 1 2( ) ( ) ... ( )lP a P a P a  . More 

precisely ( )P A  is the probability of a cylindric set with some fixed 

coordinates: 1a , 2a ,... and la , respectively. We flip a coin until we get A  as 

a run in the sequence of our trials. So we define the stopping time of the 

process in the following form  

1 2 1 1 2 2= min{ : , { , }and = , = ,..., = },           A n i n l n l n ln l H T a a a  
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if this minimum exists and   if not. Now a more precise formulation of our 

question is: what is the expected value of A ? An answer was first given by 

Solov’ev in (1966). In the paper presented we show some combinatorial 

solutions (compare Graham et. all, VIII.8.4), introducing at the same time 

the notations required and presenting a model reasoning. 

Let nA  denote the set of sequences in which the pattern A  appears 

exactly in the n-th toss, i.e. ={ = }n AA n , and np  the probability of nA ; 

= ( )n np P A . Let nB  denote a set of sequences in which A  does not appear 

in the first n  tosses, i.e. ={ > }n AB n , and its probability by = ( )n nq P B . 

Let us consider now a set of sequences in which A  does not appear in the 

first n  tosses and appears in the next l  trials, i.e. the set  

1 1 2 2{( ) { , } : ( ) and = , = ,..., = }.k k n n n n l lH T B a a a       N
 

It seems that the probability of the set amounting to ( )nq P A  is equal to n lp   

but we must check whether A  does not occur earlier in the trials from 1n   

to 1n l  . 

Let ( )kA  and ( )kA  denote strings of k-first and k-last terms of 

A (1  k  l), respectively. Note that ( )

( ) = =l

lA A A . Let ( )

( )[ = ]k

kA A  equal 

1  if ( )

( ) = k

kA A  or 0  if not. Additionally, let us assume that 
(0)( ) =1P A . 

Now we can write the formula on ( )nq P A  as follows:  

 ( ) ( )

( )

=1

( ) = [ = ] ( ) .
l

k l k

n k n k

k

q P A A A P A p

  (1) 

Observe that the l-th summand in the above is equal to n lp  . Remembering 

that 0 1 1= = ... = = 0lp p p  , multiplying the above equation by 
n ls 

 and 

summing from = 0n  to infinity we get  

 ( ) ( )

( )

=1

( ) ( ) = ( ) [ = ] ( ) ,
l

l k l k l k

k
A A

k

Q s P A s g s A A P A s 

   (2) 

where 
=0

( ) = n

nnA
g s p s



  is the probability generating function for 

a random variable A  of the number of tosses until A  occurs and 

=0
( ) = n

nnA
Q s q s



  is the generating function of tail probabilities nq . 

Because one can bound A  by a random variable with the geometric 
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distribution then one can show that <AE  . Hence 
= 1

=n kk n
q p



  so we 

can obtain the second equation that relates 
A

g  and 
A

Q :  

 
1 ( )

( ) = .
1

A

A

g s
Q s

s








 (3) 

Solving the above two equations we get  

( ) ( )

( )

=1

( )
( ) =

( ) (1 ) [ = ] ( )

l

lA
l k l k l k

k

k

P A s
g s

P A s s A A P A s


   
 

and  

( ) ( )

( )

=1

( ) ( )

( )

=1

[ = ] ( )

( ) = .

( ) (1 ) [ = ] ( )

l
k l k l k

k

k
lA

l k l k l k

k

k

A A Pr A s

Q s

P A s s A A P A s


 

  




 

Since = (1)A
A

E Q , one can calculate the general formula for the expected 

number of tosses as follows:  

( ) ( )
( )( )

( )=1

=1 ( )

[ = ] ( )
[ = ]

= = .
( ) ( )

l
k l k

kk l
kk

A

k k

A A P A
A A

E
P A P A




  

This is the answer to the question posed at the beginning. 

In the classical Penney Ante game (see: Penney 1974), for a given 

string of fixed length we want to show a second one of the same length with 

a higher probability to be the first to occur. In (Chen, Zame 1979), Chen and 

Zame proved that for two-person games, public knowledge of the 

opponent’s string leads to an advantage. Guibas and Odlyzko (1981), 

showed some optimal strategy for the second player. An algorithm for 

computing the odds of winning for the competing patterns was discovered 

by Conway and described by Gardner (1974). The Conway formula allows 

us to compare the probability of winning for two players. 

In this paper we show a generalization of the Conway formula in the 

case of many gamblers (Section 3). But first (Section 2), we present 

a derivation and solution of the system of equations proposed by Guibas and 

Odlyzko (1981, Th. 3.3).  
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2. Functions generating probability of winning 

Let m  players choose m  strings iA  (1 i m  ) of heads and tails of 

lengths il , respectively. We start to toss an ’unfair’ coin and wait for the 

occurrence of some iA . We ask about the chances of winning for each 

player, that is about the probability A
i

p  that the string iA  will be the first to 

occur. We assume that any iA  is not a substring of other jA , in the opposite 

case = 0A
j

p  or for some sequences both players may win simultaneously. 

Let   denote the number of tosses to the end of the game, i.e. 

= min{ :1 }A
i

i m    , where A
i

  is the stopping time until pattern iA  

occurs. Notice that 
=1

( = ) = =
m A

i
n ni

P n p p  , where = ( = = )
A
i

n A
i

p P n   is 

the probability that the i-th player wins exactly in the n-th toss. Let g  and 

A
ig  denote the functions generating distributions of probability ( )np  and 

( )
A
i

np , respectively, and Q  the generating function of tail distributions 

= ( > )nq P n . 

Similarly, as in the introduction, let ={ > }nB n  be the set of 

sequences of tails and heads in which any string iA  does not appear in the 

first n  tosses. In the system of m  patterns, if we add the string iA  to the set 

nB  then we must check if neither iA  nor other patterns appear earlier. For 

this reason a system of equations  
min{ , }

( )( )

( )

=1 =1

( ) = [ = ] ( ) ,

l l
i jm

Al kk ji
n i i k j i n k

j k

q P A A A P A p


   

for each 1 i m  , where ( )

( )[ = ] =1k

i k jA A  if ( )

( ) = k

i k jA A  or 0  if not, 

corresponds to equation (1). 

Multiplying the above equation by 
n l

is


 and summing from = 0n  to 

infinity, we get the following recurrence equations  

min{ , }

( )( )

( )

=1 =1

( ) ( ) = ( ) [ = ] ( ) .

l l
i jm

Al l k l kkji i i
i i k j i

j k

Q s P A s g s A A P A s 

 

   
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Let ( )
A

j

A
i

w s  denote the polynomial 
min{ , } ( )( )

( )=1
[ = ] ( )

l l l k l kki j i i
i k j ik

A A P A s
 

 ; now 

we can rewrite the above system of m  equations as follows  

 
=1

( ) ( ) = ( ) ( ) (1 ).
m

A Al j ji
i A

i
j

Q s P A s g s w s i m     (4) 

Since 
=1

=
Am j

j
g g  , by virtue of (3), we get  

=1

1 ( )

( ) = .
1

m
A

j

j

g s

Q s
s










 

Inserting the form of Q  into (4) we obtain  

=1

( ) = ( )[ ( ) (1 ) ( )] (1 ).
m

A Al lj ji i
i i A

i
j

P A s g s P A s s w s i m      

To solve this system of functional equations we use Cramer’s rule. Define 

now functional matrices 

 
1 ,

( ) = ( ) (1 ) ( )A
 

 
Al ji

i A
i i j m

s P A s s w s  

and  

  
1 ,

( ) = ( ) .B
 

A
j

A
i i j m

s w s  (5) 

Notice that because (0) =1
A
i

A
i

w , and (0) = 0
A

j

A
i

w  for i j  then (0)A  and 

(0)B  are the identity matrices. Let ( )B j s  denote the matrix formed by 

replacing the j-th column of ( )B s  by the column vector 1[ ( ) ]
l
i

i i mP A s   . 

Because the determinant of matrices m m  is a m-linear functional with 

respect to columns (equivalently to rows), then one can check that  

1

=1

det ( ) = (1 ) det ( ) (1 ) det ( ).A B B   
m

m m j

j

s s s s s  

The determinant det ( )A s  is a polynomial of variable s  and det (0) =1A . 

For these reasons det ( ) 0A s  in some neighborhood of zero. This means 

that in this neighborhood there exists a solution of the system. 
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If now, similarly, ( )A j s  denotes the matrix formed by replacing the           

j-th column of ( )A s  by the column vector 1[ ( ) ]
l
i

i i mP A s   , then the 

determinant’s calculus gives 
1det ( ) = (1 ) det ( )A Bj m js s s . Finally, by 

Cramer’s rule we obtain:  

=1

det ( ) det ( )
( ) = =

det ( )
det ( ) (1 )det ( )

A B

A
B B



 

i i
A
i

m
j

j

s s
g s

s
s s s

 

for 1 i m  . In this way we have proved the following  

Theorem 2.1. If m  players choose m  strings of heads and tails iA  

(1 )i m   such that any iA  is not a substring of another jA , then the 

function 
A
ig  generating the probability of winning of the i-th player is given 

by the following formula:  

 

=1

det ( )
( ) = ,

det ( ) (1 )det ( )

B

B B


 

i
A
i

m
j

j

s
g s

s s s

 (6) 

where ( )B s  is the matrix defined by (5).  

 

Notice that the probability generating function 
=0

( ) =
A A ni i

nn
g s p s



  is 

undoubtedly well defined on the interval [ 1,1]  (it is an analytic function 

on ( 1,1) ). The right hand side of (6) is a rational function equal to 
A
ig  in 

the neighborhood of zero. By analytic extension we know that there exists 

the limit of the right hand side of (6) by 1s   which is equal to (1)
A
ig . 

Thus the probability A
i

p  that the string iA  occurs first is given by the 

following formula  

 

=1

det (1)
(1) = ,

det (1)

B

B




i
A
i

m
j

j

g  (7) 

where the right hand side of the above equation is understood as the limit of 

(6) with s  approaching the left-side to 1 ( 1s  ). 
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3. A generalization of Conway’s formula 

Define a number :j iA A  as  

min{ , } min{ , }( ) ( )

( )( )

( )

=1 =1 ( )

(1) [ = ]( )
= [ = ] = .

( ) ( ) ( )

A l l l lj l k ki j i ji
A i k jk ii

i k j

k ki i i k

w A AP A
A A

P A P A P A



   

For a balanced coin (
1

= =
2

p q )  

min{ , }

( )

( )

=1

: = [ = ]2

l l
i j

k k

j i i k j

k

A A A A  

and it coincides (up to the scalar 2) with the notation introduced in (Graham, 

Knuth, Patashnik 1989). 

Define now a matrix  
1 ,

= ( : )j i i j m
A A

 
C . Observe that 

=1
det (1) = ( )detB C

m

ii
P A  and 

=1
det (1) = ( )detB C

mj j

ii
P A , where C 

j
 is 

the matrix formed by replacing the j -th column of C by the column vector 

of units  
1

1
i m 

. Due to (7) and the above observations we can formulate the 

following  

Corollary 3.1. The probability that the i -th player wins is equal to  

=1

det
= .

det

C

C

i

A mi
j

j

p  

Let us emphasize that the above Corollary is a generalization of 

Conway’s formula. For two players we get  

1
2 1 1 1 2 2 2 11

2

2 2 1 2 1 1 1 2
2

1 ( : ) ( : ) 1det ( : ) ( : )
= = det : det = .

1 ( : ) ( : ) 1det ( : ) ( : )

C

C

    
   

   

A

A

p A A A A A A A A

A A A Ap A A A A
 

Example 3.2. Take three strings of heads and tails: 1 = ,A THH  

2 =A HTH  and 3 =A HHT . In this case  

 
2 2

2 2

1 , 3
2 2

1

( ) = ( ) = 1 .

1

A
j

A
i i j

ps p s

s w s pqs pqs ps

pqs qs pqs
 

 
 

 
  

B  
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By Theorem 2.1 one can obtain the probability generating functions for 

winnings of i-th player. The matrix  

2

2

1 , 3

2 2

1 1 1

(1) 1 1 1
= =

( )

1 1 1

C

 

 
 
  
  
  
  

 
 
 

A
j

A
i

i
i j

p q pq q

w pq

P A p p q pq

p

p p p q

 

and  

2 2

1 2 3

2 2

2 2 2 2

1 1 1 1 1 1
1 1 1

1 1 1 1 1 1
= 1 , = 1 , = 1 .

1 1 1 1 1 1
1 1 1

C C C

     
     
     
      
     
     

      
     
     

pq q p q q p q pq

pq pq

p q pq p pq p p q

p p

p p q p p q p p

 

On the basis of Corollary 3.1 we can calculate the probability that the     

i-th player wins:  

2

1 2 3

(1 )
= , = , = .

1 1
A A A

q pq q
p p p p

q q



 
 

For a fair coin  

1

5
=

12
Ap ,   

2

1
=

3
Ap    and   

3

1
=

4
Ap . 

4. Conclusions 

Sequences of Bernoulli trials are the first historical example of discrete 

stochastic processes. Questions dealing with the appearances of the chosen 

strings are effortlessly formulated. For instance, in teaching elementary 

probability, waiting up to the first success is one of the basic models of 

infinite probability spaces. The problems of Penney’s game develop this 

approach to the subject and may serve as a good introduction to statistics 

and the theory of stochastic processes. 
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The presented combinatorial derivation of the formulas for the chances 

of winning of many players is an example of the applications of the 

determinant calculus and it shows how different techniques of mathematics 

penetrate each other and lead to the solutions of given problems. 
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