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Abstract. Big Data poses a new challenge to statistical data analysis. An enormous growth 

of available data and their multidimensionality challenge the usefulness of classical meth-

ods of analysis. One of the most important stages in Big Data analysis is the verification of 

hypotheses and conclusions. With the growth of the number of hypotheses, each of which is 

tested at  significance level, the risk of erroneous rejections of true null hypotheses in-

creases. Big Data analysts often deal with sets consisting of thousands, or even hundreds of 

thousands of inferences. FWER-controlling procedures recommended by Tukey [1953], are 

effective only for small families of inferences. In cases of numerous families of inferences 

in Big Data analyses it is better to control FDR, that is the expected value of the fraction of 

erroneous rejections out of all rejections. The paper presents marginal procedures of multi-

ple testing which allow for controlling FDR as well as their interesting alternative, that is 

the joint procedure of multiple testing MTP based on resampling [Dudoit, van der Laan 

2008]. A wide range of applications, the possibility of choosing the Type I error rate and 

easily accessible software (MTP procedure is implemented in R multtest package) are their 

obvious advantages. Unfortunately, the results of the analysis of the MTP procedure ob-

tained by Werft and Benner [2009] revealed problems with controlling FDR in the case of 

numerous sets of hypotheses and small samples. The paper presents a simulation experi-

ment conducted to investigate potential restrictions of MTP procedure in case of large 

numbers of inferences and large sample sizes, which is typical of Big Data analyses. The 

experiment revealed that, regardless of the sample size, problems with controlling FDR 

occur when multiple testing procedures based on minima of unadjusted p-values (    ) 

are applied. Moreover, the experiment indicated the serious instability of the results of the 

MTP procedure (dependent on the number of bootstrap samplings) if multiple testing 

procedures based on minima of unadjusted p-values (    ) are used. The experiment 

described in the paper and the results obtained by Werft, Benner [2009] and Denkowska 

[2013] indicate the need for further research on MTP procedure. 
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1. Introduction 

Big Data sets are becoming increasingly available as a result of the   

dynamic development of techniques of automatic collecting and archiving 

data from industrial systems, telecommunication networks, social networks 

and – a recent phenomenon – the IoT (Internet of Things). Until recently 

most data which underwent electronic processing were keyed into computer 

systems manually by operators. At present, data are generated and aggre-

gated by microchips and software in a more automatic way (e.g. RFID 

cards, gateways, cameras, sensors, etc.). Moreover, the advancement of IT 

technologies allows for collecting new categories of data, which several 

years ago were unavailable for processing or even non-existing (e.g. the 

number of “likes” on a social network in terms of geographical distribution). 

Such enormous incrementing of data calls for investigating information 

hidden in them, and their scope and multidimensionality require new ways 

of their processing. The information techniques (databases) and statistical 

methods used so far should be adapted to the new reality governed by Big 

Data. Thus, Big Data poses new challenges for statistical data analysis. 

The task of Big Data analysts is to discover significant dependencies by 

skilfully using various analytical methods, drawing on experts' knowledge, 

and expanding their source data by additional external information. Infor-

mation obtained from these gigantic datasets increases the chances of taking 

more effective decisions in many areas of the economy and stimulates the 

advancement of science. 

Big Data analysts often have to deal with sets containing thousands 

or even hundreds of thousands of inferences. Obviously, the greater the 

number of hypotheses to be tested, each at the significance level , the 

greater the risk of rejecting the true null hypotheses. In case of 14 independ-

ent true null hypotheses, each of which is tested at the  = 0.05 significance 

level, it is more likely to make at least one Type I error than to state failure 

to reject all 14 null hypotheses (which is the correct statement). In case of 

100 independent true null hypotheses, the probability of making at least one 

Type I error equals 0.994! In practice, analysts rarely deal with independent 

tests, which makes controlling the effect of multiple testing even more 

challenging. 
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The most common Type I error rate for the family
1
 of inferences which 

enables to control the effect of multiple testing is FWER (Family-Wise 

Error Rate). It is defined in the following way:   

 FWER= ( 0)P V  ,                       (1) 

where V  denotes the number of true null hypotheses rejected while testing 

m  null hypotheses. Controlling FWER refers to the traditional approach to 

testing statistical hypothesis. The procedures controlling FWER at a given 

level   ensure fulfilling the condition that the probability of rejecting at 

least one true null hypothesis will not exceed   . In his monograph The 

Problem of Multiple Comparisons Tukey [1953] compared various Type I 

error rates for sets of inferences and claimed that “controlling FWER should 

be a standard”
2
 in multiple testing. However, when Tukey recommended 

controlling FWER the word 'multiple' carried a different meaning for statis-

ticians than it does today. In the past, families of inferences consisted of 

only several null hypotheses and corresponding alternative hypotheses, 

while now sets of inferences can contain thousands of inferences. Unfortu-

nately, Tukey's [1953] recommendations have lost their validity for numer-

ous sets of inferences, because FWER-controlling procedures lack power if 

a great number of inferences is taken into account. In cases of very numer-

ous families of inferences, individual testing is conducted at such low sig-

nificance levels that in practice many important dependencies may remain 

undetected. 

The FDR (False Discovery Rate) proposed in 1995 by Hochberg and 

Benjamini, offers a completely different approach to controlling Type I 

errors in multiple testing. When using FDR, an analyst allows for a certain 

number of erroneous rejections among all the rejections, but gains an im-

provement of power, which seems the golden mean between the lack of 

control of the effect of multiple testing and the conservative nature of 

FWER in analysing very numerous families of inferences. 

The paper presents the marginal procedures of multiple testing which 

allow for controlling FDR as well as their interesting alternative, that is the 

joint procedure of multiple testing MTP based on resampling [Dudoit, van 

der Laan 2008]. A wide range of applications, the possibility of choosing 

                                                 
1 

This term was introduced by Hochberg and Tamhane [1987, p. 5], who proposed trea-

ting “any collection of inferences for which it is meaningful to take into account some 

combined measure of errors” as a family. 
2
 See: [Hochberg, Tamhane 1987]. 
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the Type I error rate and easily accessible software (the MTP procedure is 

implemented in R multtest package) are their obvious advantages. Unfortu-

nately, the results of the analysis of MTP procedure obtained by Werft and 

Benner [2009], revealed problems with controlling FDR in cases of numer-

ous sets of hypotheses and small samples. The paper presents a simulation 

experiment conducted to investigate the potential restrictions of the MTP 

procedure in cases of large numbers of inferences and large sample size, 

which is typical of Big Data analyses. The experiment revealed that, regard-

less of the sample size, problems with controlling FDR occur when multiple 

testing procedures based on minima of unadjusted p-values ( minP ) are 

applied. Moreover, the experiment indicated the serious instability of the 

results of the MTP procedure (dependent on the number of bootstrap sam-

plings) if multiple testing procedures based on minima of unadjusted                  

p-values ( minP ) are used. 

2. FDR (False Discovery Rate)  

Benjamini and Hochberg [1995], suggested controlling not the number 

of erroneous rejections, but the expected value of the proportion of Type I 

errors among the rejected hypotheses. Their FDR (False Discovery Rate) is 

defined as follows:     

 
 

FDR E ,
,1

V

max R

 
   

 

 (2) 

where V  denotes the number of Type I errors and R  – the number of re-

jected null hypotheses. 

Thus, FDR procedures have much greater power than FWER-

controlling procedures. The difference between FDR and FWER is illus-

trated by the following example. Let us consider a family consisting of 1000 

inferences and compare the following situations: 

I. rejecting 2 hypotheses one of which is true, 

II. rejecting 100 null hypotheses one of which is true,  

III. rejecting 500 null hypotheses five of which are true.  

From the perspective of FWER, all three situations are equally disad-

vantageous, because at least one true null hypothesis is rejected, but when 

FDR is considered, only situation I is unwelcome because it results in 50% 

of erroneous rejections, in situations II and III it is only 1%. 
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When an analyst chooses controlling FDR, he/she accepts a tiny frac-

tion of erroneous rejections out of all the rejections, but in return obtains 

considerable improvement of power in comparison to FWER-controlling 

procedures.  

In order to present marginal FDR-controlling procedures, let us adopt 

the following assumptions and symbols. We will consider a family 

m  of minimal null hypotheses 
0,1 0,2 0,, , , mH H H  with corresponding raw        

p-values 1 2, , , mp p p . Let us order p-values 
(1) (2) ( )mp p p   and let 

(0,1) (0,2) (0, ), , , mH H H  denote corresponding null hypotheses. 

2.1. FDR-controlling marginal procedures 

Together with FDR, Benjamini and Hochberg [1995], proposed a pro-

cedure which enables to control FDR at an a priori chosen level q (q = ). 

This means that when we use this procedure, we allow for  100% erroneous 

rejections of null hypotheses out of all rejections. 

The algorithm of the Benjamini-Hochberg procedure (BH) takes the 

following form: 

Stage 1. We appoint  ( ):  /ik max i p iq m  . 

Stage 2. If such  k exists, we reject k  hypotheses  
(0,1) (0,2) (0, ),   , ,  kH H H , 

otherwise, we do not reject any hypotheses. 

The testing process can be considerably simplified by direct comparison 

of the assumed q with adjusted p-values obtained for the Benjamini-

Hochberg (BH) procedure from the following formulas: 

) (( )mmp p , 

 ( ) ( 1) ( );   for    1, , 1m j m j m j

m
min p j m

m
p p

j
   

 
    

 
   (3) 

Benjamini and Hochberg [1995], demonstrated that if test statistics are 

independent, their procedure controls FDR at level 0m
q q

m
 , where 0 m  is 

an unknown number of the true null hypotheses. This means that if half of 

the null hypotheses are true and q = 0.05, the BH procedure de facto controls 

FDR at the 0.025 significance level.  

The improvement of power can be obtained by applying the following 

two-stage modification of the BH procedure: 
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Stage 1. Estimate 0m̂ . 

Stage 2. If 0m̂ =0, reject all hypotheses, otherwise apply the BH proce-

dure at 
0
ˆ 

m
q

m
.  

The most common modifications of the Benjamini-Hochberg procedure 

are its adaptive version ABH and the two-stage procedure TSBH. Both 

modifications of the BH procedure are based on the initially estimated 

number of true null hypotheses, which in the ABH procedure is estimated 

directly on the basis of raw p-values pi (see: [Benjamini, Hochberg 2000]), 

while in the TSBH procedure it is estimated on the basis of the results ob-

tained from the initial application of the BH procedure [Benjamini, Krieger, 

Yekutieli 2006]. 

Independent test statistics rarely appear in practical studies. Bejamini 

and Yekutieli
3
 showed that the BH procedure ensures FDR control for test 

statistics with more general dependence structures, such as positive regres-

sion dependence. The condition ensuring controlling FDR is the condition 

of positive regression dependency (PRDS)
4
 on the subset of test statistics 

corresponding to true null hypotheses, which solves many practical prob-

lems
5
. Benjamini and Yekutieli [2001] and Yekutieli [2008a; 2008b] quoted 

examples of studies in which the BH procedure controls FDR, even though 

test statistics are not independent and are not positive regression dependent; 

one such example is pairwise comparisons for means, in which simulation 

studies indicated the conservative nature of controlling FDR by the BH 

procedure [Yekutieli 2008b].  

Benjamini and Yekutieli [2001], proposed a conservative modification 

of the BH procedure, which controls FDR for test statistics with arbitrary 

joint distribution, regardless of the type of dependency between them. Ad-

justed p-values are obtained from the following formulas: 

1
( ) ( )

1

min 1;
m

m m i

i

p p


 
  

 
 , 

                                                 
3
 Here and later see: [Bejamini, Yekutieli 2001]. 

4
 Property PRDS on I0 (Positive Regression Dependency on each one from a Subset I0) 

means that for any increasing set D, and for each for each 0,i I  

  1, , n iP X X D X x    is nondecreasing in x. (Set D is called increasing if x D  and 

y x , implying that y D  as well.) 
5
 See: [Bejamini, Yekutieli 2001]. 
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 1
( ) ( 1) ( )

1

min ,
m

m j m j m j i

i

m
p p p

m j
   



 
  

 
  for j = 1, ..., m – 1. (4) 

In case of a great number of inferences m , calculations can be simpli-

fied by assuming
6
:  

 
1

1
0.5772156649 ln .

m

i

m
i

    (5)  

R multtest package offers the function mt.rawp2adjp, which allows for 

obtaining adjusted p-values for the Benjamini-Hochberg (BH) procedure, 

adaptive version of the BH procedure (ABH), two-stage version of the BH 

procedure (TSBH) and the Benjamini-Yekutieli procedure (BY).  

2.2. FDR-controlling resampling-based joint multiple testing procedures 

An unquestionable advantage of resampling-based joint multiple testing 

procedures is the fact that they can be used in the case of the lack of normal-

ity and regardless of the type of dependencies between test statistics. Addi-

tionally, since they account for dependencies between test statistics, they 

have more power than versatile marginal procedures. 

Westfall, Young [1993], proposed joint FWER-controlling procedures 

based on maxima of test statistics (    ) or minima of unadjusted p-values 

( minP ). A serious flaw of these procedures is the condition of the subset 

pivotality, which means that for any subset of null hypotheses   1, ,I m  

the joint distribution of test statistics corresponding to these hypotheses 

must be identical under the restrictions 0,ii I
H


 and the complete null 

0

CH . 

Westfall and Young [1993], procedures are based on data generating null 

distribution, which satisfies the complete null hypothesis that all null hy-

potheses are true. However, data generating null distribution may result in 

a joint distribution of the test statistics that has a different dependence struc-

ture than their true distribution (if the condition of the subset pivotality is 

not met). For example, the subset pivotality fails for tests regarding correla-

tion coefficients and for tests regarding regression coefficients.  

Dudoit and van der Laan [2008], proposed joint procedures of multiple 

testing based on the null distribution for the test statistics. Thanks to this 

                                                 
6
 We use the fact that Euler's constant is defined as the limit of the sequence 

1 1 1
lim 1 ln

2 3n
n

n

 
    

 
 and its numerical value approximately equals 0.5772156649. 
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approach, Type I error control does not rely on a restrictive assumption of 

the subset pivotality, and these procedures can be applied to pairwise com-

parisons of mean, to test the significance of regression coefficients in the 

regression model, to test the significance of correlation coefficients, and in 

many other studies. These procedures are implemented in R multtest pack-

age and called MTP. The multiple testing procedure MTP is defined by the 

choice of test statistics test statistics (these statistics are determined by the 

choice of the test, e.g. t.twosamp.equalvar, t.cor, f), the method of estima-

tion of the test statistics null distribution
7
 (e.g. bootstrap with centering and 

scaling .boot cs , quantile-transformed bootstrap .boot qt ), Type I error rate 

(e.g. FWER, FDR) and the joint procedure of multiple testing
8
 based on 

maxima of test statistics or minima of unadjusted p-values in a single step 

version (SSmaxT, SSminP) or a step-down version (SDmaxT, SDminP) 

which are used to control the chosen Type I error rate. FDR control is ob-

tained by the augmentation of FWER-controlling procedures in which suit-

able null hypotheses are added to a set of hypotheses already rejected by the 

initial FWER-controlling procedure MTP [Dudoit, van der Laan 2008; 

Werft, Benner 2009]. 

3. Simulation experiment 

Simulation studies presented by Werft and Benner [2009] and 

Denkowska [2013], revealed that the MTP procedure does not always guar-

antee control of selected Type I error rates. Werft, Benner [2009], reported 

problems with controlling FDR in genetic studies in cases of small samples 

and a large number of tests, while the simulation study conducted by 

Denkowska [2013] indicated problems with controlling FWER.  

In Big Data analyses, families of inferences can be numerous, reaching 

even thousands of inferences. In order to further investigate problems with 

controlling FDR in Big Data analyses, a simulation experiment was con-

ducted in which a family consisting of 1000 inferences was considered. In 

the experiment, 1000m   samples of size n  were independently generated 

from normal distribution (0,1)N  and the following hypotheses were tested: 

 
0, : 0   .  i iH vs   

, : 0A i iH      1, , .i m                    (6) 

                                                 
7
 See: [Dudoit, van der Laan 2008]. 

8
 See: [ Dudoit, van der Laan 2008; Westfall, Young 1993; Denkowska 2013]. 
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The MTP function implemented in R multtest package was used in the 

experiment. The parameters of the MTP function were, among others, Stu-

dent's t -test for the expected value (t.one.samp), and the verified value was 

set at 0.  

It was assumed that FDR = 0.05. Taking into consideration the fact that 

when all null hypotheses are true, the following equation is satisfied: 

 
 

 FDR E P 0 FWER,
,1

V
V

max R

 
     

 

 (7) 

in the experiment, which was repeated 500 times9, the probability of recog-

nizing that all null hypotheses are true was estimated depending on:  

 the sample size (n = 30, 100, 500), 

 the method of estimation of the test statistics null distribution 

(boot.cs, boot.qt),  

 the joint procedure of multiple testing (SSmaxT, SDmaxT, SSminP, 

SDminP),  

 the number of bootstrap samplings (B = 1000, 5000). 

The results of the simulation tests are presented in Table 1 and Table 2. 

Table 1 contains the results obtained with the default number of bootstrap 

samplings in MTP (B =1000). It was revealed that the probability of recog-

nizing that all hypotheses are true, estimated with the use of joint procedure 

of multiple testing based on minima of unadjusted p-values ( minP ) does not 

exceed 0,428. Moreover, the increase in the sample size did not result in the 

improvement of the evaluations. 

Table 1. The results of the simulation study for the default number 

of bootstrap size sample (B = 1000) 

n 
SSmaxT 

boot.cs 

SDmaxT 

boot.cs 

SSminP 

boot.cs 

SDminP 

boot.cs 

SSmaxT 

boot.qt 

SDmaxT 

boot.qt 

SSminP 

boot.qt 

SDminP 

boot.qt 

30 

100 

500 

0.988 

0.972 

0.990 

0.986 

0.966 

0.992 

0.400 

0.346 

0.366 

0.428 

0.358 

0.322 

0.97 

0.974 

0.992 

0.968 

0.974 

0.992 

0.338 

0.366 

0.370 

0.354 

0.326 

0.362 

Source: own calculations.  

                                                 
9
 In case of numerous families of inferences, simulation studies using the multiple testing 

procedures based on resampling are very time-consuming and that is why 500 repetitions are 

considered enough and frequently used in simulation studies (e.g. by [Dudoit, Gilbert, van der 

Laan 2008]). 
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The experiment was repeated for 5000 bootstrap samplings. The ex-

periment turned out to be very time-consuming, and that is why it was lim-

ited to small sample sizes (n = 30), taking into consideration the fact that 

with B = 1000 no considerable improvement of results was observed when 

sample sizes increased. When bootstrap sample sizes were increased 

5 times, the results (Table 2) of minP procedures improved considerably, 

reaching 0.88 probability of recognizing that all hypotheses are true in case 

of “null transformation” based on scaling and centering ( .boot cs ). In quan-

tile transformation ( .boot qt ) the improvement was also noted, although the 

results cannot be considered satisfying. 

Table 2. The results of the simulation study for B = 5000 samplings 

n 
SSmaxT 

boot.cs 

SDmaxT 

boot.cs 

SSminP 

boot.cs 

SDminP 

boot.cs 

SSmaxT 

boot.qt 

SDmaxT 

boot.qt 

SSminP 

boot.qt 

SDminP 

boot.qt 

30 0.982 0.984 0.88 0.878 0.972 0.972 0.802 0.788 

Source: own calculations. 

The experiment revealed a serious instability of the results of MTP pro-

cedure dependent on the number of bootstrap samplings in using multiple 

testing procedure based on minP . For a family consisting of 1000 infer-

ences, with a default setting of bootstrap samplings (B = 1000), the results 

were unsatisfactory (Table 1). Increasing the number of bootstrap samplings 

considerably improved the results (Table 2), however, users often use de-

fault settings, unaware of the negative consequences of such decision. In the 

experiment when the number of samplings was increased 5 times, the results 

were still not satisfactory (Table 2), thus we should consider the number of 

samplings which will guarantee controlling FDR with the use of joint pro-

cedure  minP . This issue is addressed by e.g. Werft and Benner [2009], who 

reported a problem with controlling FDR in genetic studies with a large 

number of hypotheses and a small sample size. In the experiment described 

in this paper, increasing the sample sizes did not result in the improvement 

of the probability of recognizing that all the null hypotheses are true     

(Table 1). The experiment also revealed that a joint procedure based on 

maxima of test statistics (maxT) controls FDR, but the estimated probabili-

ties indicate the conservative nature of this control.  

In a parallel simulation study on marginal multiple testing procedures, 

both marginal procedure BH and its two-stage modifications ABH and 

TSBH, obtained probability 0.95, regardless of the sample size. Only the 
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Benjamini-Yekutieli procedure yielded probability 0.992, which confirmed the 

conservative nature of the BY procedure in comparison to the BH procedure. 

4. Conclusion 

Uncontrolled multiple testing results in detecting dependencies which, 

in fact, do not exist. Controlling FWER recommended by Tukey (1953) is 

not a sensible solution in Big Data, because in cases of numerous families of 

inferences FWER-controlling procedures display a drastic loss in power. In 

such families of inferences controlling FDR seems the best option, that is 

controlling the expected value of the proportion of Type I errors among the 

rejected hypotheses at an a priori chosen level q (q = ). FDR-controlling 

procedures allow a low percentage of erroneous rejections out of all rejec-

tions (q100%), but are not as conservative as FWER-controlling procedures. 

For independent test statistics or ones with positive regression dependence, 

a simple Benjamini-Hochberg procedure or one of its two-stage variants are 

recommended. In more complicated studies, the joint procedure MTP based 

on resampling [Dudoit, van der Laan 2008] is worth considering. A wide 

range of applications, the possibility of choosing the Type I error rate and 

easily accessible software implemented in R multtest package are their 

obvious advantages. Unfortunately, the simulation experiment described in 

the paper revealed that in cases of numerous families of inferences, the MPT 

procedure does not control FDR if the multiple testing procedure based on 

minima unadjusted p-values minP  and a default number of bootstrap sam-

ples in MTP procedure are used. Increasing the number of bootstrap sam-

plings considerably improves the results (although they are still not satisfac-

tory), however, such instability of results is a cause for concern and indi-

cates the need for further research on the MPT procedure. 

In 2001 Benjamini [2001] wrote: “Even though FDR departs from 

classical multiple comparisons I believe it is one of the cornerstones in the 

bridge that ‘multiple comparisons’ can offer between traditional statistical 

thinking and modern problems”. Nowadays FDR is widely accepted and 

recommended both by proponents of classical frequentist statistics and 

proponents of the Bayesian approach (see: e.g [Efron 2010; Dudoit, Gilbert, 

van der Laan 2008]), as it offers a rational solution to the problem of 

controlling multiple testing in large-scale research when Big Data are used. 

Regardless of the approach preferred, all statisticians share the same 

objective, that is adapting statistical tools to the challenges of the 21
st
 

century. 
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