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CONSEQUENCES OF ASSUMPTION VIOLATIONS REGARDING 

CLASSICAL LOCATION TESTS 

TOMÁŠ MARCINKO 
University of Economics in Prague, Faculty of Informatics and Statistics,  

Department of Statistics and Probability, nám. W. Churchilla 4, 130 67 Prague, Czech Republic 

email: xmart14@vse.cz 

Abstract 

Nearly all classical statistical hypothesis tests are derived under a few fundamental 

assumptions, which may or may not be met in real world applications. The main aim of this 

article is to study consequences of a normality assumption violation concerning classical 

statistical methods, mainly its effect on type I and type II errors when dealing with 

one-sample or two-sample location tests. The focus will be on a very popular one-sample 

t-test, as well as on a Behrens-Fisher problem, i.e. on hypothesis testing concerning the 

difference between expected values of two random variables with unknown and possibly 

different variances. Based on a simulation study the consequences of different forms 

of non-normality will be examined for various sample sizes. Type I and type II errors 

of the classical tests will be then compared with those of appropriate nonparametric tests, 

specifically with the errors of the Wilcoxon signed-rank and rank-sum tests, as well as the 

tests based on bootstrap methodology. Based on the results of the conducted simulation study 

it can be inferred that the classical t-tests tend to be conservative or liberal depending on 

a form of non-normality. It will be also demonstrated that in case of a contaminated 

distribution with possible outliers the Wilcoxon tests should be always considered, and that 

for skewed data and a large sample size the bootstrap BCa method may also be preferable. 

Key words: one-sample t-test, Behrens-Fisher problem, normality violation, Wilcoxon tests, 

bootstrap. 

DOI: 10.15611/amse.2014.17.20 

1. Introduction 

Location tests are arguably the most important statistical tests, which are used to 

determine, if the location parameter is equal to a given constant (one-sample problem), or if 

the location parameters of two populations are the same (two-sample problem). Most 

commonly, the location parameter of interest is the expected value, although in some cases 

the median or some other measures of location may be used. 

We will focus on two very common statistical problems: the one-sample location test with 

the expected value being the location parameter and the variance of the population being 

unknown, and the Behrens-Fisher problem concerning difference between expected values of 

two random variables with unknown variances, which are not assumed to be equal. 

Undoubtedly the most popular tests regarding these two problems are the one-sample 

Student’s t-test and the approximate two-sample Welch’s t-test. However, both these 

parametric tests were derived under a couple of assumptions, which may not be met in real 

world applications. Namely, we assume that the random sample come from populations that 

follow a normal distribution and the data are sampled independently (i.e. the observations in 
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the sample from any population are assumed to be independent and identically distributed 

following a normal distribution with the same expectation and the same variance). 

The main aim of this article is a simulation study that will examine the consequences 

of non-normality, mainly its negative effect on type I and type II errors. The results obtained 

by parametric t-tests will be then compared with those of appropriate nonparametric tests, 

specifically with the Wilcoxon signed-rank and rank-sum tests, as well as the tests based on 

bootstrap methodology. 

2. Parametric and nonparametric approach to location tests 

When dealing with location tests, the most popular approach of many statisticians, 

researchers or data analysts is the parametric one, i.e. using the Student’s t-test when dealing 

with a one-sample problem or the Welch’s t-test when dealing with a two-sample problem. 

Let’s assume we have a one-sample problem and we wish to determine, whether the 

population mean μ is equal to a specified value μ0. The Student’s t-test uses the statistic 

n
s

x
t 0 , (1) 

where x  is a sample mean, s is a sample standard deviation and n is a sample size. If the 

observations are independent, identically distributed and follow a normal distribution then it 

can be easily shown that under the null hypotheses H0: μ = μ0 the statistic t follows 

a Student’s t distribution on n – 1 degrees of freedom. Therefore, if we state the two-tailed 

alternative hypothesis H1: μ ≠ μ0, we will reject the null hypothesis in favor of the alternative 

hypothesis when the absolute value of the statistic t is greater than a critical value from 

the Student’s t distribution. Moreover, it can be shown that the Student’s t-test is in fact 

a uniformly most powerful unbiased test, for details see Lehmann and Romano (2005). 

Although the statistic t follows under the null hypothesis the Student’s t distribution 

exactly only under the assumption of normality, this test is also often used for larger samples 

(e.g. 30n ). The reason for this is the fact that by the central limit theorem the mean of 

a sufficiently large number of iterates of independent and identically distributed random 

variables will be approximately normal, even if the underlying distribution is not. However, in 

this case the t-test may not be the most powerful. 

For a Behrens-Fisher problem the two-sample Welch’s t-test is probably the most often 

used parametric solution. Let μ1 and μ2 be the population means in first and second 

population, respectively, and let the null hypothesis be of the form H0: μ1 – μ2 = Δ. Then the 

test statistic for the Welch’s test is 

2

2

21

2

1

21

// nsns

xx
t




 , (2) 

where 1x , 2x  are sample means, 1s , 2s  are sample standard deviations and 1n , 2n  are sample 

sizes for respective populations. Although, unlike the one-sample Student’s t test, this test 

statistic does not follow under the null hypothesis the Student’s t distribution on a given 

degrees of freedom exactly, Welch (1947) proposed an approximation of the degrees 

of freedom associated with this statistic via the Welch-Satterthwaite equation 
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For details on derivation of the Welch-Satterthwaite equation refer to Satterthwaite (1946) 

and Welch (1947). Although other solutions to the Behrens-Fisher problem have been 

developed, the Welch’s test still tends to be the most often used. In the R programming 

language, both Student’s and Welch’s tests are computed by t.test function. 

Probably the best known nonparametric alternatives to the aforementioned parametric 

t-tests are the one-sample Wilcoxon signed-rank test and the two-sample Wilcoxon rank-sum 

test, which were both proposed by Wilcoxon (1945). However, these tests based on ranks 

assume the median rather than the expected value as the location parameter, i.e. they may not 

be a suitable alternative for the t-tests in case of an asymmetric underlying distribution. In the 

R programming language, both Wilcoxon tests are performed by wilcox.test function. 

Another nonparametric approach to location tests is based on bootstrap methodology. 

Bootstrap as a computer-intensive method has an obvious advantage of being free 

of assumptions concerning underlying distribution, i.e. location tests based on bootstrap 

methodology can be used for any distribution and even for any measure of location besides 

the expected value. Bootstrap hypothesis testing is often derived from respective bootstrap 

confidence intervals, however the coverage probabilities of these intervals are only 

asymptotically accurate, i.e. for a small sample sizes bootstrap hypothesis testing can lead to 

a type I error that is higher than the given significance level. 

In this article we will consider four bootstrap confidence intervals described by Efron and 

Tibshirani (1993). The first one, called a bootstrap-t confidence interval, is a modification of 

the Student’s t interval, which in case of a one-sample location problem has the form  









 

n

s
tx

n

s
tx 2/12/1 ;  , (4) 

where t1–α/2 is 100(1–α/2)th percentile of Student’s t distribution on n – 1 degrees of freedom 

and α is the given significance level. The bootstrap modification is achieved by the sample 

standard deviation s being replaced by a bootstrap estimate of a standard deviation and the 

percentiles t1–α/2 being replaced by the empirical percentiles of the bootstrap t statistic 

n
bs

xbx
bt

)(

)(
)(

*

*
* 

 ,     b = 1, 2, ..., B, (5) 

where B is a number of bootstrap samples, )(* bx  is the mean in the bth bootstrap sample and 

)(* bs  is the estimated standard error of )(* bx . For details see Efron and Tibshirani (1993, 

chapter 12.5). 

The biggest disadvantage of the bootstrap-t interval is that this method of confidence 

interval estimation is neither transformation-respective nor range-preserving. The percentile 

interval proposed by Efron (1979) on the other hand has both these properties. After 

generating B independent bootstrap data sets, the percentile interval is given by the 100(α/2)th 

and 100(1–α/2)th empirical percentile acquired from the )(* bx  values. This interval tends to 
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be less erratic then the bootstrap-t interval in actual practice, but in some cases may have less 

satisfactory coverage properties. Another modification of the percentile method called the 

BCa (bias-corrected and accelerated) interval was proposed by Efron (1987). The last 

bootstrap method to be considered in this article is the ABC method, which generates only 

approximate bootstrap confidence intervals, but significantly reduces the amount of 

computation needed for the BCa intervals. For details on the BCa and ABC methods see Efron 

and Tibshirani (1993, chapter 14). In the R programming language, the bootstrap confidence 

intervals can be computed by using the boott, bootstrap, bcanon and abcnon functions of the 

bootstrap package. Another option is the boot.ci function of the boot package. 

3. Simulation study 

The following simulation study will focus on the Monte Carlo estimation of type I and 

type II errors of the location tests shortly discussed in the previous section under various 

violations of normality. For this purpose we will simulate data from the following 

distributions: 

 normal distribution: X ~ N(μ = 100; σ2 = 100) 

 modified Student’s distribution: X ~ 100 + 5,7735 t(ν = 3) 

 uniform distribution: X ~ U(a = 82,6795; b = 117,3205) 

 gamma distribution: X ~ Γ(κ = 100; θ = 1) 

 log-normal distribution: X ~ LN(μ = 4,6002; σ2 = 0,00995) 

 skew normal distribution: X ~ SN(ξ = 88,417; ω = 15,303; α = 3) 

 shifted exponential distribution: X ~ 90 + Ex(λ = 0,1) 

 contaminated normal distribution: X ~ (1 – ε) N(100; 100) + ε N(100; 10 000). 

Without the loss of generality, all of these distributions (except for a contaminated normal 

distribution, which has larger variance) were calibrated so that they have the population mean 

100 and the variance also 100. The first three distributions (normal, modified Student’s and 

uniform) are symmetric around the population mean and the other four distributions (gamma, 

log-normal, skew normal and shifted exponential) are asymmetric with a gamma distribution 

being the least skewed (γ1 = 0,2) and a shifted exponential distribution being the most skewed 

(γ1 = 2). The skewness of the other two distributions is only moderate (γ1 = 0,301 for a log-

normal distribution and γ1 = 0,667 for a skew normal distribution). Lastly, the contaminated 

normal distribution is a mixture distribution, where the majority of the population comes from 

a specified normal distribution, whereas a small proportion of the population (ε = 0,05) comes 

from a normal distribution with the same mean but much larger variance, i.e. outliers can be 

drawn from such a population. 

The simulation study consisted of 10 000 simulated data sets so that the Monte Carlo error 

was sufficiently low (see Figure 1 comparing the exact power function of the Student’s t-test 

under a normal distribution, which was derived using a non-central t distribution, and the 

Monte Carlo estimate of this power function). For the bootstrap methods 5 000 bootstrap 

samples were generated.  

The simulation study was computed in the programming language R version 2.15.3. 
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Figure 1 Exact vs estimated power function of Student’s t-test (normal distribution, n = 10) 

3.1. One-sample location test 

Based on a Monte Carlo simulation study, it is simply possible to estimate the power 

function of particular tests under the given violations of normality. Apart from type I and type 

II errors, the average length of relevant confidence intervals was computed. If several tests 

have type I error equal to or less than a chosen significance level (for the purpose of this study 

we will use a significance level 0,05), the test having the shortest length of the relevant 

confidence interval can be preferred, as such tests tend to be more powerful in most situations. 

Table 1 provides estimates of type I errors for various one-sample two-tailed location tests, 

underlying distributions and sample sizes. It is quite obvious that for small sample sizes 

different violations of normality can have a different effect on type I errors of the Student’s 

t-test. When dealing with symmetric distributions, it seems that distributions with higher 

kurtosis (such as a Student’s t distribution) tend to make the Student’s t-test more 

conservative (having type I error lower than the significance level), whereas the distributions 

with smaller kurtosis (such as a uniform distribution) tend to make the Student’s t-test more 

liberal (having type I error higher than the significance level). On the other hand, skewed 

distributions always tend to make the Student’s t-test more liberal, nevertheless, unless the 

skewness is substantial (e.g. in case of an exponential distribution), the effect of skewness is 

relatively small. And, as expected, with larger sample sizes the type I errors get closer to the 

nominal significance level. 

The only exception, when the Student’s t-test was too conservative even for large sample 

sizes, is the case of a contaminated normal distribution. This is no surprise, as outliers can 

have a very big influence on the sample mean. Consequently, when we are dealing with 

symmetric distributions with substantially long tails or with possible outliers, the Wilcoxon 

test should always be preferred (see Table 2 comparing the average length of relevant 

confidence intervals and Figure 2 comparing power functions of the Student’s and Wilcoxon 

tests for a contaminated normal distribution). 
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On the other hand, the only exception, when the Student’s t-test was too liberal even for 

large sample sizes, is the case of a shifted exponential distribution, i.e. a distribution with 

substantial skewness. In such cases, bootstrap-t can give better results. 

Another conclusion that can be inferred from the simulation study is that the bootstrap 

percentile method, BCa method and ABC method should not be recommended for small and 

even moderate sample sizes, as the coverage probability of the relevant confidence intervals is 

significantly lower than the required confidence level. However, for larger sample sizes 

(n > 50) the type I error is reasonably close to the given significance level and these tests tend 

to have indeed more power than the Student’s t-test, although the difference in power is slim 

(Table 3 provides the average length of Student’s and bootstrap tests for n = 100). Although 

all of these bootstrap methods tend to give very similar results for the considered location 

problem, from theoretical point of view the BCa method should be preferred when available.  

Table 1. Estimated type I errors of various one-sample two-tailed location tests 

size distribution 

Student's     

t-test 

Wilcoxon 

test 
bootstrap-t 

percentile 

method 

BCa 

method 

ABC 

method 

n = 10 

normal 0,0496 0,0487 0,0566* 0,0987* 0,1002* 0,0985* 

t(3) 0,0411* 0,0487 0,0737* 0,1076* 0,1379* 0,1377* 

uniform 0,0546* 0,0487 0,0320* 0,0890* 0,0666* 0,0656* 

gamma 0,0510 - 0,0567* 0,0999* 0,1007* 0,1000* 

log-normal 0,0520 - 0,0538 0,1005* 0,1017* 0,0997* 

skew normal 0,0566* - 0,0559* 0,1039* 0,1015* 0,0990* 

exponential 0,1024* - 0,0626* 0,1413* 0,1228* 0,1202* 

contaminated 0,0357* 0,0496 0,0683* 0,1061* 0,1466* 0,1442* 

n = 50 

normal 0,0494 0,0473 0,0557* 0,0570* 0,0566* 0,0566* 

t(3) 0,0450* 0,0473 0,0723* 0,0656* 0,0878* 0,0877* 

uniform 0,0486 0,0473 0,0455* 0,0562* 0,0496 0,0487 

gamma 0,0495 - 0,0540 0,0563* 0,0579* 0,0581* 

log-normal 0,0489 - 0,0549* 0,0565* 0,0584* 0,0585* 

skew normal 0,0500 - 0,0518 0,0567* 0,0567* 0,0576* 

exponential 0,0624* - 0,0547* 0,0679* 0,0655* 0,0655* 

contaminated 0,0298* 0,0476 0,1109* 0,0790* 0,1561* 0,1577* 

n = 100 

normal 0,0480 0,0481 0,0511 0,0520 0,0517 0,0518 

t(3) 0,0462 0,0481 0,0716* 0,0603* 0,0788* 0,0782* 

uniform 0,0483 0,0481 0,0525 0,0508 0,0488 0,0481 

gamma 0,0484 - 0,0540 0,0533 0,0520 0,0516 

log-normal 0,0491 - 0,0549* 0,0527 0,0525 0,0522 

skew normal 0,0516 - 0,0546* 0,0550* 0,0539 0,0542 

exponential 0,0601* - 0,0567* 0,0621* 0,0604* 0,0597* 

contaminated 0,0380* 0,0495 0,1111* 0,0765* 0,1371* 0,1373* 

* estimated type I error differs significantly from the significance level 0,05 based on the exact binomial test 

using the procedure proposed by Clopper and Pearson (1934) 
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Table 2. Average length of relevant confidence intervals (normal vs long-tailed distributions) 

Size distribution 

Student's     

t-test 

Wilcoxon 

test 
bootstrap-t 

percentile 

method 

BCa 

method 

ABC 

method 

n = 10 

normal 13,886 14,244 15,473 type I error too high 

t(3) 12,477 12,746 16,488 type I error too high 

contaminated 26,455 28,209 48,273 type I error too high 

n = 50 

normal 5,656 5,799 5,891 5,454 5,465 5,466 

t(3) 5,340 4,199 5,867 5,142 5,326 5,319 

contaminated 12,542 6,401 15,687 12,001 13,427 13,383 

n = 100 

normal 3,961 4,049 4,137 3,889 3,893 3,894 

t(3) 3,811 2,901 4,125 3,737 3,836 3,834 

contaminated 9,234 4,444 10,550 9,063 9,633 9,574 

 

Table 3. Average length of relevant confidence intervals (non-normal distributions, n = 100) 

size distribution 

Student's     

t-test 

Wilcoxon 

test 
bootstrap-t 

percentile 

method 

BCa 

method 

ABC 

method 

n = 100 

uniform 3,9654 4,1901 4,1257 3,8919 3,8957 3,8976 

gamma 3,9603 - 4,1299 3,8892 3,8928 3,8939 

log-normal 3,9599 - 4,1282 3,8885 3,8941 3,8943 

skew normal 3,9580 - 4,1596 3,8870 3,8975 3,8980 

 

 

Figure 2 Power functions of the t-test and Wilcoxon test (contaminated distribution, n = 100) 
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3.2. Two-sample location test 

In order to examine the mere effects of non-normality on the two-sample location tests, 

the sample sizes and all the distribution parameters were kept the same for both samples. 

The conducted simulation study showed that the effects of non-normality on the Welch’s 

t-test are quite similar to the ones of the Student’s t-test in the one-sample case (see Table 4 

for estimated type I errors). However, some small differences were found. 

First of all, there seems to be a smaller effect of skewness or kurtosis on type I errors of the 

two-tailed Welch’s t-test, when a sample size is small. For larger samples (n ≥ 50), the only 

time the Welch’s t-test was proved to be conservative was the case of a contaminated normal 

distribution. 

Table 4. Estimated type I errors of various two-sample two-tailed location tests 

size distribution 

Welch's          

t-test 

Wilcoxon 

test 
bootstrap-t 

percentile 

method 

BCa 

method 

ABC 

method 

n = 10 

normal 0,0488 0,0435* 0,1038* 0,0969* 0,0979* 0,0977* 

t(3) 0,0398* 0,0435* 0,1458* 0,1012* 0,1229* 0,1216* 

uniform 0,0503 0,0435* 0,0905* 0,0941* 0,0905* 0,0893* 

gamma 0,0488 - 0,1035* 0,0969* 0,0981* 0,0977* 

log-normal 0,0481 - 0,1033* 0,0961* 0,0995* 0,0981* 

skew normal 0,0451* - 0,1082* 0,0956* 0,1018* 0,1005* 

exponential 0,0345* - 0,1501* 0,1057* 0,1331* 0,1318* 

contaminated 0,0296* 0,0425* 0,2453* 0,1068* 0,1602* 0,1629* 

n = 50 

normal 0,0513 0,0502 0,0634* 0,0594* 0,0603* 0,0609* 

t(3) 0,0482 0,0502 0,0918* 0,0669* 0,0817* 0,0813* 

uniform 0,0509 0,0502 0,0601* 0,0580* 0,0555* 0,0554* 

gamma 0,0520 - 0,0663* 0,0603* 0,0609* 0,0609* 

log-normal 0,0521 - 0,0649* 0,0615* 0,0620* 0,0614* 

skew normal 0,0522 - 0,0684* 0,0621* 0,0636* 0,0625* 

exponential 0,0515 - 0,0817* 0,0666* 0,0771* 0,0770* 

contaminated 0,0401* 0,0527 0,1646* 0,0834* 0,1411* 0,1405* 

n = 100 

normal 0,0510 0,0510 0,0605* 0,0565* 0,0552* 0,0560* 

t(3) 0,0498 0,0510 0,0803* 0,0595* 0,0749* 0,0739* 

uniform 0,0506 0,0510 0,0590* 0,0527 0,0524 0,0516 

gamma 0,0503 - 0,0591* 0,0573* 0,0567* 0,0559* 

log-normal 0,0511 - 0,0615* 0,0558* 0,0558* 0,0569* 

skew normal 0,0506 - 0,0645* 0,0576* 0,0573* 0,0579* 

exponential 0,0508 - 0,0681* 0,0587* 0,0632* 0,0641* 

contaminated 0,0442* 0,0510 0,1161* 0,0679* 0,1080* 0,1082* 

* estimated type I error differs significantly from the significance level 0,05 based on the exact binomial test 

using the procedure proposed by Clopper and Pearson (1934) 
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On the other hand, most of the results that were point out for the nonparametric one-sample 

tests remain valid also for the Behrens-Fisher problem, i.e. the Wilcoxon rank-sum test should 

always be preferred for contaminated or mixture distributions (or in presence of outliers, 

which cannot be omitted) and the bootstrap methods cannot be recommended for smaller 

sample sizes. Furthermore, the asymptotic nature of the bootstrap methods seems to work 

only for very large sample sizes (n > 100), as these tests were a bit liberal even at n = 100. 

Hence, the preference of the bootstrap methods in case of mere asymmetry of the two 

underlying distributions seems to be less justified. 

4. Problem of symmetry of the Student’s confidence intervals 

The conducted simulation study showed that there is only a small effect of skewness on the 

type I error of the two-tailed Student’s t-test. However, this is not true in case of one-tailed 

t-tests. In fact, the simulation study showed, inter alia, that for a skew normal distribution and 

a quite large sample size (n = 100) the estimated type I error of the one-tailed Student’s test 

is 0,0579 in case of a left-tailed alternative hypothesis H1: μ < μ0 and 0,0440 in case of a right-

tailed alternative hypothesis H1: μ > μ0. This means that, even though the overall coverage 

probability of the corresponding two-tailed confidence interval is good, in case of positively 

skewed data the coverage probability of the left-tailed confidence interval will be significantly 

larger than the coverage probability of the right-tailed one. On the other hand, the coverage 

probabilities of the one-tailed confidence intervals based on the bootstrap BCa and ABC 

methods are very similar to the coverage probability of the respective two-tailed interval. 

For better understanding of this problem, we will use an example data set, which provides 

annual income data of 143 highly-educated male employees, who had a percentile score on 

the AFQT intelligence test more than 0,9. The data come from the National Longitudinal 

Study of Youth and were also published by Ramsey and Shafer (2013). 

As expected for income data, the underlying distribution is substantially skewed. In fact, 

the sample skewness is 2,3 and the sample kurtosis is 9,8. From the large positive skewness it 

can be inferred that both the Student’s t-test and the test based on the bootstrap BCa method 

will have type I error a little bit higher than the nominal significance level 0,05. If we 

compare Student’s 95% confidence interval for the population mean (89 962; 117 444) and 

the corresponding BCa confidence interval (91 790; 119 490), we see that the length of both 

confidence intervals is quite similar, but the Student’s interval is shifted to the left compared 

to the BCa interval. As the sample size is sufficiently large, so that the type I error of the 

bootstrap interval will be reasonably close to the nominal significance level, the BCa 

confidence interval, as well as the corresponding location test, should be preferred. 

5. Practical aspects of liberalness or conservativeness of a testing procedure 

In the previous section we demonstrated on a simple example that the BCa method should 

be preferred, when dealing with skewed data, provided a sample size is sufficiently large. 

Another practical aspect of the results obtained by the simulation study was the information 

that the classical one-sample t-test tend to be liberal for skewed data, whereas it is 

conservative for longer-tailed data, especially when a sample size is small. On the other hand, 

Welch’s two-sample t-test showed no tendency to being liberal, although it can be 

conservative for both long-tailed and skewed distributions in case of a small sample. This 

information can be quite useful in real world applications (incl. economic ones) that deal with 
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non-normal data – while the rejection of a null hypothesis by a liberal test may be spurious, 

the conservativeness of a testing procedure should not invalidate the rejection of a null 

hypothesis. Consequently, when the t-test is deemed to be liberal, it is recommended to check 

the rejection of a null hypothesis by alternative methods. Similarly, acceptance of a null 

hypothesis should not be based solely on a parametric test that is proven to be conservative. 

6. Conclusion 

The classical location tests – the one-sample Student’s t-test and the two-sample Welch’s 

t-test – are derived under the assumption that the observations from the random sample are 

independent and identically distributed following a normal distribution. The aim of this article 

was to examine the effect of non-normality on type I and type II errors of these tests. 

The conducted simulation study showed that both the Student’s and Welch’s two-tailed 

t-tests are a bit sensitive to even moderate deviations from normality, esp. in case of a small 

sample size, and can become liberal or conservative depending on a form of non-normality. 

When the sample size gets larger the type I error gets closer to the nominal significance level, 

however, for skewed data and the one-sample t-test there still might be a small problem with 

undesirable type I errors in case of one-tailed alternative hypotheses caused by inherent 

symmetry of the classical methods. This problem can be circumvented by the BCa method 

provided a sample size is large. Furthermore, the classical tests cannot be recommended for 

contaminated data and the use of Wilcoxon tests should be considered instead.  

Acknowledgements 

The support of the Internal Grant Agency of the University of Economics in Prague  

(project IGA 128/2014 "Consequences of assumption violations of classical statistical 

methods and the possible use of alternative statistical techniques in economic applications")  

is gladly acknowledged. 

References 

1. CLOPPER, C.J., PEARSON, E.S. 1934. The Use of Confidence or Fiducial Limits 

Illustrated in the Case of the Binomial. In Biometrika, vol. 26, iss. 4, pp. 404-413. 

2. EFRON, B. 1979. Bootstrap Methods: another look at the jackknife. In Annals of 

Statistics, vol. 7, iss. 1, pp. 1-26. 

3. EFRON, B. 1987. Better Bootstrap Confidence Intervals. In Journal of the American 

Statistical Association, vol. 82, iss. 397, pp. 171-185. 

4. EFRON, B., TIBSHIRANI, R.J. 1993. An Introduction to the Bootstrap. Boca Raton: 

Chapman & Hall/CRC. 1993. ISBN 0-412-04231-2 

5. LEHMANN, E.L., ROMANO, J.P. 2005. Testing Statistical Hypotheses. New York: 

Springer. 2005. ISBN 0-387-98864-5 

6. RAMSEY, F.L., SCHAFER, D.W. 2013. The Statistical Sleuth: A Course in Methods of 

Data Analysis. Boston: Brooks/Cole, Cengage Learning. 2013. ISBN 1-133-49067-0 

7. SATTERTHWAITE, F.E. 1946. An Approximate Distribution of Estimates of Variance 

Components. In Biometrics Bulletin, vol. 2, iss. 6, pp. 110-114. 

8. WELCH, B.L. 1947. The generalization of "Student's" problem when several different 

population variances are involved. In Biometrika, vol. 34, iss. 1-2, pp. 28-35. 

9. WILCOXON, F. 1945. Individual Comparisons by Ranking Methods. In Biometrics 

Bulletin, vol. 1, iss. 6, pp. 80-83. 


