
INFORMATYKA EKONOMICZNA  BUSINESS INFORMATICS  3(29) . 2013	
ISSN 1507-3858

Lev Belava
AGH University of Science and Technology, Krakow
e-mail: Lev.Belava@gmail.com

TOWARDS A PLATFORM FOR HYBRID COMPOSITION
AND GROUNDING OF WEB SERVICES

Abstract: This paper describes an approach to a software platform and a method of hybrid
web services composition and hybrid grounding of abstract composition plans. It also presents
in a highly detailed manner the architecture of the implemented platform and its modules.

Keywords: SOA, web services composition, web services grounding.

1. Introduction

There is a clear trend in modern science and business communities to switch from
old monolithic style software platforms towards architectures that favor changing
and switching their component modules. Generally speaking, modularity benefits all
parties that are engaged in the development, usage and maintenance of properly
constructed modular software systems. Business users can receive new functionalities
or change the existing ones much easier and quicker. The maintenance process gets
more refined since usually it is an easier task to fix and support a number of relatively
simple, small and well-defined modules than to take care of big monolithic all-in-one
systems which have tendencies to accumulate a number of unknown internal code
and logic interdependencies and other pitfalls. The programming of clear and well-
defined software components is an easier task, too. Such modules have to be less
dependent on other platform components and are smaller since they need to
implement only a portion of system functionality.

A Service Oriented Architecture approach and its most common implementation
– Web Services – naturally fit this general trend and push it even further: software
modules have now become standalone applications in a network environment. They
are called services and, by working together, can offer various complex functionalities
for their users. The practice of SOA service composition is also an interesting and
promising concept of developing new software systems with a highly refined
functionality that is achieved by using combinations of different services.

There are two main parts of such software systems – service composition and
grounding. Service composition focuses mainly on methods and algorithms that can

Informatyka Ekon._3(29)_Korczak.indb 30 2014-02-04 10:00:10

Towards a platform for hybrid composition and grounding of web services	 31

produce viable composition plans from sources like sets of available web services or
other plans. On the other hand, grounding focuses on transforming abstract
composition plans into execution ready plans. During the grounding process every
abstract service from the abstract composition plan has to be associated with a real-
world service instance so that it can be used in the service execution process.

1.1. Service Composition and Grounding

SOA is a very general software architecture and engineering paradigm. It does not
define services very strictly, moreover, it does not even specify that services should
exist in a network. It only presumes that services have to be relatively independent
from each other and offer functionalities formally described by their interface. Web
Services are the most common SOA implementation nowadays.

Service composition is a concept of combining different services for data
processing purposes. It enables users to create complex processes by combining
various functionalities offered by available services. To date, numerous service
composition techniques have been developed.

Manual and semi-automatic service composition methods e.g. [Sirin, Hendler,
Parsia 2003] and [Sirin, Hendler, Parsia 2004] are relatively popular in the scientific
community. Such kinds of approaches are fairly easy to understand and implement.
When creating service compositions, all decisions are made by the user who is
provided with some kind of advice or narrowing choice options at the most. However,
such methods do not offer service composition process automation.

Different automatic service composition approaches have been proposed.
Variations of forward and backward chaining methods as in [Thakkar et al. 2002],
[Sheshagiri, Desjardins, Finin 2003], etc. were presented. Hierarchical Task
Networks methods were proposed in such works as [Sirin et al. 2004] and [Sohrabi,
Baier, McIlraith 2004]. Ontological descriptions of services can be used by reasoners
for composition creation [Ankolekar et al. 2002]. Petri nets were used for service
modeling and composition in [Hamadi, Benatallah 2003].

Composition methods can, but do not have to, assume that service instances are
available and reachable somewhere in a network. So, if a method is not concerned
with the availability of service instances it will produce abstract composition plans.
On the other hand, grounding is a process of enriching composition plans with vital
information that allows necessary service instances to be used during the execution
process. Therefore abstract composition plans have to be grounded prior to being
ready for execution. Several service composition grounding methods have been
proposed, some of them are based on brokers [Chakraborty, Yesha, Joshi 2004] while
some others are matching-based [Sun et al. 2009], heuristic [Liu et al. 2009], agent-
based [Tang, Xu 2006] or even ontology-based [Yan, Zhijian, Guiming 2010] and
[Bleul, Weise 2005]. Each one of these approaches uses different perspectives on the
grounding process, thus allowing their users to fit their needs in very varied and not
always interoperable ways.

Informatyka Ekon._3(29)_Korczak.indb 31 2014-02-04 10:00:10

32	 Lev Belava

1.2. Problem statement

There are numerous methods for creating and grounding service compositions.
However, every particular approach cannot be an ideal solution from all points of
view. Imagine a situation when a user of an SOA software system wants to use some
predefined service composition parts and combine them with an output of an
automatic composition method. The concept of hybrid service composition was
specifically proposed in order to solve this kind of problems [Belava 2009]. This
concept allows to use multiple service composition methods during the creation of a
service composition plan.

A similar problem is observed in the grounding of abstract composition plans
because grounding methods may vary a lot in terms of their work principles as well
as optimization targets (QoS, cost, etc.). The concept of hybrid grounding tries to
address this problem by utilizing different grounding methods during the grounding
of one particular abstract service composition plan.

So far, several service composition platforms have been presented in scientific
literature. The most important ones include SWORD [Ponnekanti, Fox 2002],
METEOR-S [Aggarwal 2004], MAESTRO [Chifu et al. 2009], SPICE [Wang,
Wang, Xu 2006]. However, none of them tries to solve the problem of more flexible
composition or picking and using a grounding method. SWORD uses first order
logic, METEOR-S adopts the Constraint Satisfaction Problem engine for producing
a composition, MAESTRO is based on a particular graph method with backward
chaining and SPICE uses backward chaining with branching for optimization
purposes.

A variety of service composition and grounding methods, platforms and
approaches has been proposed. However, none of them is perfect from every point of
view. In order to solve this issue, the concept of a hybrid composition and grounding
platform was developed. Hybrid service composition is a method that allows its
users to combine different service composition techniques. It offers more flexibility
and control of the composition process itself. Hybrid grounding is also a method that
allows similar flexibility and control of the grounding process. It allows to mix and
match different grounding techniques for different parts of an abstract composition
plan.

2. Proposed Platform Concept

The architecture of the hybrid composition and grounding platform consists of five
key modules that are cooperating together. The concept also incorporates external
elements – web services. These services are used by various modules to produce and
execute composition plans. Figure 1 shows the architecture of platform and data
flows between different modules.

Informatyka Ekon._3(29)_Korczak.indb 32 2014-02-04 10:00:11

Towards a platform for hybrid composition and grounding of web services	 33

Figure 1. Architecture of hybrid composition and grounding platform

Source: own elaboration.

The static service composition engine provides the necessary functionality to
combine different pieces of the composition plan that can be imported or generated
by other composition engines. The static engine uses two main operations to work on
composition plans: DELETE and INSERT. The “Delete” operation cuts out a
specified part of a plan and “Insert” pastes one plan into another. The INSERT (2, 3,
plan 1, plan 2, 5) operation scheme is presented in Figure 2. Plan1 and plan2 represent
two input plans for the operation. Plan3 is the result of inserting plan2 from the first
non-root node to “Service 5” node into plan1 between “Service 2” and “Service 3”
nodes.

The DELETE (2, 4, plan 1) operation scheme is presented in Figure 3. Plan 2 is
the result of cutting a chain of services from plan1 starting at “Service 2” and
finishing at “Service 4”.

To proceed further, we need to provide a definition for a service input and output
type. Input or output service types in the proposed approach consist of two parts: the
first – a formal description of the data format that the service accepts as input or
returns as output, the second – semantic information that describes the meaning of
that data.

A forward chaining service composition engine creates service composition
plans by using a simple chaining algorithm similar to the one proposed in [Sheshagiri,

Static GraphTreeForward
Chaining

Service
Descriptions

DB

Networked
Service

Repository

Service
A Service

B

Service
C

QoS Cost Complex

BPEL SCDG

Composition
Module

Composition Engines

Grounding Module

Grounding Engines

Export Import
Module

Export Import
Engines SCDG

Engine

Execution Module

Imported
plans

Abstract plans

Service
descriptions

Grounded plans

Execution
plans

Network

Informatyka Ekon._3(29)_Korczak.indb 33 2014-02-04 10:00:11

34	 Lev Belava

Desjardins, Finin 2003]. Its simplified scheme of action is to successively add new
elements to the end of the plan if their input types are consistent with the previous
element’s output type. The general idea is to create such a chain of elements that its
last element will have the desired output type.

A tree-based service composition engine creates service compositions by using
a method that creates not just a chain of elements, but a tree. This method is relatively
similar to forward chaining but it allows to search the produced trees and, because of
that, the results of its work are more optimal than the results of simple chaining
techniques.

A graph-based service composition engine uses a composition method that is
similar to the one proposed in [Wang, Wang, Xu 2006]. Basically, at the beginning
the composition algorithm produces a complete services dependency graph. This
directed graph is created by treating abstract services as nodes in a graph and then
connecting the nodes with directed arcs if one service’s output type is identical to the

Figure 2. INSERT operation scheme

Source: own elaboration.

Figure 3. DELETE operation scheme

Source: own elaboration.

root Service 1 Service 2

root Service 4 Service 5

Service 3 plan1

plan2

root Service 1 Service 2 Service3Service 4 Service 5

plan3 = INSERT (2, 3, plan1, plan2, 5)

root Service 1 Service 5

root Service 1 Service 2 Service 5Service 3 Service 4 plan1

plan2 = DELETE (2, 4, plan1)

Informatyka Ekon._3(29)_Korczak.indb 34 2014-02-04 10:00:11

Towards a platform for hybrid composition and grounding of web services	 35

other service’s input type. Then such a graph could be processed by Dijkstra or some
other pathfinding algorithms. Figure 4 presents a sample complete services
dependency graph. Each node in that graph is described by its input type (“IN”) and
output type (“OUT”).

Figure 4. Example of a complete service dependency graph

Source: own elaboration.

The Grounding Module allows abstract composition plans that were produced by
the composition module to be grounded. It cooperates closely with the services
repository from which it gets full information profiles about service instances that
are available on the network. Such a profile consists not only of the service address
and input/output types but also includes additional parameters such as QoS and cost.
The three grounding engines in the Grounding Module include QoS, cost and
complex. QoS and cost grounding methods were chosen as sample approaches that
can be successfully combined in a complex engine. There is a possibility to use and
combine other grounding methods as well.

The goal of the QoS optimization engine is optimizing QoS parameters of
composition plans or their parts. For example, one can request that QoS parameters
for some part of the abstract composition plan have to reside between some desired
maximum and minimum values. In such cases the QoS engine will look for service
instances that fit the provided values best.

The cost optimization engine works similarly to the QoS engine, but it has a task
to optimize the cost of composition plans or their respective parts.

The complex optimization engine allows to create a hierarchical structure of
grounding preferences which lets the user apply additional optimizations in cases
where the engine on a higher level of hierarchy will find several equally fitted service
instances. For example, we can imagine a situation in which the cost parameter is the

IN: A
OUT: B

IN: A
OUT: C

IN: C
OUT: A

IN: C
OUT: D

IN: B
OUT: D

IN: D
OUT: A

IN: D
OUT: F

IN: F
OUT: D

IN: A
OUT: D

Informatyka Ekon._3(29)_Korczak.indb 35 2014-02-04 10:00:11

36	 Lev Belava

most important target of the composition optimization, but we would like to choose
a service with the best QoS in case there are several service candidates with the same
cost value.

The Export Import Module provides functionality that allows the abstract and
grounded composition plan to be imported or exported from or to files. There are two
export-import engines that were implemented for the proposed platform – BPEL and
SCDG.

The BPEL engine is able to import [Belava 2011b] and export [Belava 2011a]
composition plans that are written in a BPEL language. Not all the BPEL functionality
is currently implemented, but core elements like conditionals, loops and the parallel
execution of services are fully supported.

The SCDG engine allows to work with composition plans that are presented as
Service Composition Directed Graphs. The SCDG is a graph-based model of service
composition representation that was proposed in [Belava 2011b].

An Execution Module executes grounded service composition plans. To-date
only the SCDG execution engine has been implemented, although there is a
possibility to include other engines. To do that, one might also need to develop first
an appropriate import-export engine.

A Networked Service Repository Module is a web service that on the one hand
allows web services to be registered in it and on the other hand provides information
about these services for composition and grounding modules. This module also
employs a standalone database for service descriptions to be stored in it. A database
engine could be either external or internal in relation to the Networked Service
Repository. External database engines, however, are much faster and more reliable
with large data sets and thus more preferable.

3. UseR Case Scenario

We can imagine an on-line trading system which allows its users to search for
products, place orders and ultimately buy goods by entering financial and personal
data into the system. There are all sorts of government regulations and industry
standards for personal and financial data because of its sensitive nature. Therefore,
we can be sure that some parts of the composition plans in this kind of software
platforms will be predefined specifically to obey all sorts of regulations and standards.
On the other hand, such systems may benefit after all from automatic or semi-
automatic service composition techniques.

Hybrid service composition was proposed to solve exactly these kinds of
problems by providing the necessary interoperability between different service
composition methods.

Informatyka Ekon._3(29)_Korczak.indb 36 2014-02-04 10:00:11

Towards a platform for hybrid composition and grounding of web services	 37

3.1. System’s Internal Operation – From Composition to Execution

Figure 5 presents a diagram with an example of how a service composition plan is
made, grounded and executed in a system which implements the platform concept
proposed in this article.

Figure 5. Service composition, grounding and execution diagram

Source: own elaboration.

1. The user provides necessary personal and financial data and the parameters of
the desired products.

2. This data is delivered to a Composition Module.
3. The Composition Module sends a request to an Export Import Module to make

an import of a standard-required part of the composition plan which will handle
personal and financial data.

4. The Export Import Module transfers the request to a BPEL Import Engine
which will actually perform the task of importing.

5. The BPEL Import Engine sends a part of the imported composition plan to a
Static Composition Engine so that it can later be merged with automatically composed
parts.

6. The Composition Module initiates a Graph Composition Engine and transfers
composition parameters to it.

7. The Graph Composition Engine makes a request to a Networked Service
Repository and asks for a list of available services types.

Composition
Module

Static
Composition

Engine
Export
Import
ModuleBPEL

Import
Engine

Graph
Composition

Engine

Grounding
Module

QoS
Engine

Cost
Engine

SCDG
Export
Engine

Execution
Module

SCDG
Engine

Service
Descriptions

DB

Networked
Service

Repository

1

GUI

A
B
Network

34

User

32

Tree
Composition

Engine

2

3

4

5

6

7
8 910

11

12

13

1415

1617

18

19

20 21

23 24 25 26

27

30

31

33

28
29 22

Informatyka Ekon._3(29)_Korczak.indb 37 2014-02-04 10:00:11

38	 Lev Belava

8. The Networked Service Repository makes an appropriate query in a Service
Descriptions Database.

9. The Service Descriptions Database processes the query and sends back the
results.

10. The Networked Service Repository provides the Graph Composition Engine
with a list of all available services types (not instances).

11. The Graph Composition Engine sends the prepared part of the future service
composition plan to the Static Composition Engine.

Steps 12…17 are similar to steps 6…11.
18. The Static Composition Engine merges all parts of the composition plan into

one abstract service composition plan and delivers it to a Grounding Module for
grounding.

19. The Grounding Module makes a request to the Networked Service Repository
and asks it to provide a list of real-world service instances whose inputs and outputs
correspond to the inputs and outputs of the services in the abstract composition plan.

Steps 20 and 21 are similar to steps 8 and 9.
22. The Networked Service Repository provides the Grounding Module with a

list of required real-world service instances.
23. The Grounding Module initiates a QoS Engine and delivers the appropriate

part of the plan plus the lists of service instances to it.
24. The QoS Engine grounds a part of the greater plan and sends it back to the

Grounding Module.
Steps 25 and 26 are similar to steps 23 and 24.
27. The grounded composition plan is delivered to the Export Import Module.
28 The Export Import Module initiates a SCDG Export Engine and provides it

with a grounded composition plan.
29. An exported composition plan is delivered back to the Export Import Module.
30. The Export Import Module sends the exported composition plan to the

Execution Module for plan execution to be made.
31 The Execution Module initiates a SCDG Execution Engine and provides it

with a composition plan.
32. The SCDG Execution Engine executes the composition plan.
33. Plan execution results are delivered to the interface.
34. The interface renders the acquired results and presents them to the user.

3.2. A Closer Look at Composition and Grounding

Figure 6 presents a visualization of an abstract composition plan which deals with
sensitive personal and financial data provided by the user. There are several service
calls in it: “AssignUniqueID” – assigns a unique ID number to a user-provided data
set, “Encrypt” – encrypts the data set, “Archive” – archives the previously encrypted
data, “ValidateData” – makes appropriate validations of the user-provided data.

Informatyka Ekon._3(29)_Korczak.indb 38 2014-02-04 10:00:11

Towards a platform for hybrid composition and grounding of web services	 39

Figure 6. Abstract composition plan in a BPEL language with predefined service calls

Source: own elaboration.

The automatic generation of the second and third parts of a composition plan was
done by graph and tree composition engines. The graph-based engine composed the
part of the plan responsible for product finding, selecting and placing an order in a
system. The tree-based engine composed the part responsible for the processing of
the order that had been placed earlier.

Figure 7 presents a visualization of a complete services dependency graph of all
registered types of web services that were registered in the Networked Service
Repository. That exact graph was generated by a Graph Composition Engine during
the composition process itself and visualized by the visualization functionality of the
software platform. All service type IDs were automatically generated by the
Networked Services Repository. Each of these IDs consisted of service input type
name, “|” character and service’s output type name.

The left part of Figure 8 presents a visualization of an abstract plan that was
generated by a Graph Composition Engine. “ValidationResultID” is an output type
of the last service call in a predefined part of the service composition which was
imported from a BPEL file, so it was passed to the Graph Composition Engine as a
desired input type. “OrderID” type is a type which corresponds to the output type of
the order creation service, so it was passed to the composition engine as a desired
output type of the composition.

The subsequent steps of a plan generated by the Graph Composition Engine are
as follows:

1. “ValidationResultID|OfferPack” represents an automatic wide search of
possible products on the client’s request.

2. “OfferPack|FilteredOfferPack” represents automatic filtering of the previously
found products.

3. “FilteredOfferPack|ClientApproval” represents the client’s acceptance of a
product offer.

4. “ClientApproval|OrderID” represents generating an order for the offer that
had already been accepted.

The right part of Figure 8. presents a visualization of an abstract plan generated
by a Tree Composition Engine. “OrderID” type was passed to the composition
engine as a desired input type because it has to be the same as the output type of a
Graph Composition Engine’s work result. “ClientNotificationID” represents the
result of client notification which always happens after an order is processed, so it
was passed to the Tree Composition Engine as a desired output type.

AssignUniqueID Encrypt Archive ValidateData

Informatyka Ekon._3(29)_Korczak.indb 39 2014-02-04 10:00:11

40	 Lev Belava

The subsequent steps of a plan generated by the Tree Composition Engine are as
follows:

1. “OrderID|PaymentAndDeliveryOptions” represents a user’s process of
choosing payment and delivery options for a created order.

2. “PaymentAndDeliveryOptions|PaymentID” represents the act of payment for
delivery by a client.

Figure 7. Complete service dependency graph for Service Repository

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 40 2014-02-04 10:00:11

Towards a platform for hybrid composition and grounding of web services	 41

3. “PaymentID|WarehouseProcessingResults” represents all background ware-
housing processing, such as searching for the warehouse nearest to the client,
scheduling product pickup from the shelf, packing etc.

4. “WarehouseProcessingResults|DeliveryRequest” represents creating a deli-
very request to a logistics company which will actually deliver the products to the
customer.

5. “DeliveryRequest|ClientNotificationID” represents the client notification pro-
cess during which the client receives information about the delivery and other order
related matters.

All three parts of a complete abstract service composition plan were merged after
they were created or imported by the corresponding engines. After that the complete
plan was divided into three grounding areas and grounded in a hybrid mode.

The first grounding area consisted only of the steps from the first part of the plan
which had been imported from the BPEL. Because this part is very important and
regulated by government and industry standards, it was grounded only by a QoS
Engine which was tuned to select the best available service instance, no matter the
cost.

The second grounding area was defined as a steps chain from “Valida-
tionResultID|OfferPack” service up to “OrderID|PaymentAndDeliveryOptions”.
The main grounding engine for that area was the Cost Engine and the second one
was the QoS engine. The Cost Engine, however, was configured to choose not the

Figure 8. Graph (left) and Tree (right) Composition Engines work results

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 41 2014-02-04 10:00:11

42	 Lev Belava

absolutely best service from a variety of the available ones, but a range of acceptable
services within a provided distance from the best one. The additional grounding
engine for the second area was the QoS Engine which was able to choose the service
instance with the best cost from the range of the previously selected ones by the Cost
Engine.

The third grounding area was defined as a steps chain from “PaymentAndDeliv
eryOptions|PaymentID” up to “DeliveryRequest|ClientNotificationID”. It was gro-
unded similarly to the second part, but the difference was that the main grounding
engine was the QoS Engine and the second one was the Cost Engine.

Figure 9 presents a visualization of a grounded composition plan. The only
difference between the visualizations of the abstract and grounded composition plans

Figure 9. Grounded composition plan

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 42 2014-02-04 10:00:11

Towards a platform for hybrid composition and grounding of web services	 43

are the URL addresses of the WSDL files in every step of the composition. These
addresses unequivocally correspond to real-world service instances due to that fact
that the data in each WSDL file describes a concrete service instance.

The execution of a service composition plan was made with the use of an
Execution Module which was making service calls to appropriate instances by their
URLs.

4. Implementation Details

4.1. Package structure overview

The described platform was implemented in Java 6 programming language. Figure
10 presents its package diagram. The Service Composition Directed Graph package
consists of the code which implements the SCDG data structure and an API for
operating on it. Such an approach enables to reuse this vital code across all the

Composition

Export Import
Operations

Execution

Grounding

Repository

Service Composition
Directed Graph

Visualization

Chaining
Composer

Graph
Composer

Static
Composer

Tree
Composer

BPEL SCDGFilters Filter
Chains

Local
Repository

Remote
Repository

Client

Utils

Service
Tools

Repository
Snapshots

Node Types
Plan

Operations

SCDG

Remote Repository
Service

Database
Operations

Web
Service

Generated
Sources

Figure 10. Platforms package diagram

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 43 2014-02-04 10:00:11

44	 Lev Belava

platform in Composition and Grounding and Export Import modules in an easy and
consistent manner. This package consists of two sub-packages: Node Types which
implements the nodes hierarchy in the SCDG data structure, and Plan Operations
which implements all the APIs for such plan manipulation tasks as adding a node or
getting all arcs for a specific node.

A composition package implements all composition logic exactly and consists of
four sub-packages. Each of these sub-packages implements a different service plan
composition method. The grounding package provides all the grounding logic and
consists of two sub-packages which implement grounding engines. The QoS and
Cost grounding was implemented with the usage of grounding filters in the Filters
sub-package. Basically, these filters can choose appropriate service instances from a
set of available service instances provided by the Repository Module based on
parameters given by the user. Complex grounding was implemented with the use of
a Filter Chains sub-package which allows to create specific filter chains, thus
providing required functionality to implement the Complex Grounding Engine. The
repository package implements valuable tools which allow other modules to use the
Networked Repository Service module. The Utils sub-package implements various
classes for working with repository snapshots. Local and Remote Repository sub-
packages are used as an interface to the Networked Repository Service. The Local
sub-package acts as a local repository which can be used if the Networked Repository
Service is unavailable or for conducting simple tests. The Remote Repository Client
package implements all communications with the Networked Repository Service.
The Export Import Operations package implements the functionality of importing
and exporting BPEL and SCDG composition plans to and from the XML files. The
Execution package implements necessary logic and communication methods for the
execution of SCDGs. The Visualization package generates all the visualizations of
grounded and abstract composition plans. The Remote Repository Service package
is a package that implements a standalone Networked Repository Service module.
Its sub-packages are Database Operations, Web Service and Generated sources. The
Database Operations sub-package implements all database interactions logic, like
adding new service descriptions to the database, selecting or deleting them. The Web
Service sub-package implements a specific functionality that allows the Networked
Repository Module to operate as a Web Service in a network. Finally, the Generated
Sources package consists of auto-generated sources which are helpful when
processing SOAP requests and responses that the Networked Repository Service has
to manipulate during interactions with other modules or services.

4.2. A Closer look at main packages

Figure 11 presents a class diagram for a Service Composition Directed Graph package.
This package implements the SCDG data structure and an API for manipulating

it. The package heavily relies on JgraphT 0.8 library which provides some abstractions

Informatyka Ekon._3(29)_Korczak.indb 44 2014-02-04 10:00:11

Towards a platform for hybrid composition and grounding of web services	 45

and algorithms for the manipulation of graph structures. All the node types were
implemented as descendants of an abstract AbstractNode class. All service nodes in
the SCDG structure were implemented by extending the AbstractNode class, however
control nodes such as Flow, While and If extend an abstract class called
AbstractControlNode which is also a descendant of the ControlNode class.
NodeTypes enumeration was introduced for the ease of working with references to
the AbstractNode class. The arcs in the SCDG data structure were implemented in
the DirectedArc class which extends the DefaultEdge class from the JgraphT library.
Different operations on the SCDG structures, such as the deletion of a path in a plan
or merging different plans, were implemented in the PlanOperationsImpl class which
uses PlanInserter and PlanPathDeleter classes.

Figure 12 presents a class diagram for the Composition package which
implements service composition algorithms.

The Forward Chaining, Tree and Graph composition engines implement the
IDynamicComposer common interface which unifies the API for all of them. The
Static engine, however, implements only the IStaticComposer interface because
a static engine provides a different functionality than dynamic ones do. Dynamic
composers operate on given sets of composition requirements plus data about available

Figure 11. Service Composition Directed Graph package class diagram

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 45 2014-02-04 10:00:11

46	 Lev Belava

abstract services, while a static composer operates only on composition plans and
arranges them in a required manner. Dynamic composers also have helper classes for
their internal needs, like the ChainElement class which represents a chain element for
the Forward Chaining engine and provides some valuable methods to operate on
itself. There is also the TreeElement class which is a helper class for the Tree engine
and the GraphBuilder class which is helpful to the Graph engine and provides
functionality for building and operating on complete services dependency graphs.

Figure 13 presents a class diagram for the Grounding package which implements
all grounding logic in the described platform.

As was mentioned earlier in this article, grounding engines were implemented
with a concept of filters and filter chains. This was done bearing in mind a greater
code clarity, reusability and the ability to add more grounding engines by implementing
appropriate filters. IServiceSetGroundingFilter interface is the main interface for all
grounding filter implementation classes. This interface defines methods that should be
implemented by filter classes which will be used in the grounding process. The
QosServiceSetGroundingFilterImpl and CostServiceSetGroundingFilterImpl classes
implement the above-mentioned interface and work their parts in the QoS and Cost
grounding engines. The GroundingFilterChain and ServiceSetGroundingFilterChain
classes implement a vast functionality of a filter chain concept, too. During the groun-

Figure 12. Composition package class diagram

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 46 2014-02-04 10:00:11

Towards a platform for hybrid composition and grounding of web services	 47

ding procedure, filters can be stored and arranged into chains by the Gro-
undingFilterChain object which uses the ServiceSetGroundingFilterChain class
objects for holding and applying these filters. Thus the arranged filter chains can be
assigned to specific parts of a plan by a PlanPathGroundingFilterAssigner class
object. Such an approach allows the described platform to ground different parts of
composition plans by different grounding engines. The UniversalGrounderImpl class
implements the IGrounder interface and provides an API for the whole grounding
module. There are also two utility filter classes in this package: SimpleServi-
ceSetGroundFilterImpl and DefaultServiceSetGroundFilterImpl. The first represents
a simple grounding filter which only filters services with appropriate input and output
types and does no other work. The second one implements a specific filter that is used
only for the purpose of clearing filter chains.

4.3. Tools, libraries and protocols used

Several different tools, libraries and protocols were used during the implementation
of the described platform. First of all, the platform was written to effectively work
with Web Services. The Spring Web Services 2 framework was used to create sample

Figure 13. Grounding package class diagram

Source: own elaboration.

Informatyka Ekon._3(29)_Korczak.indb 47 2014-02-04 10:00:11

48	 Lev Belava

test services and the Networked Service Repository since it is a web service, too. All
of them were implemented as servlets that can run in a proper servlet container.
Apache Tomcat 7 was responsible for that task and it hosted all the services along
with the Networked Service Repository. A SOAP protocol over HTTP was used to
handle all the communication between web services (including the Networked
Service Repository) and the modules that were communicating with them (the
Execution, Grounding and Composition modules). The hibernate version 4 object-
relational mapping framework was used to organize the storage of service related
information in a convenient manner. The H2 version 1.3 database was used as a store
facility for all service related data. H2 is an in-memory database, so it is not optimized
for real-life projects. However, for projects of a prototype nature, such as presented
in this paper, it is appropriate and also easy to work with. The SCDG data structure
was implemented with the extensive usage of the JgraphT 0.8 library. This library
also provided some valuable graph algorithms for the Graph Composition Engine.
The handling of XML data across all platform modules was performed with the use
of the Jdom 1.3 library. The JGraph 5 library was used to draw the visualizations of
service composition plans in the SCDG format such as in Figures 7, 8 and 9.

5. Conclusion and Future Work

This article presents a novel approach to a software system that allows its users to
combine different service composition and grounding methods. Such a possibility
enables users to control the composition and grounding processes in a different and
more powerful way, thus allowing them to create better suited abstract and grounded
composition plans.

The proposed approach was implemented, tested and verified. The verification
process revealed that hybrid composition and hybrid grounding techniques are viable
tools and can be implemented and used in real world applications.

The main implication of the presented work is the fact that users of software
platforms that implement the proposed approach will have more flexibility and
control over service composition and grounding processes. Many composition and
grounding methods have been proposed, yet each of them is different and may not
suit all the needs of the endpoint customer. Furthermore, to satisfy all the upcoming
and even unknown business needs, software systems must allow changes to be
introduced in them. The ability to choose and combine different service composition
and grounding methods addresses these problems by enabling users to select and
merge optimal methods for their needs.

There are also two main directions of the upcoming work for the proposed
concept. The first one is a hybrid execution of grounded plans. The combined usage
of different execution engines might bring some additional features, since these
engines might employ different approaches and thus be valuable from different
points of view. The second direction of the studies has to be made in the field of

Informatyka Ekon._3(29)_Korczak.indb 48 2014-02-04 10:00:11

Towards a platform for hybrid composition and grounding of web services	 49

dynamic composition, grounding and execution methods. Such methods can be very
desirable e.g. in software platforms where the fault-tolerance level of services is low
or the environment itself may constantly be changing.

References

Aggarwal R., Constraint driven Web Service composition in METEOR-S, Proceedings IEEE Internatio-
nal Conference on Services Computing, Sep. 2004, pp. 22-30.

Ankolekar A., Burstein M., Hobbs J., Lassila O., Martin D., DAML-S: Web Service description for
the Semantic Web, Proceedings International Semantic Web Conference (ISWC) 2002, June 2002,
pp. 348-363.

Belava L., Algorytm konwersji skierowanego grafu kompozycji serwisów do planów kompozycji serwi-
sów webowych w języku BPEL, „Automatyka” 2011a, vol. 15/2, pp. 71-80.

Belava L., Koncepcja hybrydowej kompozycji usług w środowisku SOA, „Automatyka” 2009, vol. 13/2,
pp. 189-197.

Belava L., Transforming BPEL service composition into a service composition directed graph for better
composition plan management, Proceedings 25th European Conference on Modelling and Simula-
tion, June 2011b, pp. 424-429.

Bleul S., Weise T., An ontology for quality-aware service discovery, Proceedings First International
Workshop on Engineering Service Compositions, Dec. 2005, pp. 35-42.

Chakraborty D., Yesha Y., Joshi A., A distributed service composition protocol for pervasive environ-
ments, Proceedings 2004 IEEE Wireless Communications and Networking Conference, Mar.
2004, pp. 2575-2581.

Chifu V., Salomie I., Riger A., Radoi V., A graph based backward chaining method for Web Service
composition, Proceedings IEEE 5th International Conference on Intelligent Computer Communi-
cation and Processing, Aug. 2009, pp. 237-244.

Hamadi R., Benatallah B., Petri Net-based model for Web Service composition, Proceedings 14th Au-
stralasian database conference on Database technologies, 2003, pp. 191-200.

Liu D., Shao Z., Yu C., Chen D., Fan G., A heuristic QoS-aware service selection approach to Web
Service composition, Proceedings 8th IEEE/ACIS International Conference on Computer and In-
formation Science, June 2009, pp. 1184-1189.

Ponnekanti S., Fox A., SWORD: A developer toolkit for Web Service composition, Proceedings 11th
International WWW Conference, May 2002.

Sheshagiri M., Desjardins M., Finin T., A planner for composing services described in DAML-S, Pro-
ceedings AAMAS Workshop on Web Services and Agent-based Engineering, July 2003.

Silva E., Pires L.F., Sinderen M., An algorithm for automatic service composition, Proceedings 1st In-
ternational Workshop on Architectures, Concepts and Technologies for Service Oriented Compu-
ting, July 2007, pp. 65-74.

Sirin E., Hendler J., Parsia B., Filtering and selecting semantic Web Services with interactive composi-
tion techniques, “IEEE Intelligent Systems” 2004, vol. 19, pp. 42-49.

Sirin E., Hendler J., Parsia B., Semi-automatic composition of Web Services using semantic descrip-
tions, Proceedings Web Services: Modeling, Architecture and Infrastructure workshop in ICE-
IS2003, Apr. 2003, pp. 17-24.

Sirin E., Parsia B., Wu D., Hendler J., Nau D., HTN planning for Web Service composition using
SHOP2, “Web Semantics: Science, Services and Agents Journal” 2004, vol. 4, pp. 377-396.

Sohrabi S., Baier J., McIlraith S., HTN planning with preferences, “Web Semantics: Science, Services
and Agents Journal” 2004, vol. 4, pp. 377-384.

Informatyka Ekon._3(29)_Korczak.indb 49 2014-02-04 10:00:12

50	 Lev Belava

Sun S., Tang X., Yan X., Chen D., A symmetric matchmaking engine for Web Service composition,
Proceedings 15th International Conference on Parallel and Distributed Systems, Dec. 2009,
pp. 810-814.

Tang J., Xu X., An adaptive model of service composition based on policy driven and multi-agent ne-
gotiation, Proceedings 5th International Conference on Machine Learning and Cybernetics, Aug.
2006, pp. 113-118.

Thakkar S., Knoblock C., Ambite J., Shahabi C., Dynamically composing Web Services from on-line
sources, Proceedings AAAI-2002 Workshop on Intelligent Service Integration, July 2002.

Wang Y., Wang H., Xu X., Web Services selection and composition based on the routing algorithm,
Proceedings 10th IEEE International Enterprise Distributed Object Computing Conference Work-
shops, Oct. 2006, pp. 69-73.

Yan H., Zhijian W., Guiming L., A novel Semantic Web Service composition algorithm based on QoS
ontology, Proceedings 2010 International Conference on Computer and Communication Techno-
logies in Agriculture Engineering, June 2010, pp. 166-168.

KU PLATFORMIE HYBRYDOWEJ KOMPOZYCJI
I GRUNTOWANIA USŁUG SIECIOWYCH

Streszczenie: Artykuł przedstawia metodę hybrydowej kompozycji usług sieciowych, meto-
dę hybrydowego uziemiania abstrakcyjnych planów kompozycji oraz podejście do tworzenia
platformy programowej je realizującej. W sposób szczególny zaprezentowano w nim również
architekturę powstałej platformy, a także opisano jej moduły składowe.

Słowa kluczowe: SOA, kompozycja usług sieciowych, gruntowanie usług sieciowych.

Informatyka Ekon._3(29)_Korczak.indb 50 2014-02-04 10:00:12

