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THE APPLICATIONS OF THE KERNEL DENSITIES  
TO MODELING THE GENERALIZED  
PARETO DISTRIBUTIONS

Abstract: In this paper we present the tools used in the modeling of distributions with fat tails 
in the theory of extreme values. We present three tools: the sample distribution function, the 
histograms for grouped data and the kernel densities. The latter is described in detail. The 
presented examples show the application of the kernel densities to modeling the generalized 
Pareto distributions. 
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1. Introduction 

Extreme values because of their essential influence – in most cases negative – on 
many fields of life and science, have been are an object of interest not only for the 
scientists and the researches of the many fields for a long time. The negative influence 
of the described values of the definite characteristic is observed in fields such as 
economics and financial markets, metrology and hydrology, and insurance. It isnot 
without reason these three fields are mentioned. The recently intensifying economic 
crisis, which has influence on the qualitative changes in the financial time series and 
the violent and strong changes of atmospheric conditions, which are the cause of 
many meteorological and hydrological disasters, both in our country and worldwide, 
are the cause of the increasing interest in the extreme values theory. 

This interest is focused on the way in which one may protect oneself from the 
negative influence of the extremely high and low definite financial characteristics, or 
the meteorological and hydrological characteristics, which are the direct causes of 
the appearance of the phenomena described above. 

In order of protecting oneself from the negative influence of the extreme values 
we need to know the models, which will describe accurately the character and 
behavior of the observed variables. Up to that point, if only to model diligently the 
extreme values of the examined variables, we need to determine the theoretical 
distribution of the population from which the examined data come, or alternatively 
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we can approximate the distribution of the extreme values for the examined variables 
on the basis of the examined samples. 

In this work we present the tool with which one can identify the distribution of 
the continuous variables on the basis of the observations from the sample. This tool 
is called the kernel density. The application of this tool is presented using the example 
of the family of the generalized Pareto distributions, which are also used in the 
modeling of the extreme values. 

2. The basic notions and symbols in the theory of extreme values 

Suppose that 1 2, , ...X X  are the sequence of the identical independent random 
variables (iid), and in other words, the variables have the shared distribution function 
F(x). 

As Mn we mean the random variable which is maximum form n the random 
variables, namely

( )1 2max , ,..., .n nM X X X=

Due to the fact that the considered theory for the distributions Mn has an 
asymptotic character, properties in particular are satisfied when n →∞ . From a 
practical point of view, it is stressed that we should consider the relatively long 
sequences of the random variables in the destination of receiving solid results. All 
the results for the maxima one can move into the simplest manner on the minima 
using the relation 

( ) ( )1 2 1 2min , , ..., max , , ..., .n n nm X X X X X X= = − − − −  

In this situation, the distribution function can be presented in the simplest manner 
with the following formula,

{ } { }1 2, , ..., ( ),n
n nP M x P X x X x X x F x≤ = ≤ ≤ ≤ =

where F(x) means the shared distribution function of the variables Xi (i = 1, 2, …, n), 
appropriately the distribution function of the random variable mn is given with the 
formula

{ } { } { } [ ](1) (1) (1)( ) 1 1 1 1 ( ) n
iF x P X x P X x P all X x F x= ≤ = − > = − > = − − . 

Additionally, we define the exceedance distribution function. Let xi be governed 
by a distribution function F and let threshold u be smaller than the right endpoint 
defined as { }( ) sup : ( ) 1F x F x= <ω . We speak of high threshold u, if u is close to 
the right endpoint ( )Fω . In that case, 1 ( )p F u= −  is small and the number k of 
exceedances may be regarded as the Poisson random variable. Subsequently, we deal 
with the magnitudes (sizes) of the exceedances. Exceedances occur conditioned on 
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the event that an observation is larger than the threshold u. The pertaining conditional 
distribution function [ ]uF  is called exceedance distribution function at u. If X denotes 
a random variable with distribution function F, then

( ) { } { }[ ] ( ) , /

( ) ( ) , .
1 ( )

uF x P X x X u P X x X u P X u

F x F u x u
F u

= ≤ > = ≤ > > =

−
= ≥

−

 

One should keep in mind that the left endpoint ( ) [ ]{ }[ ] inf : ( ) 0uuF x F x= >α  of 
[ ]uF  is equal to u. The generalized Pareto distribution functions (GP) will be fitted to 

exceedance distribution functions (df) [ ]uF  in the next section.
At the end of this section we introduce another closely related approach of 

extracting extreme values from the data taking the k largest values 1: :n k n n nx x− + ≤ ≤  
of the xi., where the number k is predetermined. Notice that :n nx  is maximum, i.e. the 
execution of the random variables described by the formula. Within this approach, 
the (k + 1)th largest observation :n k nx −  may be regarded as a random threshold (see 
[David, Nagaraja 2003; Leadbetter et al. 1983; Thomas, Reiss 2007]). 

3. Generalized Pareto distributions 

In this section we present the family of generalized distributions of Pareto. The 
standard generalized distribution functions (dfs) Pareto (GP) ,iW α  and Wγ  are 
adequate parametric dfs for exceedances, cf. also? The densities are denoted similarly 
by ,i αω  and γω . 

First we introduce the representation for GP df within three submodels 
corresponding to that for the three types dfs extremal values (EV) (see e.g. [Galambos 
1978; Kuźmiński 2012; Leadbetter et al. 1983])

Exponential (GP0):		  0 ( ) 1 , 0xW x e x−= − ≥  
Pareto (GP1), 0 :  	 1, ( ) 1 , 1,W x x x−= − ≥α

α  
Beta (GP2), 0 :α <  	 2, ( ) 1 ( ) , 1 0.W x x x−= − − − ≤ ≤α

α  
Of course, the exponential df W0 is equal to zero for x < 0; the Pareto dfs 1,W α  are 

equal to zero for x < 1; the Beta dfs 2,W α  are equal to zero for x < 0 and equal to 1 
for x > 0. 

Note that 2, 1W −  is the uniform df on the interval [–1, 0]. One should be aware that 
the dsf 2,W α  constitute a subclass of the usual family of beta dfs. Subsequently, when 
we speak of beta dfs only dfs 2,W α  are addressed. Warning, our parameterization for 
beta dfs differs from the standard one used in the statistical literature, where beta dfs 
with positive shape parameters are taken. 
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Below, we present the densities functions for dfs GP
Exponential (GP0): 		 0 ( ) , 0xw x e x−= ≥  
Pareto (GP1), 0 :>α  	 (1 )

1, ( ) , 1,w x x x− += ≥α
α α  

Beta (GP2), 0 :<α 	 	 (1 )
2, ( ) ( ) , 1 0.w x x x− += − − ≤ ≤α
α α  

The Pareto and exponential densities are decreasing on their supports. This 
property is shared by beta densities with shape parameter 1< −α . For 1= −α  one 
gets the uniform density on [–1, 0] as mentioned above. Finally, the beta densities 
with shape parameter 1> −α  are increasing, having a pole at zero. 

One must add the location and scale parameters µ  and 0>σ  in order to obtain 
the full statistical families GP dfs. Notice that the left endpoint of the Pareto df 

( )1, , , 1,( ) ( ) /W x W x= −α µ σ α µ σ  is equal to +µ σ  (see [Johnson, Kotz 1970; Thomas, 
Reiss 2007]). 

4. Kernel densities 

In this section, we catch a glimpse of the real world in the condensed form of data. 
Our primary aim is to fit generalized Pareto (GP) distributions, which were introduced 
in the foregoing section by means of limit theorems, to the data. 

We describe visualization techniques, such as the sample distribution function, 
histograms for grouped data, and finally, kernel densities.

The sample df ˆ ( )nF x  at x for series of univariate date 1, , nx x  is the relative 
number of the ix  that are smaller or equal to x. Thus,

( )1ˆ ( ) ,n i
i n

F x I x x
n ≤

= ≤∑  

where the indicator function is defined by ( ) 1I y x≤ =  if 0y ≤  and 0, elsewhere; 
furthermore, the summation runs over 1, ..., .i n=  Sample dfs are particularly useful 
for representing samples of e smaller size.

The data 1, , nx x  ordered from the smallest to the largest are denoted by

1: : .n n nx x≤ ≤ .

We have :
ˆ ( ) /n i nF x i n=  if :i nx  is not a multiple point. Notice that n̂F  is constant 

between consecutive ordered values. The ordered values can be recaptured from the 
sample df and, thus, there is a one – to – one correspondence between the sample df 
and the ordered values. 

Occasionally we write ˆ ( ; )nF xx  in place of ˆ ( )nF x  to indicate the dependence on 
the vector data 1( , , )nx x=x  . We will primarily deal with situations where each of 
the xi is generated under a common df F and the sample df n̂F  is approximately equal 
to F. This relation will be briefly written as 

ˆ ( ) ( ).nF x F x≈  

Clearly, one result from that ˆ ( )nF x  is an estimator of ( )F x . 
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Below we have the graphs Pareto df and the sample df, which was made for the 
set of Pareto date for the sample n = 100.

Figure 1. Pareto df (dotted) and sample df of Pareto data set with 100 points 

Source: own study. 

To a larger extent, our statistical arguments are based on the relation between the 
sample df ˆ ( )nF x and the underlying df F so that, apparently, the statistical prerequisites 
for understanding this text book are of an elementary nature.

Now we present linearly sample distributions. If the underlying df is continuous, 
then it is plausible to estimate this df by means of a continuous sample df. Such a df 
can be constructed by linearly interpolating the sample df ˆ ( )nF x in over intervals 

1( , ]j jt t + , where the 1j jt t +<  constitute a grid on the real line. One gets the continuous 
sample df

( )1
1

1
1

ˆ ˆ ˆ( ) ( ) ( ) ( )

( )ˆ ( ) , ,

j
n n j n j n j

j j

j j
n j j j

j j

x t
F x F t F t F t

t t
x t n

F t for t x t
t t

+
+

+
+

−
= + − =

−

−
= + < ≤

−

where nj is the frequency of data 1, , nx x  in the interval 1( , ]j jt t + . Thus, the sample 
df Fn only depends on the data in a grouped form (see [Cleveland 1993; Simnoff 
1996]). The application of this tool will be present in the next section in an example. 

The sample df based on grouped data is piecewise continuously differentiable 
and, therefore, it has a density in the form of a histogram. The next concept can be 
regarded as a modification of the histograms for grouped data.
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Let nj be the frequency of data in the interval 1( , ].j jt t +  Taking the derivative of 
the preceding sample df Fn based on grouped data as given, one gets the probability 
density 

1
1

( )( ) , .
( )n j j

j j

n jf x t x t
n t t +

+

= < ≤
−

It is very natural to visualize frequencies by means of such a histogram. It is 
apparent that this histogram is an appropriate estimate of the density f of F. The 
histogram may also be addressed as sample density.

Practitioners use histograms because of their simplicity in representing data, 
even if the data are given in a continuous form. One disadvantage of a histogram is 
that one must choose the location of the grid. 

In the case of discrete data, a sample histogram is given by

( ) ( ) /np j n j n= ,

where ( )n j  is number of data 1, , nx x  equal to the integer j. As an analogy, we have

{ }( ) ,np j P j≈  

P which is the underlying discrete distribution (under which the xi were generated). 
Note that discrete values xi – ordered according to their magnitudes – can be 
recaptured from the histogram. In view of the elementary character of this tool we do 
not present the examples. 

The last and fundamental tool which we present is the kernel density. Starting 
with continuous data 1, , ,nx x  the histogram for grouped data may be constructed 
in the following manner. Replace each point xi in the interval 1( , ]j jt t +  by the constant 
function 

1
1

1( , ) ,
( )i j j

j j

g x x t x t
n t t +

+

= < ≤
−

 

with weight 1 / n . In summing up the single terms ( , )ig x x , one gets the histogram 
for grouped data in the representation ( ) ( , ).n ii n

f x g x x
≤

=∑  If continuous data are 
given, the choice of the grid is crucial for the performance of the histogram.

We represent an alternative construction of a sample density. In contrast to it, 
replace xi by the function 

1( , ) ,i
b i

x xg x x k
nb b

− =  
 

 

where k is a function (kernel) such that ( ) 1k y dy =∫  and b > 0 is the chosen 
bandwidth. If 0k ≥ , then ( )( ) / /ik x x b b−  may be regarded as a probability density 
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with location and scale parameters xi and b > 0. The function ( , )b ig x⋅ again possesses 
the weight 1/n.

In summing up the single terms, one gets the kernel density

,
1( ) ( , ) i

n b b i
i n i n

x xf x g x x k
nb b≤ ≤

− = =  
 

∑ ∑  

which is a probability density if 0.k ≥

A very important matter in creating of the kernel density is the choice of the form 
of function k (x) – the grid of the histogram. Below we present the general forms of 
the kernel functions:

2
0.75 ( ) 0.75(1 ) ( 1 1),k x x I x= − − ≤ ≤  

0.5 ( ) 0.5 ( 1 1)k x I x= × − ≤ ≤ , 
2

0.125 ( ) 0,125(9 15 ) ( 1 1),k x x I x= − − ≤ ≤  

2 4
0.469 ( ) 0,46875(3 10 7 ) ( 1 1),k x x x I x= − + − ≤ ≤  

these two last kernels satisfy the additional condition 2 ( ) 0.x k x dx =∫
In an analogy to the choice of the grid the histogram – particularly of the 

bandwidth – the choice of an appropriate bandwidth b is crucial for the performance 
of the kernel density. 

If the bandwidth b is small, which is related to a small scale parameter, then one 
can still recognize the terms ( , )b ig x x  representing the single data. If b is large, then 
an oversmoothing of the data may prevent the detection of certain clues in the data 
(see [Cleveland 1993]). 

In the practical applications, in the first step we establish the bandwidth 
automatically. An automatic bandwidth selection is provided by cross–validation 
(see e.g. [Marron 1988] or [Simnoff 1996]). For finite sample sizes, the automatic 
choice of the bandwidth must be regarded as the first crude choice of the bandwidth. 
It is useful to vary bandwidth around the automatically selected parameter; e.g. 
decrease the bandwidth until the graph of the kernel density becomes bumpy. 

If it is known that none of the observations is below or respectively, above  
a specific threshold – e.g. life spans are non negative or exceedances over a certain 
threshold t exceed t – the foregoing smoothing of data should not result in shifting 
weight below or above such thresholds. In this situation we take bandwidths that 
vary with the location.

If one realizes that there is a mode at a boundary point – as in the case of 
exponential density at zero – one should employ less smoothing around this point. 
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5. Examples of the practical applications 

In this section, we present the applications of the kernel densities for fitting the 
generalized Pareto distributions to the data coming from the definite population and 
empirical data which come from the unidentified population. 

In Figure 2 the exponential distribution with three different kernel densities are 
presented. The kernel densities are based on the sample n = 100, which comes from 
the population of the exponential distribution. 

 

Figure 2. Exponential density (solid), kernel density with k(x) function without bounded (dashed), 
kernel density with k(x) function left bounded (dotted) and kernel density with k(x) function left 
bounded (dashed – dotted)

Source: own study. 

From Figure 2 one can see that for the left–side limited distribution one should 
apply the kernel density left bounded. Additionally, one can see that all three use the 
kernel densities very well, are fitted to the fat tail of the exponential distribution. 
Secondly, the tail of the left bounded kernel density with the k(x) function is best 
fitted to the basic distribution. Also one see that the kernel density with the function 
is more smoothed than the one with the function. For all the kernel densities in 
Figure 2, the bandwidth was generated automatically.

In Figure 3 the Pareto density with 1.5=α  and the kernel densities for the function 
with three different values of the bandwidth are presented. Clearly it is visible that the 
kernel density with the bandwidth equal to 0.5 is best fitted to the density Pareto. In this 
case also all the kernel density are well fitted in the tail of the density Pareto. 
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Figure 4 presents the density beta with 1.36= −α  and the kernel densities with 
the functions, and with three different bandwidths. In this case, the best fitted is the 
kernel density with function and b = 0.26. 

Figure 3. Pareto density with parameter alpha –1.5 (solid), kernel density with k(x) function left 
bounded with bandwidth equal to 2 (dashed – dotted), equal to 0.5 (dotted) and equal to 0.2 (dashed) 

Source: own study. 

Figure 4. Beta density with parameter alpha –1.36 (solid), kernel densities with function and b = 0.26 
(dotted), with function and b = 0.36 (dashed) and with function and b = 0.38

Source: own study.
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6. Final remarks 

In this paper we considered three different tools to the visualization of the empirical 
distribution. The first two tools, that is the histogram for grouped data and the sample 
distribution function, were presented in less detail than the kernel densities. Additionally, 
in the paper the family generalized Pareto distributions were presented. The applications 
of the kernel densities were shown in examples of the generalized distributions and the 
samples coming from the generalized Pareto populations. In the examples we presented 
the use of the kernel densities for the different functions k (x) and the bandwidths. 

A fact worthy of notice is that the kernel density is a very good tool to approximate 
the distribution with fat tails. Namely, that the kernel density is useful in the modeling 
distributions of the extreme values. 
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ZASTOSOWANIA FUNKCJI JĄDRA GĘSTOŚCI  
DO MODELOWANIA UOGÓLNIONYCH ROZKŁADÓW PARETO

Streszczenie: W artykule prezentujemy narzędzia wykorzystywane w modelowaniu rozkła-
dów charakteryzujących się ciężkimi ogonami. Prezentujemy trzy narzędzia; są nimi: dystry-
buanta empiryczna, histogram dla pogrupowanych danych i funkcja jądra gęstości. Ostatnie  
z wymienionych narzędzi opisano w pracy bardzo szczegółowo. Przedstawione przykłady 
pokazują zastosowanie funkcji jądra gęstości do modelowania uogólnionych rozkładów Pareto.

Słowa kluczowe: funkcje jądra gęstości, wartości ekstremalne, uogólnione rozkłady Pareto.
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