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GEOMETRICAL PERSPECTIVE ON ROTATION  
AND DATA STRUCTURE DIAGNOSIS  
IN FACTOR ANALYSIS

Abstract: Geometry has always contributed to a great extent and played a significant role in 
the development of many of the principles of the factor models. While factor-analytic 
principles and procedures have been generally developed by the heavy emphasis on matrix 
algebra, there is still a grave importance and need towards a geometrical approach and  
its application in the factor analysis. In this article the author provides, on selected issues,  
a description in reference to factor models from a geometric viewpoint with a discussion 
running through its advantages and disadvantages. Finally, at the end of the paper, conclusions 
in reference to good conditions of factors rotation are given. This article explains to what 
extent a geometrical approach brings specific value and offers an extra insight into factor 
analysis. As proved, geometry still provides an alternative framework which may be helpful 
for better understanding and data structure diagnosis.
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1. Introduction

In the history of factor analysis, geometry has been used in the development of many 
principal factor models. The impact of geometry can be found in phrases such as 
“rotation of factors”, and while factor-analytic principles and procedures are 
generally developed by matrix algebra, a brief overview of the factor models from  
a geometric viewpoint can greatly add to one’s intuitive understanding. This is 
particularly helpful when we consider such problems as the number and placement 
of factors in the space [Gorsuch 1974; Skinner 1984]. In factor analysis the 
geometrical approach has a very special pedagogical value which offers an extra 
insight into some rather complex algebraic results. In the geometrical approach, 
where we have p random variables with finite variances, they will be represented as 
p vectors in p-dimensional Euclidean space, with the vectors’ lengths being equal to 
the standard deviations of the variables and the cosines of the angles between the 
vectors being equal to their correlations. 
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2. The general idea, model and assumptions of factor analysis

In order to remind us what the idea and the general assumption hold in the factor 
analysis model, we need to start with the reconstruction of its well-known form: 

	 X = AF + U,	 (1)

where X is matrix of observed variables, F is a matrix of common factors, and U is 
a matrix of unique factors defined on respective population. The matrix A is a p by k 
matrix of factor loadings. It is also assumed that the F and U have mean zero and 
remain uncorrelated, so the components F have variance one, and that the components 
of U are uncorrelated. More precisely [Jennrich 2007]:
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The covariance matrix Σ of X has the following structure:

	 Σ = AΦA’ + Ψ,	 (3)

where Σ = covF, Ψ = covU and Ψ is diagonal.

If there are no constraints that affect Σ then we call it an exploratory model. On 
the other hand, if there are enough constraints to uniquely identify A and Φ, then we 
call it a confirmatory model. Models that are neither exploratory nor confirmatory do 
not seem to have a name. The two named models represent a major division in the 
empirical studies and application of factor analysis. Often an exploratory analysis is 
used to help formulate the next steps undertaken in the confirmatory analysis. In this 
article predominantly the issues in reference to exploratory analysis will be 
considered.

For exploratory analysis there are two important steps. The first depends on the 
estimation:
	 Ω = AΦA′	 (4)

and Ψ from a sample of X values. We call it an extraction. The second is the estimation 
of A and Φ from the estimate Ω and is therefore called rotation. The rotation problem 
is the major aspect of exploratory factor analysis. 

Given now Ω, there are many A and Φ that satisfy the estimation (4), the ordinary 
approach to estimate A and Φ (that is also to the rotation problem purposes), is to 
find A that looks nice, or slightly more specifically has a simple structure. The main 
problem is: what does this vague statement mean? One case is clear. If each row of 
A has at most one nonzero element, A is said to have a perfect simple structure, an 
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example of which is displayed in Table 1. The difficulty is that among all factorizations 
(4) which means there may not be A with a perfect simple structure and that is the 
usual case. Thurstone proposed a less demanding definition of simple structure. As 
we can observe, the second loading matrix in Table 1 has a Thurstone simple 
structure.

A Thurstone simple structure requires a fair number of zeros, but far fewer than 
a perfect simple structure. The complexity of a row of A is the number of nonzero 
elements in the row. A Thurstone simple structure allows for row complexities of 1, 
2, 3, or more. As with a perfect simple structure, however, there may be no 
factorization (4) of Ω that has A with a Thurstone simple structure and this is the 
usual case. It may however be possible to find that A approximates a Thurstone 
simple structure or even a perfect simple structure.

Table 1. Example of perfect and Thurstone simple structure

Perfect Thurstone
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 .89 .45 0
0 1 0 .89 0 .45
0 0 1 0 .71 .71

Source: [Jennrich 2007].

Rather than attempting to define a simple structure, one might attempt to identify 
a simpler structure. That is, given two A decides on which is simpler. This might be 
done by just looking at them. Sometimes one is clearly simpler than the other. But 
also rather than just looking, one might consider the whole context of the problem. 
The trouble with this approach is that it does not tell us how to estimate A and Φ. 
This is usually done by choosing a rotation criterion, for instance, Q that assigns a 
numerical complexity Q(A) to A. The A that satisfies (4) for some Φ and which 
minimizes Q, is the rotated value of A corresponding to Q. Unfortunately there are 
many choices for Q. A special version of the classical factor analysis model assumes 
the factors are uncorrelated. Hence, then Φ is an identity matrix and (4) becomes:

	 Ω = AA′.	 (5)

This form is called the orthogonal factor analysis model. But when the factors 
are correlated, then it is called the oblique factor analysis model. 

In the oblique approach, we have factors which are dependent on each other. In 
contrast, the orthogonal factors remain independent or otherwise uncorrelated with 
each other. In short, an orthogonal transformation depends on turning a matrix with 
factor loadings A into another B, which is made by the specific rotation of coordinate 
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configuration in factorial space within the close range of starting coordinate point 
[Browne 2001].

In the practice of many market research projects, the most often applied technique 
is the Varimax rotation, which tends to purify the factors and to account for as much 
of the covariance in the data as possible, so as to make it easier to conceptualize the 
entire research domain. An algorithm to rotate the loadings was proposed by Kaiser 
[1958]. It is based on a criterion which maximizes squared variance in factor loadings 
for each factor, on a given number of factors and given communality:
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where:	k	 – the number of factors, 
	 p	 – number of variables, 
	 aij	– factor loading i-th variable on j-th factor.

Another type of rotation, Quartimax, is quite similar to Varimax. However 
Quartimax is much more focused on simplifying the columns of a factor matrix. 
Generally it is considered to be less effective than Varimax. Technically speaking, 
Q-rotation maximizes squared variance in factor loadings for each variable (in 
contrast to Varimax), on a given number of factors and given communality that is 
leading to retain orthogonal factors [Gatnar 2003]:
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The merits of the Quartimax and the Varimax solutions lie in the background 
where they simplify the rotational method by looking at it as a problem of 
maximization of a single criterion function. Their effects agree well with several 
empirical studies results which attained simple structure criteria through subjectively 
used methods. Moreover, the Varimax solution has generally been preferred to the 
Quartimax solution, as various studies reported [Kaiser 1958], however the former 
one satisfies the simple structure criteria better. But the Varimax solution, because it 
is based on the concept of factorial invariance (which is assumed to be the ultimate 
criterion), is not necessarily crucial for supporting the rotation solutions. For this 
reason Varimax may not satisfy all the requirements of an objective and analytic 
approach to the simple structure. It does not always satisfy the criteria of the positive 
manifold and the level contributions of all factors to the orthogonal rotation 
[Kashiwagi 1965].

If the restriction of orthogonality is relaxed, it will be impossible to apply directly 
the Quartimax or the Varimax criterion. This is because the interfactor relationships 
are not considered when the criteria are in this form, and when applied, all the factors 
will collapse into the same factor. However, Carroll’s version of the Quartimax 
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explicitly considers interfactor relationships and an oblique solution that is attainable. 
Assuredly, Varimax should not be used when there is a theoretical expectation of  
a general factor. Because Varimax serves to spread variance evenly among factors, it 
will distort any general factor in the data. That is why Quartimax is probably the 
orthogonal rotation procedure of choice when a general factor is expected [Carroll 
1953].

Some other well-known rotation approaches are Equimax and Biquartimax . But 
the Equimax compromises either on Varimax or Quartimax: 

	 αQ + βV → max,	 (8)

where: α and β – weights both criterions.

The simplified Equimax criterion can be stated as follows:
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where: .βγ
α β

=
+

And if by any chance, γ = 0.5, then we obtain the Biquartimax rotation.
In the oblique rotation techniques, these factors (as mentioned above) remain 

uncorrelated. Their objective is to identify factors correlated with other observed 
variables at the highest level, and on the other hand, correlated (with other variables) 
at the lowest level. In the Oblimin rotation type, the sum of squared correlation 
coefficient for variables is minimized (with axes perpendicular to the hyperplanes 
designated by axes fitted the variables – according to simple structure of factors) 
[Browne 2001; Aranowska 2005]:
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where: 	 2
ija  – loading for factor j,

	 2
ira – loading for factor r.

The Oblimin procedure is based on: 1). primary axes configuration represented 
by oblique factors, fitted to variables, and 2). reference axes. 

In the case of the Quartimin type rotation, the function will be minimized 
without .γ
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Quartimin criteria have been used for both indirect and direct rotation. In the 
direct case, Jennrich [1979] has proved that for every γ > 0 there is an initial loading 
matrix A such that the Oblimin criterion with parameter γ is unbounded below over 
oblique rotations of A and as a consequence Φ (that equals F-factors) approaches 
singularity. The matrix of factor loadings A approaches infinity when attempting to 
minimize the criterion. Although there always exists such an initial loading matrix, 
this need not happen for a specific initial loading matrix. There is also known as the 
Promax rotation, which maximizes a simple structure while allowing the factors to 
become correlated [Gorsuch 1970].

The literature, though filled with factor analytic reports, provides few examples 
of oblique rotations. The orthogonal rotation techniques dominate, despite the strong 
likelihood that correlated factors and hierarchical factor solutions are intuitively 
attractive and theoretically justified in many scientific applications. The careful 
researcher should almost invariably perform both either an orthogonal or oblique 
rotation, particularly in exploratory works. These solutions can be compared to 
identify the simpler structure and to determine whether the oblique rotation produces 
a marked increase in the hyperplane count. Oblique solutions have been found 
particularly useful in the theory building of other disciplines (e.g. psychology, 
sociology), and are likely to play a significant role in the development of any theory, 
such as customer behavior or attitudes measurement [Stewart 1981]. 

3. Principles of factor-score indeterminancy

The most obvious consequence of indeterminancy is the prevention from the 
development of unique factor measures. As a result, factor analysis does not seem 
very useful in describing the individual subject. No doubt Guttman [1955] had this 
potential usage of factor analysis in mind when he remarked “that unless 
indeterminancy of factor scores was resolved, factor analysis should be abandoned 
as a scientific instrument”. However, a description of the individual subject is not 
necessarily a major objective of factor analysis. Thurstone [1947] noted that “the 
individual subjects are examined, not for the purpose of learning something about 
them individually, but rather for the purpose of discovering the underlying factors”.

The underlying factors are fewer in number than the observable variables and go 
beyond measures, in the sense that they do not tie in the variables space. Thurstone 
evidently conceived factor analysis as a tool for analyzing variables and its measures 
into more fundamental components, much as he analyzed box measurements into 
length, width, and height. The underlying factors suggest to the investigator the type 
and number of new measures which need to be reconstructed in order to depict what 
is common to a group of variables. Fortunately, an interpretation of underlying 
factors is untroubled by the indeterminancy since both of these processes are 
dependent only upon the factor matrix. Nevertheless, ambiguities are created by 
indeterminancy if one attempts to relate the underlying factors to variable measures 
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not included in the original factor analysis. These outside measures occupy a unique 
position in n-space which is determined by their normalized score matrix, but factor 
vectors may occupy a wide variety of positions in n-space [Heermann 1969].

There is no doubt that the generality and scientific utility of the factor models 
would be enhanced if some meaningful method could be found to render factor 
scores determinate. It should be emphasized, however, that it is not advocated here 
to use the determinate factor model, i.e. a factor model which employs unities instead 
of communalities in the diagonals. Determinate factor solutions permit the unique 
calculation of factor scores, but the factors are always contained in the variables 
space and hence cannot be expected to represent anything which goes beyond the 
original measures. If we think of factor analysis as a tool for generating new measures 
which are more fundamental than our original measures, we have little choice except 
to retain the indeterminate factor model. However, to avoid the ambiguities of this 
model, it does seem wise to seek some rational criterion which would allow the 
investigator to select a particular set of factor scores from the infinite set of factor 
scores which correspond to a given factor solution. The criterion for resolving this 
indeterminancy would be more complex than the simple structure criterion for 
resolving factor matrix indeterminancy because it must remove indeterminancy of 
total factor space by specifying r – additional measures to supplement the test-score 
matrix, and it must remove rotational indeterminancy by specifying values1.

4. Geometrical perspective on factor analysis

We may geometrically take a look at the factor models which will be represented by 
the space including variables and their factors as vectors. Geometry helps us to 
describe the relationship and provides significant information on how the factors 
(rotated or unrotated) are made. A geometrical solution to the basic problems 
associated with factor analysis has therefore two major premises. It explains why the 
graphical perspective of multivariate factor analysis makes up a significant element 
of procedure which assists and leads the whole analysis to the end. Secondly, any 
problems (appearing in the factor analysis pertaining to the relationship analysis) are 
detected and resolved with some graphical data visualization, provided we choose a 
preferable configuration on data [Yule 1897]. However the choice is always made by 
humans, which means the geometrical perspective of looking and finding the 
relationship is still more biased by our subjectivity. 

In its technical understanding of the problem, the presentation of the correlation 
coefficients between observed variables and factors usually take place in 

1  While the determinate factor analysis is seen as less desirable than indeterminate factor analysis, 
the results of research conducted by Heermann [1969] suggest that the two types of factor solutions 
may not be so distinct as once thought. Since a determinate factor solution for n measures would at most 
contain F factors, it is clear that we cannot transform these factors into a set of linearly independent 
communality factors. However, a determinate factor solution for measures can be transformed into 
a communality factor solution for n of these measures [Ledermann 1938].
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n-dimensional space (assuming that space dimension is defined by number of 
observations in matrix R).  On the other hand, subspace can be reduced to 
k-dimensional (k < p) space (where p denotes collection of vectors in n-dimensional 
space containing vector-variables Xi (i = 1, 2, …, p). Observable variables, being 
correlated with each other, should be set on a vector, that is, a sort of segment of the 
straight line with – denoting ab. Its absolute value length is termed with |ab| symbol. 
We denote length of vector as h and i as a variable being presented on the vector 
according to its length hi and another variable on hk (length of vector for i-th variable). 
The length of the vector is computed from the Pythagorean theorem, where the 
square of the length of the hypotenuse of a right triangle is equal to the sum of the 
squares of the other two sides [Mendelson, Vershynin 2004]. As a result, factors are 
identified as the axes and the variables as lines, or vectors, drawn in what is called  
a Cartesian coordinate space. When the plot shows the variable to be physically close 
to a factor, then they are strongly related. The direction and length for the line 
representing the variable is determined by the factor pattern of the variable and the 
factor pattern gives the coordinates of each line’s end point [Gorsuch 1974].

Then, plotting variables and factors in joint space can proceed in two ways. On 
the one hand, the variables can be plotted as a function of the factors. This procedure 
can be used to represent the multivariate linear model in which variables, factors and 
weights are all known. On the other hand, the variables can be plotted alone. Factors 
and weights are then determined as additional steps. If one decides to present 
variables as vectors themselves, the correlation between them equals a product scalar 
of two vectors, which is the product of absolute values in either vectors by the cosinus 
angle between vectors. To put it simply, the correlation coefficient between two 
variables equals the total (accumulated) length of two vectors multiplied by cosinus 
angle length between them [Thurstone 1947]. Otherwise it can be explained 
respectively as: rik = hihk cos Φik, provided both vectors are made up of the same 
length, hi = hk = 1. Otherwise it can be also stated as follows: 

	 r12 = h1h2cos a12,	 (12)

where:	r12	 – correlation coefficient between variables 1 and 2,
	 h1	 – length of vector representing variable 1,
	 h2	 – length of vector representing variable 2,
	 a12	– angle between vectors in variables 1 and 2.

Now if we, for instance, assume that both h1 and h2 > 0 at r12 = 0, then a12 = 90° 
and respectively for negative r12 = –0.60, gives a12 > 90° or even a = 180°. Analogously 
for positive r12 = +0.60 the cosines angle between vectors can be 12 0a ³  and 90 .£   
Both vectors will be expressed in unit length (which means they represent total 
variance), therefore h1 = 1 and h2 = 1. This implies product scalar in either vectors to 
be equal cosines angle between them: r12 = cos a12. For example, if a12 = 45° then we 
obtain r12 = 0.707.
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The process of placement points in geometrical configuration according to their 
specific vectors arranged between two axes begins, as mentioned, with the correlation 
estimation on hypothetical variables (e.g. two variables) and then the transformation 
correlation scores into vectors. In fact, the more variables come into data analysis, 
the more vectors come out onto geometrical space of vectors and the more complex 
geometrical presentation such data becomes [Rusnak 1999].

5. Some problems related to the factors rotation

In orthogonal models, the factors are placed in space, i.e. each factor will be 
represented in hyperspace by a unit length vector. The correlation matrix should 
represent the cosines between the vectors directly. In as much as they do not, the 
model fails to account for the data. In virtually most cases of factor analyses, unit 
length vectors are not preserved. But an attempt is made to represent the variables in 
a sufficient number of dimensions so that the reduction in vector length is minor. 
Determining the exact number of dimensions which will produce this “next to best” 
situation is the problem of determining the number of factors. When the variables 
have been plotted, the factors can then be added as deemed best as long as they are 
all orthogonal. Usually, a factor is placed near the center of a cluster of variables so 
that it can be identified by the conceptual central thrust of the variables. But once 
several factors have been added, they need not remain in the same position. Instead, 
they can be shifted or rotated to any position for which the investigator can present 
an appropriate rationale [Cattell 1944].

In oblique rotation (representing correlated factors), the general Cartesian 
coordinate system is used instead of the rectangular Cartesian coordinate system. 
The former allows the axes (or factors) to form an oblique angle and thus they are 
correlated. The latter allows only orthogonal factors which are therefore uncorrelated. 
In the general Cartesian system, the correlation between two factors plotted in 
hyperspace is still defined by the assumption (12). Since both factors are defined as 
unit length:
	 r12 = cos a12,	 (13)

Let now the cosine of the angle be equal to the correlation between two factors. 
Since the angle between factors is oblique, they are referred to as Oblique factors. It 
should be noted here that the plotting of the vectors which represent the variables is 
identical to that in the uncorrelated factor model. Each correlation coefficient is 
converted to a cosine and, if two dimensions are adequate, the variable vectors are 
plotted in a plane. The use of correlated coordinates does not alter the configuration 
of the variables.

The problems with obtaining the best solutions in factor analysis depend heavily 
on determining the transformation matrix and finding an initial orthogonal solution. 
Two restrictions are placed on the transformation matrix. The first (and this is 
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essential) is that the transformation matrix must be nonsingular. If not, the common 
factors space will collapse. Second (and this is for convenience only), the 
transformation matrix must be scaled such that the derived factors have unit variance. 
For derived uncorrelated factors, the restriction is that the transformation matrix 
must be orthonormal, which guarantees the imposition of the first two restrictions. 
When viewed in this way, the problem of developing derived oblique factors (which 
often proved to be quite troublesome, primarily because the transformation matrix is 
allowed to be nonorthogonal) is usually difficult to keep them from becoming 
singular [Harris, Kaiser 1964].

Finally, the more preferable entry of reference axes to vectors configuration, the 
better factor-solution, is obtained. Hence, depending on the coordinate system 
position (which is sometimes set on an arbitrary basis by the researcher) one can 
obtain a good or bad representation of factor loadings being the extension of variables 
vectors’ projections on factor-axes. Sometimes if vectors create approximately one 
cohesive group in a space, then across such a group, a single factor will be drawn 
[Carroll 1953; Kaiser 1958].

6. Conclusions and specific rules in determining  
    satisfactory levels of rotations

At the conclusion of this article it is worth mentioning five core principles of good 
rotational approach to factor analysis. Most of them are equally applicable to either 
orthogonal or oblique axes solutions:

1. Rotation to agree with factors from past factors analyses
This procedure, which has been widely resorted to, especially in the final stages 

of a rotation, consists in rotating until as many as possible of the factors agree with 
the factors previously established in independent researches. The factors of earlier 
researches have sometimes been established as single general factors, by concentrated 
research in one particular field (e.g. intelligence).

2. Rotation to put axes through the center of clusters
This may be done either by picking out the outstanding correlation clusters in the 

original correlation matrix, or by considering the clusters which exist in the projection 
on a single plane when the number of factors is known and plotted. In general, if 
there are two factors operating fairly evenly in a certain matrix, the noticeable 
correlation clusters are likely to occur in the regions of overlap of the two factors. In 
these regions the shared variance (communality) is higher. Such comparatively even 
distribution of loadings is likely to occur when the total variance is accounted for by 
a considerable number of factors. Clearly in such circumstances, a cluster is more 
likely to represent a region of overlap of several factors than the region of strong 
influence of one factor. On the other hand, with one or two factors, the high points 
(clusters) of the matrix may well be the variables best defining the factors. For 
example, in a matrix satisfying the two-factor theory we put the axis through the 
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center of the most highly inter-correlating bunch of variables. However, since both 
possibilities exist, there is no guarantee that a salient cluster is anything more stable 
than a province of overlap of two or more real, functional factors.

3. The principle of orthogonal additions: rotation to agree with successively 
established factors

In an n-dimensional orthogonal system, if the position of n – 1 axes is known 
from previous sources of evidence, the position of the n-th axis is automatically 
established. One can begin therefore with variables which, apart from specific 
factors, measure only the known factors, or even only a single known factor. By trial 
and error, guided by the researcher’s insight, one then attempts to add variables to 
the matrix which will introduce, apart from specifics, only one new factor. When the 
new factor is determined, a further set of variables can be added introducing another 
new factor, the position of which, in turn becomes fixed by the earlier factors. In this 
way, starting with one factor of known position, it should be possible, theoretically, 
by successive additions to fix the rotation of a most complex multi-dimensional 
factorization. Indeed, in a relatively inexplicit and unplanned fashion, this principle 
has been employed in practical research problems, as the history of the establishment 
of the factors during the past twenty years shows.

4. The principle of expected profiles: rotation to produce loading profiles 
congruent with general researcher’s expectations

It is possible that on general psychological grounds, one could validly conclude 
that certain kinds of sources, e.g. traits, should manifest certain general forms of 
factor loading pattern in certain batteries of variables. One would then rotate so that 
the maximum number of factors would give loading profiles, i.e. factor patterns of 
the kind required. According to this principle, therefore, one would rotate to get 
profiles of loadings having a relationship to the nature of the source traits as shown 
by the nature of the trait elements in which the factor tends to appear most persistently.

5. The principle of parallel proportional profiles
This begins with the same general scientific “principle of parsimony” which 

forms the premise for Thurstone’s simple structure, but arrives at a different 
formulation of the meaning of the principle in the field of factor analysis. The 
principle of parsimony, it seems, should not demand “which is the simplest set of 
factors for reproducing this particular correlation matrix?” but rather “which set of 
factors will be most parsimonious at once with respect to this and other matrices 
considered together?” This parsimony must show itself especially when the 
correlations emanate from many diverse fields of observation. The criterion is then 
no longer that the rotation shall offer the fewest factor loadings for any one matrix; 
but that it shall offer the fewest dissimilar (and therefore the fewest total) loadings in 
all the matrices together.
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UJĘCIE GEOMETRYCZNE W ANALIZIE CZYNNIKOWEJ  
– METODY ROTACJI I DIAGNOZA STRUKTURALNA DANYCH 

Streszczenie: W niniejszym artykule autor opisuje zagadnienia związane z analizą czynniko-
wą z perspektywy geometrycznego ujęcia wyników badań w modelach czynnikowych. Brane 
są pod uwagę zalety i wady stosowania poszczególnych metod rotacji. W pracy wyjaśniono 
także, w jakim stopniu podejście geometryczne może zmieniać ostatecznie wyniki prowadzo-
nej analizy, a tym samym wygenerowaną wartość z badań. Geometryczne ujęcie modeli czyn-
nikowych zapewnia badaczowi alternatywne podejście w ramach lepszego zrozumienia i do-
celowej diagnozy struktury danych.

Słowa kluczowe: geometria, analiza czynnikowa, metody rotacji.
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