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1. Lambert–Beer law 

 

   The Lambert–Beer law is fundamental law describing interaction of light with a matter in 

the linear matter response approximation. It states that there is a logarithmic dependence 

between the transmissionT , of light through a substance and the product of the absorption 

coefficient of the substance, η , and the distance l  the light travels through the material:  

0

lI
T e

I

η−= =  ,                                                             (1.1) 

where 0I and I  are the intensity of the incident light and the transmitted light, respectively. 

   This is general law for a gas, liquid and solid state when the excitation light intensity is not 

too high. The equation follows so called linear response of the matter. 

The derivation of this law is not difficult. Let us divide the sample into infinitesimally thin 

slices dl  perpendicular to the beam of an absorbed light. The light passing through a slice is 

slightly less intense than the light that entered since some of the photons are absorbed. The 

difference of the intensity dI due to the absorption is equal to: 

dI I dlη= − .                                                              (1.2) 

The solution to this simple differential equation is obtained by integrating both sides to obtain 

the intensity of light at the exit from matter I  as a function of its width l : 

0ln( ) ln( )I I η− = −  .                                                     (1.3) 

   Rearranging and exponentiating yields to equation 3.1. 

   In the case of liquids the relation for the transition of light through the matter is expressed in 

a form with 10 as a base of the exponential function: 

'

0

10 lI
T

I

η−= = .                                                            (1.4) 

The base 10 and base e conventions must not be confused because they give different values 

for the absorption coefficient: 

η η∗ ≠ .                                                              (1.5) 

  However, it is easy to convert one to the other, using  
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ln(10) ~ 2.303η η η∗ ∗= ≈ .                                                   (1.6) 

   The transmission (or transmissivity) is expressed in terms of an absorbance which, for 

liquids, is defined as: 

*

0

log
I

A
I

 
= −  

 
                                                      (1.7) 

whereas, for other materials (a solid state and a gas), it is usually defined as 

0

ln
I

A
I

 
= −  

 
.                                                     (1.8) 
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2. Maxwell’s equations 

 

Maxwell's equations are four equations describing how the electric and magnetic fields 

develop in space and time in relation to sources, charge density and current density. They are 

presented in two forms: differential and integral they are of basic importance for the physics 

and together with the Lorentz force law, form the foundation of classical electrodynamics. 

The equations are named after the Scottish physicist and mathematician James Clerk Maxwell 

who first published them in 1861. It is worth to recall the name of Heinrich Rudolf Hertz who 

clarified and expanded the electromagnetic theory of light that had been put forth by Maxwell. 

The equation in their present elegant and short form was written by Hertz. Equations derived 

by Maxwell were very complicated. Unfortunately we remember now Hertz only as the first 

scientist who satisfactorily demonstrate the existence of electromagnetic waves by building an 

apparatus to produce and detect radio waves. Individually, the equations are known as 

Faraday's law of induction, Ampere’s law with Maxwell's correction, Gauss's law and Gauss's 

law for magnetism.  

In the Gaussian units, the equations take the following form: 

 
t

B
c rotE

∂
= −

∂
                                                           (2.1) 

D
 H 4πj

t
c rot

∂
= +

∂
,                                                    (2.2) 

 4divD π= ń ,                                                     (2.3) 

 0div B = .                                                       (2.4) 

Where E  is an electric field also called the electric field intensity,  

B  is a magnetic field also called the magnetic induction or the magnetic field density or the 

magnetic flux density, 

D is an electric displacement field also called the electric induction or the electric flux 

density,  

H  is a magnetizing field also called auxiliary magnetic field or magnetic field intensity or 

magnetic field.  

The relations between above field vectors are as follows: 

, , (1 4 ) ,B H j E D Eµ σ πα= = = +                     (2.5) 

where σ is conductivity and α is an electric polarisability. 
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3. Wave equation. Complex refractive index 

 

Wave equation 

 

In the case of non-magnetic materials and no electric field sources, when 

1 0andµ ρ= =                                               (3.1) 

we can simplify above equation to: 

H
 Ε

t
c rot

∂
= −

∂
 ,                                                          (3.2) 

E E
 H 4πα 4πσE

t t
c rot

∂ ∂
= + +

∂ ∂
 ,                                             (3.3) 

  0divH div E= =  .                                                    (3.4) 

Differentiating over time equation (1.8) we get: 

2 2

2 2

E E E E E
 H 4πα 4πσE 4πα 4πσ

t t t t t t t
c rot

 
   ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + + = + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂     

    

 (3.5) 

and assuming than time and space variables are independent and use equation (1.7) we get: 

2H
 H  

t t
c rot c rot c rot rotE

∂ ∂ 
= = − ∂ ∂ 

.                      (3.6) 

With use of identity:  

   rot rot grad div= −∆                                   (3.7) 

we finally have electromagnetic wave equation: 

2 2
2

2 2

E E E
 E 4πα 4πσ

t t t
c

∂ ∂ ∂
∆ = + +

∂ ∂ ∂
.                            (3.8) 
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Complex refractive index 

 

We are looking for the solution as sinusoidal plane-wave: 

( )
( ) 

� r
i t

i t kr c
o oE e e

ωωε ε
−−= =

�

,                                      (3.9) 

where 

2 2
.,,  k E � nu

T

π π
ω

λ
= = =                                   (3.10) 

 

We will solve equation in three different cases. 

 

1. Vacuum 

 

In the vacuum case the conductivity and polarisibility vanish: 

0 0andσ α= =                                            (3.11) 

so that equation (1.13) simplifies to: 

2
2

2

E
 E

t
c

∂
∆ =

∂
                                                         (3.12) 

and inserting function (1.14) into (1.17) one obtains: 

2
2 2 2 2

2
1.,� c E E �

c

ω
ω− = =−                                             (3.13) 

 

2. Dielectric 

 

In the dielectric case the conductivity is still equal to zero but we have non vanishing 

polarisibility: 

0 0andσ α= ≠
                                                       

(3.14) 

so equation (1.13) takes a following form: 
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2
2

2

E
 E (1 4πα)

t
c

∂
∆ = +

∂                                         

(3.15) 

and we obtain the solution well known from optics: 

2
2 2 2 2

2
(1 4πα), 1 4πα ,� c E E �

c

ω
ω =− = − + +

                     

(3.16) 

what we can write in a following form: 

2 1 4πα, , ,o o� � nu nε ε== + = =
                                    

(3.17) 

where n is a refractive index and ε0 is a permittivity also called electric constant. 

 

3. Metals and semiconductors 

 

In the metal and semiconductor case we have both not vanishing conductivity and 

polarisibility: 

0 0andσ α≠ ≠
                                          

(3.18) 

and the solution is: 

( )
2

2 2 2

2
4o� c E i E

c

ω
ω ε πσ ω− = − + ,                                      (3.19) 

which gives: 

2 4
o

� i
πσ

ε
ω

−=                                                       (3.20) 

so we have to introduce a complex refractive index: 

( )� n ik u= − .                                                      (3.21) 

Where n is a refractive index and k is called extinction. Inserting above equation into (1.25) 

we get: 

2 4
( )

o
n ik i

πσ
ε

ω
−=− ,                                           (3.22) 

what yields formulas for: 

2 2

on k ε− =                                                      (3.23) 
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and 

4
2nk

πσ
ω

= .                                                       (3.24) 

The last formula can be also written in a form: 

nk
σ
ν

= .                                                         (3.25) 

 

The physical sense of a complex refractive index 

 

When we insert complex refractive index (1.26) into the wave function in a form (1.14) we 

get: 

1
( ( ) ) ( )

  
n

i t n ik z k z i t z
c c c

o oE e E e e
ω

ω ω
ε ε

− − − −
== = .                           (3.26) 

Constant value of: 

n
t z const

c
ω  − = 

 
                                             (3.27) 

gives well known phase velocity: 

f

dz c
u

dt n
= = ,                                                       (3.28) 

hence n describe the normal real refractive index. 

The power density of the electromagnetic field, meaning the intensity of light passing through 

the matter is: 

2~I E                                                             (3.29) 

so we have: 

2k
z

zc
o oI I e I e

ω
η− −= = .                                                 (3.30) 

Above equations describes relation between the absorption coefficient η  and the extinction 

k : 

2 4k
k

c

ω π
η

λ
= =                                               (3.31) 

and so it describes the absorption properties of matter. 
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4. Boltzmann equation 

 

   In this and further chapters we will consider behavior of electrons in crystals under the 

external fields. We will start from stationary Boltzmann equation. Although this equation is 

related to transport in solid state definition and terms introduced to describe transport 

phenomena are commonly used in optical studies of solid state. 

Transport of electrons and holes in crystals can be described by a semi-classical Boltzmann 

equation, derived by Ludwig Boltzmann to describe the statistical distribution of a particle in 

a fluid. Originally this equation was proposed to describe transport in gas but it is also valid 

for a solid state. The Boltzmann equation is an equation for the time evolution of the 

distribution function ( , )f r p in phase space, where r  and p  are position and momentum, 

respectively. This equation describes a particle in steady or slowly varying external fields, so 

the total change of ( , )f r p  is equal to zero: 

0
df

dt
= .                                                              (4.1) 

   The distribution function is not much different Fermi-Dirac thermal distribution function: 

0

1

exp(( ) / ) 1F

f
E E kT

=
− +

.                                             (4.2) 

   Boltzmann divided time evolution of ( , )f r p  into two parts: one connected with the drift 

of particle in 6 dimension phase space and second due to the collisions. In the case of solid 

states collisions are scatterings on imperfections in the crystal lattice. So the time evolution of 

electron or hole can be expressed in a form: 

0
drift scatt

df df

t d

d

dt d

f

t

   = +   
  

=


.                                    (4.3) 

 

Drift term 

 

   Let us consider a small cube in phase space ( , )f r p  (see fig. 4.1). The variation of number 

of states in time t∆  can be expressed as: 
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. . . . . .

1 1 2 2 3 3

1 2 3

( , , , , , )

( , , , , , ).

f f x x t y y t z z t k k t k k t k k t

f x y z k k k

∆ = − ∆ − ∆ − ∆ − ∆ − ∆ − ∆ −
  (4.4) 

   So the derivative is equal to: 

0

.. . . . . . .

1 2 3

1 2 3

lim

.

t
drift

r k

df f

dt t

f f f f f f
x y z k k k r f k f

x y z k k k

∆ →

∆  = =  ∆ 

∂ ∂ ∂ ∂ ∂ ∂
− − − − − − = − ∇ − ∇

∂ ∂ ∂ ∂ ∂ ∂

           (4.5)
 

 

Fig. 4.1 The cube of a side equal to k∆  in a phase space ,r p . 

   Since external force change the wave vector according to the formula: 

k F=&h                                                             (4.6) 

we can rewrite the drift term in a form: 
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r k

drift

f F
v f f

t

∂  − ∇ − ∇ ∂ 
=

h
.                                        (4.7) 

 

Scattering term 

 

   This scattering term can be expressed in a following form: 

3 3( , )[1 ( )] ( ) ( ) ( , )[1 ( )] ( ) ( ) ,

scatt

BZ BZ

P k k f k k f k d k P k k

df

d

f k k f k d

t

kρ ρ

 
 


=

′ ′ ′ ′ ′ ′ ′ ′− − −



′∫ ∫
  (4.8) 

where  

3( , )[1 ( )] ( ) ( )
BZ

P k k f k k f k d kρ′ ′ ′ ′−∫                             (4.9) 

is an integral over the Brillouine zone describing the number of scatterings in time unit which 

transfer an electron with wave vector k  into any state of wave vector k′ , and  
3( , )[1 ( )] ( ) ( )

BZ

P k k f k k f k d kρ′ ′ ′ ′ ′−∫                            (4.10)

 

is an integral describing the opposite process i.a. transferring due to scattering processes 

electrons with arbitrary wave vector k′  into the state with wave vector k . Term ( , )P k k′  

describes transfer probability from state k  to state k′ , term ( )kρ ′  describes the density of 

state in k  space, and terms [1 ( )]f k′−  and ( )f k describe number of free places in a finite 

and an initial state respectively. 

   So, finally the Boltzmann equation can be written in a form: 

3

3

( , )[1 ( )] ( ) ( )

( , )[1 ( )] ( ) ( ) 0.

BZ

B

r k

Z

P k k f k k f k d k

P k

F
v f

k f k k f k k

f

d

ρ

ρ

′ ′ ′ ′ ′−

′ ′ ′ ′−

∇ +

=

−

−

− ∇ ∫

∫

h
                 (4.11) 

   The Boltzmann equation refers to stationary case when scattering of electrons are much 

faster than variations of external fields. Unfortunately it is deferential-integral non-linear 
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equation practically impossible to solve. In further consideration we will linearize it 

transforming it into solvable form. 
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5. Relaxation time 

 

   In order to simplify the collision term we have to make a few simplifying assumptions: 

1. The electron energy is parabolic and isotropic on wave vector, it is we have one effective 

mass in all directions: 

2 2

*2

k
E

m
=
h

.                                                           (5.1) 

2. The electron energy is not changed during scatterings, justifying the equality: 

k k′ = .                                                           (5.2) 

   This is not true but since the actual change of the energy in one scattering process is very 

small this assumption is acceptable and what is important it allows to linearize the Boltzmann 

equation. 

3. The probability of an electron transfer from the state with wave vector k  to the state with 

wave vector k′  is the same as the transfer in opposite direction: 

( , ) ( , )P k k P k k′ ′= .                                               (5.3) 

3. The distribution f  is not much different from the thermal equilibrium distribution of  and 

is equal to: 

1of f f= + .                                                      (5.4) 

4. 1f  is treated as a small perturbation: 

1of f� .                                                        (5.5) 

5. 1f  can be described by a special function which is a product of two vectors: 

1 ( )f v Eχ= ⋅ .                                                     (5.6) 

   The last assumption can be interpreted as a linear term in Taylor’s expansion of f : 

( ) ( ) ( )

1
( ) ( ) ( ),

o
o o k

o
o k o

f
f k f k f k E

E

f
f k E f k v E

E

δ δ

δ χ

∂
= − ≈ − ∇ ⋅ =

∂
∂ + ∇ ⋅ − = + ⋅ ∂ 

h
h

                       (5.7) 
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since  

1
kE v∇ =

h
.                                                   (5.8) 

   Inserting (5.3) into (4.8) we obtain a simple formula for scattering term: 

3( , )[ ( ) ( )] ( )
scatt BZ

df
P k k f k f k k d k

dt
ρ 

  ′ ′ ′ ′= −
  ∫ .                         (5.9) 

   Further, using formulas (5.2) and (5.6) we have: 

3( , ) ( )[ ( ) ( )] ( ) ( )
scatt BZ

df
P k k E v k v k k f k d k

dt
χ ρ  ′ ′ ′ ′= − 

  ∫                 (5.10) 

and since for isotropic and parabolic bands (eq. 5.1) the translational velocity is equal to: 

*

1
k

v E k
m

= ∇ =
h

h
.                                                 (5.11) 

The scattering term takes a form: 

( ) 3

3 *
( , ) ( )

4scatt BZ

df
P k k E k k d k

dt m
χ

π
  ′ ′ ′= − 
  ∫

h
.              (5.12) 

   Since we assumed the conservation of the energy in scattering processes, which is 

equivalent to the conservation of the length of wave vector and isotropy of the crystal we can 

take a transfer probability function in a form: 

( , ) ( ) ( , )W k k k k kδ θ ϑ′ ′= − ,                         (5.13)
 

where ( )k kδ ′−  is Dirac delta function and function ( , )kθ ϑ  reflects the fact that transfer 

probability depends only on the length of wave vector k  and the angle ϑ  between initial and 

final vectors k  and k′ .  
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   To perform the integration we use spherical coordinates with the distinguished axis along 

wave vector k . As it is seen from the Fig. 5.1 the component of the vector k′  along the 

Fig. 5.1. The configuration of the spherical coordinates. 

vector k  is equal to: 

(cos 1)k k k kϑ′= − = −
�

                                    (5.14) 

so the integration over the Brillouine zone gives: 

( ) ( )
2

2
'

3 *

0 0 0

2

3 *

0

( ) ( , ) ( ) sin
4

( , ) ( )(cos 1) sin ,
4

m

scatt

k

df

dt

d dk k k k E k k k k d
m

k k E k d
m

π π

π

ϕ δ θ ϑ χ ϑ ϑ
π

θ ϑ χ ϑ ϑ ϑ
π

⊥

  = 
 

 ′ ′ ′− + − = 

−

∫ ∫ ∫

∫

�

h

h

  (5.15) 

since the integration over the component k⊥′  perpendicular to distinguished vector k  is equal 

to zero. We also made the approximation mk → ∞  which is acceptable in semiconductors 

since probability of occupations of states with high wave vectors k  is very small. The term 

( )k Eχ  is not dependent on ϑ  and can be put on in front of integral and since  

1*
( ) ( )k E v E f

m
χ χ= =

h
                                   (5.16) 

we finally get the scattering part of time derivative of the distribution function in a form: 

21

2

0

(1 cos ) sin
2scatt

df f
k d

dt

π

ϑ ϑ ϑ
π

  = − − 
  ∫ .                     (5.17) 

   The term 
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2

2

0

1 1
(1 cos ) sin

2
k d

π

ϑ ϑ ϑ
τ π

= −∫                         (5.18) 

is called the relaxation time. 

   The reason for such name is simple. When the external perturbation is removed, it is 

0
drift

df

dt

 
 
 

= .                                                      (5.19) 

The total derivative of the distribution function is not equal to zero: 

0
df

dt

 
 


≠


                                                         (5.20) 

and the distribution function return to their thermal equilibrium state according to the 

equation: 

0 10
scatt scdr f atti t

df f f df f f f

dtdt t t τ τ
− =

∂ ∂   = +   ∂ ∂
+ = − = − 

    
.            (5.21) 

   So we have the simple equation for 1f  to solve: 

1 1
fd

dt

f

τ
= − .                                                        (5.22) 

   The solution is the exponential return of the system to thermal equilibrium with 

characteristic time τ: 

0

1 1

t

f f e τ
−

= .                                                      (5.23) 

   In most cases for different scattering mechanism the relaxation time is can be described by a 

simple power function of energy: 

( )1
2( )

p
E AEτ

−
= .                                                 (5.24) 

   For acoustic phonons 0p = , for optical phonons 1p = , for neutral impurities 1 / 2p =  

and for ionized impurities 2p = . Temperature dependence of the relaxation time is more 

complicated and can be found in advanced theoretical textbooks. Knowing the relaxation time 

one has to calculate the mean free path of a particle λ : 

vλ τ= .                                                        (5.25) 

   Since  
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1
2~v E                                                        (5.26) 

we have that: 

1 1( )
2 2~

p pE E Eλ −
= .                                         (5.27) 
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6. Ohm’s law. Microscopic conductivity 

 

   In the relaxation time approximation the stationary Boltzmann equation can be written in a 

form: 

1
1

0
r k

f
f v f F

τ
∇ ⋅ + ∇ ⋅ + =

h
.                                       (6.1) 

   The form of the function 1f  depends on external fields and properties of a matter (crystal). 

Let us consider the situation when the distribution function is isotropic in a real 3 dimensional 

space at r : 

r f∇                                                                  (6.2) 

and only constant electric field ε  is applied. Than the force acting on a particle with the 

charge q is equal to: 

F qε= .                                                                (6.3) 

   Than the Boltzmann equations takes a form: 

1 0
k

q f
f ε

τ
∇ ⋅ + =

h
.                                                      (6.4) 

   In the dependence 1of f f= +  the equilibrium term of  depends on k only via energy so 

we may write: 

1
o

k k k

f
f E f

E

∂
∇ = ∇ + ∇

∂
.                                                (6.5) 

   When we limit above dependence only to linear terms in the perturbation we can neglect the 

1k f∇  term as it is perturbation of a perturbation. So the eq. 6.4 can be written in a form: 

0o of v f
q v v q

E E

χ χ
ε ε

τ τ
∂ ⋅ ∂ ⋅ + = ⋅ + = ∂ ∂ 

,                          (6.6) 

where we use dependence 1f v χ= ⋅ . 

   Since the velocity χ can have an arbitrary direction the eq. 6.6 is fulfilled only when: 

o
f

q
E

χ
ε

τ
∂

⋅ +
∂

,                                                          (6.7) 
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which gives the formula for χ : 

( )o
f

q
E

χ τ ε
∂

= −
∂

                                                 (6.8) 

and for perturbation term of the distribution function 1f : 

1
( )o

f
f q v

E
τ ε

∂
= −

∂
.                                              (6.9) 

   Using above dependence we can calculate the density of current which is the sum over all 

electrons in the band: 

j qv= ∑ .                                                         (6.10) 

   When the sum is substitute by an integral we have to introduce the occupation function f  

and density of states ( )kρ : 

3( )
BZ

j q vf k d kρ= ∫ .                                                (6.11) 

   Since the distribution function is a sum of two terms 1of f f= + the integral can be 

divided in two parts: 

3 3

1o

BZ BZ

j q vf d k q vf d kρ ρ= +∫ ∫ .                                     (6.12) 

   The first term is equal to zero as in the thermal equilibrium of  the integral contain an 

asymmetric arguments. Physically for an electron moving with velocity v there is another one 

moving opposite v−  resulting in zero net current. 

Inserting (6.9) into (6.12) and employing the equation 
2 2e q=  we have: 

2
3

3
( )( )

4

o

BZ

e f
j v v d k

E
τ ε

π
∂

= − ⋅
∂∫ .                               (6.13) 

   As the electric field is the only distinguished axe the integration can be performed in a 

spherical coordinates with angle ϑ  between wave vector k of an electron and electric field 

ε . The integral takes the form: 

22
2

||3

0 0 0

( ) cos sin
4

o
e f

j d dk v v v k dkd
E

π π

ϕ τ ε ϑ ϑ ϑ
π

∞

⊥

∂ = + − ∂ ∫ ∫ ∫ ,            (6.14) 
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where assuming mk → ∞  as the derivative o
f

E

∂
−

∂
 rapidly decrease aside of Brillouine zone. 

The integral over the angle ϕ  of a vector component perpendicular to the electric field  v⊥  is 

equal to zero and the component parallel to field can be written in a form: 

||
cosv v

ε
ϑ

ε
=                                                       (6.15) 

so the integral (6.14) takes a form: 

2
2 2 2

3

0 0

cos sin
4

o
e f

j v k dkd
E

π

ε τ ϑ ϑ ϑ
π

∞ ∂ = − ∂ ∫ ∫ .                 (6.16) 

   The integration over the angle ϑ  is equal to: 

2

0

2
cos sin

3
d

π

ϑ ϑ ϑ =∫ .                                                 (6.17) 

   Using parabolic energy dependence on the wave vector 

2 2

*2

k
E

m
=
h

                                                            (6.18) 

 we can substitute the velocity in eq. 6.16 according to the formula: 

2
2 2

*2

1
kv E k

m
= ∇ =

h

h
                                                (6.19) 

and taking energy as a integration variable we finally obtain the expression for the current in a 

form: 

2
3

2

0
3

o
e f

j k dE
E

ε τ
π

∞ ∂ = − ∂ ∫ .                                          (6.20) 

   The above integral frequently occurs in the transport theory so it is advisable to introduce a 

special term: 

3

2

0

1
( ) ( )

3

o
f

X X E k E dE
Eπ

∞ ∂ = − ∂ ∫ ,                            (6.21) 

where X denote an arbitrary physical quantity. 

   So we can write down the current in a form: 
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2

*

e
j

m
τ ε= .                                                      (6.22) 

   This dependence is reminiscence of the classical electrodynamics dependence: 

j σε=                                                              (6.23) 

from which we can write down the conductivity as: 

2

*

e

m
σ τ= .                                                     (6.24) 

   The equation expresess macroscopic physical quantity σ  in terms of microscopic properties 

of the crystal: an effective mass 
*m  and relaxation time τ . 

   The physical meaning of an integral X  can be interpreted when we perform a simple 

calculation. Let us consider what we obtain when we 1 into this term. After integration by 

parts we obtain: 

3
3 2

2 2 2

0 00

2
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1 1
1

3 3

1
4 ( )

4

o o
o

o o

f f k dk
k dE f k dE

E dE

f k dk f k d k n

π π π

π ρ
π

∞∞ ∞

∞

∂ = − =− + = ∂ 

= =

∫ ∫

∫ ∫
        (6.25) 

so the X  denote the concentration of electrons and X  is an average value of the 

quantity X  over the entire band. The term 

2
3

23

of k k
π

−  is equal to zero in given limits which 

is obvious for 0k =  and since of  vanishes at ∞ . 

   The term:  

:
1

X
X =%                                                          (6.26) 

corresponds to the mean value of quantity X for one electron. 

   The conduction can be also expressed in a form: 

2

* *
1

e e
en

m m
σ τ τ= < > =% % .                                       (6.27) 

   From the other hand the conductivity is expressed by mobility as: 

enσ µ= .                                                     (6.28) 
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   Comparison of both equations give macroscopic description of mobility: 

*

e

m
µ τ= % .                                                      (6.29) 

   We obtain an important results that mobility is proportional to relaxation time of an electron 

and inverse proportional to an effective mass. 

 

Metals 

 

   Let us consider the strongly degenerated electron gas. This case is important for metals and 

strongly doped semiconductors when function o
f

E

∂
−

∂
 can be approximated by the Dirac δ  

function: 

( )o
F

f
E E

E
δ

∂
− ≈ −

∂
.                                        (6.30) 

   Than the integral X  is equal to the value of physical quantity X  at the Fermi level: 

3 3

2 2

1 1
( ) ( )

3 3

o
F F

f
X X k dE X E k E

Eπ π
∂ = − = ∂ ∫             (6.31) 

and the average value of X  is equal to: 

( )
1

F

X
X X E= =% .                                            (6.32) 

So in the formula for mobility of electrons in metals relaxation time is that on Fermi level: 

*
( )

e
E

m
µ τ= .                                                      (6.33) 

When the current is conducted by electrons and holes from many bands and valleys one has to 

sum over them: 

2

* i

i i

e
j

m
τ ε= < >∑ .                                                (6.34) 

The index i  denotes bands and valleys. 

Hence the formula for conductivity is than expressed in a form: 
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2

* i
i i

e

m
σ τ= ∑ .                                              (6.35) 
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7. Boltzmann equation in electric and magnetic fields 

 

   The transport in magnetic field is a one of the central problems in the solid state physics. 

The study of transport in magnetic field embraces many aspects of galvano-magnetics 

phenomena and deliver most information about matter. The electron subjected to electric and 

magnetic field is driven by Lorentz force: 

1
F q v B

c
ε = + × 

 
.                                                     (7.1) 

   In Boltzmann equation the scattering term remain unchanged. Only the drift term should be 

modified by substituting electric field by both electric and magnetic fields (see. eq. 6.4): 

( ) 1 0
k

q f
f v Bε

τ
∇ ⋅ + × + =

h
.                                           (7.2) 

In the case of electric and  magnetic fields we cannot assume as in the case of electric field 

that: 

1 0k f∇ =                                                          (7.3) 

in extension of the distribution f function on of  and 1f  

1 1
o

k k o k k

f
f f f v f

E

∂
∇ = ∇ + ∇ = + ∇

∂
h ,                          (7.4) 

since it immediately removes the magnetic field from the Boltzmann equation as a scalar 

product of velocity by vector product of velocity and magnetic field is equal to zero: 

( ) 1 0o
f f

q v v B
E

ε
τ

∂
⋅ + × + =

∂
.                                   (7.5) 

   In magnetic and electric field case we have to substitute the vector function 
0χ  in 

expression: 

0

1f v χ= ⋅                                                   (7.6) 

for perturbation of distribution function by a new function χ related to 0χ  but including 

information about the magnetic field. It can be shown after long and complicated calculation 

that it can be done by a formula: 
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0Tχ χ= ,                                                        (7.7) 

where T  is a tensor and 
0χ  is the same as in the case of the electric field only: 

0 ( )o
f

q
E

χ τ ε
∂

= −
∂

.                                                        (7.8) 

   There is no general solution if the angle between electric and magnetic fields is arbitrary. 

The analytical solutions are only in two cases: 

1.When fields are parallel B ε�  

2. When fields are perpendicular B ε⊥  

   The second case covers many physical phenomena and so begin our consideration from it. 

When electric field is along the x  axis and magnetic field along z axis: 

( ,0,0)

(0,0, )B B

ε ε=

=
                                                           (7.8) 

and bands are spherical and parabolic the T  tensor takes a form: 

2 2

2 2

1
0

1 1

1
0

1 1

0 0 1

T

ς
ς ς
ς
ς ς

 
 + + 
 = − + +
 
 
 
 

,                                                (7.9) 

where ς  parameter is described by a formula: 

cς ω τ=                                                          (7.10) 

and  

*c

qB

m c
ω =                                                         (7.12) 

is an electron cyclotron frequency. 

   The parameter ς  is equal to the mean angle path of an electron around the magnetic field. 

   The  perturbation of the distribution function 1f  is now equal to: 

1
( )o

f
f q T v

E
τ ε

∂
= −

∂
.                                            (7.13) 

27



 

 

   The density of current is calculated in the same way as for electric field case (see eq. 6.13): 

2
3

3
( )

4

o

BZ

e f
j v T vd k

E
τ ε

π
∂

= − ⋅
∂∫ .                                   (7.14) 

   The only difference is that instead of ε  we have Tε . All calculation are the same and as 

can be easily shown we finally get equation similar to eq.6.22: 

2

*

e
j T

m
τ ε= .                                                (7.15) 

   The T  tensor cannot be taken out in front of the integral since it is energy dependent. The 

conductivity now is a tensor: 

2

*

e
T

m
σ τ= .                                                (7.16) 

   Putting (7.9) into (7.16) we obtain the exact formula for conductivity tensor: 

2 2

2

* 2 2

0
1 1

0
1 1

0 0 1

e

m

τ ςτ
ς ς

ςτ τ
σ

ς ς

 
 + + 
 
 = −

+ + 
 
 
 
 

.                                    (7.17) 
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8. Hall effect 

 

   The conductivity components are not explicitly determine in experiments since actually we 

measure only the current and the potential. The most spectacular effects in which magnetic 

field influences the behaviour of electrons are Hall effect and magneto-resistance. The scheme 

of Hall effect is illustrated in Fig. 8.1.  

 

Fig. 1 The configuration of the Hall effect experiment. 

 

The current passes in the x  axis direction. When magnetic field is subjected along z direction 

electrons are deviated in the y  axis direction resulting a voltage difference (the Hall voltage 

HU ) across the sample. 

   Since current pass only in the x axis direction we have: 

21 22
0

y x y
j σ ε σ ε= + =                                                 (8.1) 

and from that: 

22 11

21 12

x y y

σ σ
ε ε ε

σ σ
= − = .                                                (8.2) 

Using this equality we can eliminate xε  from the dependence on xj : 
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11 12x x y
j σ ε σ ε= +                                                   (8.3) 

we have: 

2 2 2

11 11 12
12

12 12

x y yj
σ σ σ

σ ε ε
σ σ

   +
= + =   

   
.                              (8.4) 

Originally Hall expressed above dependence in a form: 

1
H x

U BI
nec

= ± ,                                                     (8.5) 

where xI  is the current in the x  axis direction and n  is the electron concentration. He found 

that the voltage caused by perpendicular magnetic field is proportional to this field and to the 

current. He also found that the sign of HU  is determined by the sign of current charges. 

In our case since we used in our calculations an electric field ε  and a current density j  the 

equations equivalent to those obtained by Hall can be written in a form: 

y x
RBjε = ,                                                         (8.6) 

where R  is so called the Hall constant.  

From eq. (8.4) and (8.6 ) R  can be expressed as a function of the magnetic field B  and a 

conductivity tensor 
xy

σ : 

12

2 2

11 12

1y

x

R
Bj B

ε σ
σ σ

 
= =  + 

.                                              (8.7) 

Using the explicit form of the conductivity tensor 
xy

σ  form eq. 7.17 we can expressed the 

Hall constant R  by microscopic quantities of a crystal. Let us consider the case of a weak 

magnetic field when 

1cς ω τ= � .                                                     (8.8) 

In this case we has to limit in a expansion of R  to linear terms: 
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eB

m c

e eB B nec

m m

ςτ
ςτς

τ ςτ τ
ς ς

τ τω ττ

ττ τ

 
 
 +

= = = 
  +   + +  

= = ±

               (8.9) 

where we use equality 1 n= . 

The term: 

2

2

1
r

τ

τ
=                                                     (8.10) 

is called the Hall scattering coefficient. 

So the Hall constant R  can be now expressed in a form: 

r
R

nec
= ± .                                                   (8.11) 

   When r  and R  are known than the current concentration can be determined. When the 

conductivity is additionally measured than using the simplified expression: 

enσ µ= ,                                                   (8.12) 

the mobility can be also determined from the equation: 

R cr
R

c r

σµ
σ µ= → = .                                    (8.13) 

   The value of the Hall scattering coefficient r  can be easily calculated in the case of metals. 

In this case in expression for relaxation time: 

3

2

1

3

of k dE
E

τ τ
π

∂ = − ∂ ∫                                            (8.14) 

we can put: 

( )o
F

f
E E

E
δ

∂
− ≈ −

∂
,                                             (8.15) 
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which gives: 

3

2

1
( ) ( )

3
F F

E k Eτ τ
π

= .                                         (8.16) 

In the same way we obtain that: 

2 2 3

2

1
( ) ( )

3
F F

E k Eτ τ
π

=                                      (8.17) 

and  

2 3 3

2 2

2 3 3

2 2

1 1
( ) ( ) ( ) ( )

3 3

1 1
( ) ( ) ( ).

3 3

F F F F

F F F

E k E E k E

E k E k E

τ τ τ
π π

τ
π π

   = ⋅ =   
   

 
 
 

              (8.18) 

The electron concentration n  is equal to the number of states in the Fermi sphere: 

3

3

3 2

4
( )

131 ( )
4 3

F

F

k E
n k E

π

π π
= = = .                            (8.19) 

Inserting eq. (8.17)- (8.19) into eq. (8.10) one can easily obtain: 

1r =                                                      (8.20) 

for the case of electrons in metals. This results is in agreement with those obtained by Hall. 

In semiconductors calculations of the value of the Hall scattering coefficient r  are more 

complicated. In most cases this value is: 

1 2r≤ ≤ .                                                           (8.21) 
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9. Magneto-resistance 

 

   Magneto-resistance is measured in the configuration presented in the Fig. 9.1. The magnetic 

field is perpendicular to the current flow. 

 

Fig. 9.1. The configuration of magneto-resistance experiments. 

 

   In the week magnetic field regime one can express the equality between the relative change 

of resistivity and conductivity in a simple form: 

(0) ( )

(0)

Hρ σ σ σ
ρ σ σ

∆ ∆ −
= − = .                                           (9.1) 

   The current does not flow in the y  axis direction: 

21 22
0

y x y
j σ ε σ ε= + =                                                 (9.2) 

so we can express the 
y

ε  component by xε  component: 

21 12

22 11

y x x

σ σ
ε ε ε

σ σ
= − = ,                                                (9.3) 

where we used equalities: 

11 22 21 12andσ σ σ σ= = − .                                           (9.4) 

   Putting above expression to the xj  equation: 

11 12x x y
j σ ε σ ε= +                                                  (9.5) 

we get: 
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2 2

11 12

11

x xj
σ σ

ε
σ
+

= .                                                (9.6) 

   In this configuration we simply measure conductivity in the x  axis direction as a function 

of the magnetic field: 

2 2

11 12

11

( )H
σ σ

σ
σ
+

= .                                              (9.7) 

   When we insert above dependence to eq. 9.1 we get: 

2 2

11 11 12

11

(0)

(0)

ρ σ σ σ σ
ρ σ σ

∆ − −
= .                                       (9.8) 

   Terms in above equation are described by formulas (see eq. 7.17): 

2

11 * 21

e

m

τ
σ

ς
=

+
                                            (9.9) 

2

12 * 21

e

m

τς
σ

ς
=

+
,                                          (9.10) 

2

*
(0)

e

m
σ τ= .                                           (9.11) 

   Since the 

2

*

e

m
 term in eq. 9.8 both in numerator and denominator occur in the same power 

we can evaluate above expressions without it: 

2

11 2
~
1

τ
σ τ ς τ

ς
≅ −

+
,                                (9.12) 

2 2

12 ~ 2σ τ τ ς τ− ,                                   (9.13) 

2

12 ~σ τς .                                             (9.14) 

   Inserting above dependences to eq. 9.8 and limiting the expansion up to 
2ς  terms one may 

obtain: 

2 2 22 2

2

2 2τ τ ς τ τ τ ς τ ςτρ
ρ τ

− − + −∆
= .           (9.15) 

   After a simple calculation we have: 
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22

2

ς τ ςτρ
ρ τ τ

∆
= − .                                         (9.16) 

   Since 

c and enς ω τ σ µ= =                                   (9.17) 

we obtain the final expression for the magnetic field variation of the resistivity: 

2 2 3 2 4 2

2 3 4

1 1B

c

ρ µ τ τ
ρ τ τ

 ∆ < >< > < >< >
= − < > < > 

.                    (9.18) 

   As the Hall voltage is linearly dependent on the magnetic field the magneto-resistant is a 

quadratic function of the magnetic field. Namely the Hall effect is a first range effect whereas 

the magneto-resistant is the second order effect similarly like the current density and the Joule 

heat are when the electric field is concerned.  
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10. Boltzmann equation for alternating fields. Complex conductivity 

 

   In the case of alternating fields with a period comparable to the relaxation time the equation 

(4.1) referring to Boltzmann stationary equation is no longer valid. Suppose we have a 

quickly varying electromagnetic field: 

( ) i t kr
oE e ωε −= .                                                   (10.1) 

We cannot assume that: 

1 0f = ,                                                             (10.2) 

since 1f  is now varying with the electromagnetic frequency field: 

(0)

1 1

i tf f e ω= .                                                     (10.3) 

So that: 

(0)0 1 1
1 1

)( i td f f df
i f e i f

dt dt

ωω ω= = =
+

,                                (10.4) 

since 

0 0
df

dt
= .                                                         (10.5) 

In the case of steady or slowly varying fields we get an equation: 

1

drift

f f

t τ
∂  = ∂ 

,                                                  (10.6) 

which for quickly changing fields due to equation (2.12) has to be replacing by equation: 

1
1 1

1

drift

f f
i f f i

t
ω ω

τ τ
∂   = + +   ∂ 

+
 

.                               (10.7) 

Let us introduce the complex conductivity by redefinition of relaxation time: 

2 2
*

* *
( )

1

e e

m m i

τ τ
σ σ ω

ω
= → =

+
.                                 (10.8) 

We can express the complex conductivity in a following form: 

( )
2 2

*

1 2 * 2 2 * 2 21 1

e e
i i

m m

τ τ
σ ω σ σ ω

ω τ ω τ
= + = −

+ +
.               (10.9) 
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Since the current density is proportional to the electric field we have: 

( )* 2

1 2 1 2

i t
i t i t

o o oj E i e e e

π
ω

ω ωσ σ σ ε σ ε σ ε
 − 
 = = + = + ,              (10.10) 

where  

2

2

i t

oo e

π
ω

σ ε
 − 
                                                      (10.11) 

is a so called Maxwell correction. 

   The meaning of the imaginary term of the complex conductivity can be easily interpreted 

when we consider Ampere’s circular law with the Maxwell's correction: 

 4 4 4
D

crot H j P j
t t

π ε π π
∂ ∂  

= + + + ∂ ∂  
= .                 (10.12) 

   Since polarization is proportional to the electric field 

P α ε= .                                                 (10.13) 

we get: 

 (1 4  ) 4 4 ( )c rot H i
t t

ε ε
πα πσ ε π σ ωα

∂ ∂
= + + + +

∂
=

∂
                (10.14) 

so complex conductivity can be expressed in a form: 

* iσ σ ωα= + .                                                     (10.15) 

   Following equation (2.17) we get a formula for the real and imaginary term of the complex 

conductivity in a form: 

2

* 2 2
( )

1

e

m

τ
σ ω

ω τ
=

+
,                                                (10.16) 

( )
2 2

* 2 21

e

m

τ
α ω

ω τ
= −

+
.                                              (10.17) 

   The quantities described in above equations correspond to quantities measured in 

experiments, it is conductivity ( )σ ω  and polarisibility ( )α ω . Please, notice that 

polarisibility includes only electrons but not the lattice. The latter case will be considered in 

further paragraphs.  Hence the imaginary part in equation (10.17) contains only polarizibility 
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of free carriers the polarisibility is negative. This reflects the Lentz rule that electrons rotate 

contrariwise to the change of an external fields (a diamagnetic case). 
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11. Metallic reflectivity 

 

   In this chapter we will study interaction of light with a matter in a frame of Maxwell’s and 

Boltzmann equations. Consider a limit condition, when (see equation3.24): 

4
2 0nk

πσ
ω

= → .                                                      (11.1) 

   It occurs in two cases when : 

0
0k it n ε=→ =                                         (11.2) 

or when: 

                                                         
0

0n it k ε=→ = − .                                   (11.3) 

   In the first case we simply have transparent material with refractive index n . The second 

case is connected with metallic reflection. 

Reflection coefficient is given by a following formula: 

( )
( )

2 2

2 2

1

1

n k
R

n k

− +
=

+ +
.                                                (11.4) 

   In the first case we than get: 

( )
( )

2

2

1

1

n
R

n

−
=

+
.                                                   (11.5) 

   In the second case we get: 

2

2
1

k
R

k
= = .                                                   (11.6) 

   This is so called metallic reflectivity which we will consider in more details in a next 

chapter. 
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12. Plasma frequency in metals and semiconductors 

 

   Let us consider above dependences in more details for metals and strongly doped 

semiconductors with high concentration en  of electrons. For semiconductors we should also 

consider a case with holes giving the same results. In the case of metals formulas (10.16) and 

(10.17) can be written in a following form: 

2

* 2 2
( )

1
e

e
n

m

τ
σ ω

ω τ
=

+
,                                                (12.1) 

( )
2 2

* 2 21
e

e
n

m

τ
α ω

ω τ
= −

+
.                                              (12.2) 

 

   When we include polarization of atoms in a crystal lattice the formula for permittivity (3.17) 

takes a form: 

1 4πα 4παo o lε ε ε=+ → += ,                                (12.3) 

where lε  is a polarisibility of a lattice. Inserting above equation into formulas (3.23) and 

(3.24) we get: 

2 2
2 2

* 2 2

4

1
S e

e
n k n

m

π τ
ε

ω τ
− = −

+
                                 (12.4) 

and 

2

* 2 2

4 /
2

1
e

e
nk n

m

π τ ω
ω τ

=
+

.                                      (12.5) 

   Let us introduce two quantities: 

 

2
2

*

1 4 e
p

S

e n
and

m

π
γ ω

τ ε
= = ,                                               (12.6) 

where 
p

ω  is cold plasma frequency. It is connected with free particles in crystals (electron or 

holes). Gamma is the invert of relaxation time and is of the range of 10
9
-10

12
s
-1
, which 

corresponds to frequencies from microwave to far infrared. Dependences for n and k now take 

a form: 
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2

2 2

2 2
1

p

Sn k
ω

ε
γ ω

 
− = −  + 

                                            (12.7) 

and 

2

2 2
2

p

Snk
ωγ

ε
ω γ ω

=
+

.                                                (12.8) 

   In metals 
p

ω  is in the range of: 

16 110  
p

sω −
� .                                                    (12.9) 

   Hence plasma frequency is in ultraviolet. When we perform experiments in visible region 

we can assume that: 

p
γ ω ω<� .                                                     (12.10) 

   In the optical region so called visible (VIS) we have: 

2

2 2

2
(1 )

p

S
n k

ω
ε

ω
− = −                                             (12.11) 

and 

2

3
2

p

S
nk

γω
ε

ω
= .                                                 (12.12) 

   So in the whole visible region we have 
2 2 0n k− <  and 0nk →  which, as was discussed 

above, results in reflection coefficient equals to one. It is so called metallic reflection. When 

we however cross with frequencies the plasma frequency 
p

ω  than we have 
2 2 0n k− >  and 

still 0nk →  and reflection coefficient gradually decreases which means that metals are 

transparent in ultraviolet.  
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13. Free electron absorption 

 

   For the frequencies above the plasma frequency 
p

ω  the material is partly transparent and 

we can measure the absorption coefficient η  when the width of the sampled  is not to high, it 

is the intensity of light coming through the samples: 

d

oI I e η−==                                                          (13.1) 

is measurable.  

   In experiments it is usually required width not higher than: 

8
d

η
< .                                                           (13.2) 

   From equations (12.26) and (12.43) we evaluate that in ultraviolet the absorption coefficient 

for metals is equal to: 

2

2

2 S pk

c cn

ε γωω
η

ω
= = ,                                                    (13.3) 

which means that is proportional to square of wave length. This is so called an absorption on 

free electrons. In reality this dependence is not exactly quadratic.  
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14. Damped oscillators -classical approximation 

 

   In the study of matter-radiation interaction in some cases the simple model of damped 

oscillators are introduced. Especially when interaction of matter with waves from micro- and 

infrared ranges are investigated. 

   Let us consider an electron oscillating in one dimension x  in an electric field. The second 

Newton principle in this case reads: 

0

i tmx kx bx e e ωε= − − −&& & ,                                           (14.1) 

where 

 kx− is the harmonic force 

bx− &  is the damped force 

0

i te e ωε−  is the external electric force. 

   It is convenient to express above terms in a form: 

2

0kx m xω= ,                                                         (14.2) 

where 0ω  is a normal mode of a system, it is the undamped angular frequency 

bx m xγ=& & ,                                                         (14.3) 

where γ  is a damping constant. The eq. 19.1 can be now written in a form: 
2

0 0

i tmx m x m x e e ωγ ω ε+ + = −&& & .                                      (14.4) 

   Putting 

0

i tx x e ω=                                                        (14.5) 

and dividing both sides by m  we get an equation for the amplitude of frequency 0x : 

( )2 0

2

o o
x

e
i

m
ω ωγ ω ε− + + = − .                                       (14.6) 

   The solution of eq.19.4 can be finally written in a form: 

2 2

 
i t

o

o

e

mx e
i

ωε
ω ω ωγ

−
=

− +
.                                         (14.7) 

43



 

 

   When we have n  indentical oscillators in a unit volume than the density of current given by 

such oscillators equals to: 

j nex= − & .                                                               (14.8) 

   Differentiating eq. 19.7 and putting it into eq. 19.8 we get a current density in a form:  

2

2 2

i t

o

o

e i
j n e

m i

ωω
ε

ω ω ωγ
=

− +
                                             (14.9) 

and from that the equation for the complex conductivity, which is more interesting since is 

independent on the external field and is simply characteristic for the crystal: 

 

 
2

*

2 2

o

j ne i

m i

ω
σ

ε ω ω ωγ
= =

− +
.                                      (14.10) 

   Since complex conductivity 
*σ  is expressed by real conductivity σ  and polarisibility α  

(see also chapter 3): 
* iσ σ ωα= + .                                               (14.11) 

Then by separation the real and imaginary part we obtain expression for physical quantities  

measured in experiments; the conductivity: 

( )
2 2

2
2 2 2 2

o

e
n
m

ω γ
σ

ω ω ω γ
=

− +
                                        (14.12) 

and the polarisability: 

( )
2 2 2

2
2 2 2 2

o

o

e
n
m

ω ω
α

ω ω ω γ

−
= −

− +
.                                          (14.13) 

   The polarizability is negative as according to Lentz rule electrons rotate contrariwise to the 

change of an external fields (a diamagnetic case). The conductivity and the polarizability 

change resonantly in the vicinity of oω . Let consider this variation. When we denote the 

difference betweenω  and oω  as: 

oω ω ω∆ = − ,                                                   (14.14) 

then we can make a simple approximation: 

2 2 2oω ω ω ω− ≈ − ∆ .                                         (14.15) 

   Putting above dependence into equation 19.11 we get an expression for conductivity in a 

form: 
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( )

2

2
2

2

e
n
m

γ
σ

γ
ω

=
 ∆ +  
 

.                                     (14.16) 

   The absorption coefficient η  is expressed by the conductivity σ  in a form (see also chapter 

3): 

4

rcn

πσ
η = ,                                               (14.17) 

where rn  is a refractive index (we added index r  in order not to mix refractive index with an 

electron concentrationn ). Putting expression we obtain an approximate formula for the 

change of η  in the vicinity of oω  in a form: 

( )

2

2
2

2

r

ne

cn m

π γ
η

γ
ω

≈
 ∆ +  
 

.                                             (14.18) 

   This dependence is presented in a Fig. 19.1. As it is seen it is a resonant line with a Full 

Width at Half Maximum (FWHM) equal to γ . 

 

Fig. 19.1. The variation of the polarisibility in vicinity of normal angular frequency mode of a 

system oω . 
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   Using the approximation 19.15 we can also evaluate the polarisibility α  in vicinity of oω  

and we obtain a formula: 

( )

2

2
22

2

o

e
n

m

ω
α

ω γ
ω

∆
≈ −

 ∆ +  
 

.                                   (14.19) 

Further we get a formula describing the difference between squares of real rn  and imaginary 

k part of an refractive index  (see also chapter 3): 

( )

2
2 2

2
2

2
1 4 1

2

r

o

ne
n k

m

π ω
πα

ω γ
ω

∆
− = + = −

 ∆ +  
 

.                          (14.20) 

   Above dependence is presented in a Fig. 19.2. 

 

Fig. 19.2. The variation of 
2 2

rn k−  in vicinity of normal angular frequency mode  

of a system oω . 

   When the absolute value of  the polarisibility α  is high enough, it is higher than 1 we get: 

2 0rn k− < .                                                            (14.21) 

   It is the case of total reflectance of a matter, so called metallic reflection (see chapter 11). 

Since 
2 2

rn k− depends on concentration we can always take enough electrons to obey above 

condition. 
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   The electrons in a crystal can be treated as oscillators with normal frequency oω  equal to 

zero: 

0oω = .                                                     (14.22) 

 When we put above value to eq. (19.12) and (19.1) we get  following expressions for 

conductivity: 

2

2 2

�e

m

γ
σ

ω γ
=

+
                                           (14.23) 

and polarisibility 

2

2 2

1�e

m
α

ω γ
= −

+
.                                       (14.24) 

   This expressions are similar to those obtained from Boltzmann equation but of course is 

much more simplified since in Boltzmann equation relaxation time 1/τ γ=  depends on 

energy. In simple cases the model of damped oscillators works, e.g. In the case of electrons in 

metals when all electrons from the Fermii sphere have the same property. 
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15. Oscillator strength – quantum mechanical approximation 

 

... In the previous paragraph we have introduced the a semi-classical interpretation of 

electrons in crystals. In this paragraph we will briefly present a quantum mechanical 

description of the interaction of an electron with a electromagnetic wave. 

The full Hamiltonian of electrons in crystals under interaction of electromagnetic wave has a 

form: 

ˆ ˆ ˆ ˆ
Rcr intH H H H= + + ,                                                    (15.1) 

where  

ˆ
crH  is the Hamiltonian of an electron in a crystal, 

ˆ
RH  is the Hamiltonian of radiation, 

ˆ
intH  is the Hamiltonian of electron – radiation interaction. 

terms in Hamiltonian Ĥ  describe an electron in a crystal, radiation and interaction of electron 

with radiation respectively. Interaction of an electron with radiation in quantum mechanics is 

introduced via a general momentum and a vector potential A  of an electromagnetic field in 

the following way. Let us consider the electromagnetic wave characterised by angular 

frequency ω  and propagation vector q : 

( )0 cos t qrε ε ω= ± ,                                            (15.2) 

where 0ε  is the polarisation vector. 

   Instead of using electric field ε  associated with an electric potential Φ  we can use a gauge 

with a vector potential A  defined as: 

1 A

c t
ε

∂
= −

∂
.                                                     (15.3) 

   As in a classical mechanic we can introduce a vector potential A  into an electron 

momentum p  and transfer to general momentum description of an electromagnetic field but 

now as an operator: 
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ˆˆ ˆ
e

p p A
c

 → + 
 

.                                                 (15.4) 

   In one electron effective mass approximation the Hamiltonian will take a form: 

2

*

1 ˆˆ ˆ
2

e
H p A

m c

 = + 
 

,                                           (15.5) 

which can be written down as: 

( )
2

2 2

* * * 2

1 ˆ ˆ ˆˆ ˆ ˆ ˆ
2 2 2

e e
H p pA Ap A

m m c m c
= + + + .                         (15.6) 

   When the field is week the last term can be neglected and we can write Hamiltonian in a 

form: 

( )*
ˆ ˆˆ ˆ ˆ ˆ

2
cr

e
H H pA Ap

m c
= + + ,                                     (15.7) 

where  

2

*

1ˆ ˆ
2

cr
H p

m
= .                                         (15.8) 

   As this is weak we can treat the second term in eq. 15.7 describing interaction of an electron 

with an electromagnetic wave as a perturbation and according to quantum mechanics rules 

express it in a form: 

ˆˆ ˆ
int

e
H pA

mc
= .                                                      (15.9) 

   As the electromagnetic wave is time dependent the perturbation (15.9) will induce 

transitions between the initial states i  and final states f . The term α  denotes an 

eigenstate of Hamiltonian of an electron in a crystal ˆ crH  with energy Eα . 

     According to the Fermi Golden Rule the transition probability per time unit from the initial 

state i  to the final state f  under the action of interaction Hamiltonian ˆ intH  is described 

by a formula: 

 

( )
2

ˆ ˆ |
2

i f if

e
P A f p i

c
E

m
E

π
δ ω= − − h

h
.                                 (15.10) 
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In optical transition a dimensionless quantity called the oscillator strength is introduced. The 

oscillator strength express the strength of the transition and is given in a form: 

2ˆ2 | |

( )
fi

f i

f p i
f

m E E

< >
=

−
.                                                 (15.11) 

   We can perform a following transition from classical mechanic to quantum mechanics. 

When we assign to all transitions between the initial state i  and final state f  the oscillator 

strength 
fi
f  we can rewrite the classical expression for the conductivity σ  (eq.14.16) and the 

polarsibility α  (eq.14.19) in a form: 

: 

( )

2

2
21 2 2

4

2

�
if

if

f if

if

e
f

m

γ
σ

γ
ω ω

=

=
 

− +  
 

∑ ,                                        (15.12) 

( )

2

2
21 2 2

2

2

�
if

if

f if if

if

e
f

m

ω ω
α

ω γ
ω ω

=

−
=

 
− +  

 

∑ ,                                          (15.13) 

where 

0

f i

if

E E
ω ω

−
= =

h
                                             (15.14) 

and 
if

γ is a line width in a sense of Full Width at Half Maximum.  

   According to quantum mechanics rules the sum over all transitions from the given initial 

state i  to all possible final states f  is equal to one: 

1

1
�

if

f

f
=

=∑ .                                                    (15.15) 

   The oscillator strength 
if
f  can be both positive and negative. All transitions from the 

ground state to excited states are positive. In the case of energy separated transitions the 

intensity of a line observed in experiment is proportional to the oscillator strength 
if
f . There 

are also many additional rules concerning an optical transition. As the an angular momentum 

of photon can be equal to 1±  or 0  the total angular momentum of an electron can be changed 

only by this values, it is: 
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1,0l∆ = ± .                                                   (15.16) 

The sum (15.12) and (15.13) are used in a case of optical transitions in atoms, whereas in 

metals and semiconductors above sums are replaced by integrals. 
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16. Cyclotron resonance – semi-classical approximation 

 

   In this paragraph we will use approximations of electrons as oscillators with zero normal 

frequency to solve the cyclotron resonance problem.  

   Let us consider the case when two external fields are applied to the crystal:  

1
0
  The constant magnetic field B  applied in the z  axis direction  

( )0,0,B B= .                                                      (16.1) 

2
0
 The alternating electromagnetic field with the angular frequency ω  applied in a the xy  

plane 

( ), ,0x xE E E= .                                                    (16.2) 

   The classical equation of motion with the Lorentz force: 

L

e
F E v B

c

 = − + × 
 

                                               (16.3) 

and the damped force: 

dF mvγ= −                                                       (16.4) 

can be expressed in a form: 

 

  .

 ,i t

x

i t

y

e
mx m x yB eE e

c

e
my m y xB eE e

c

ω

ω

γ

γ

= − − −

= − − −

&& & &

&& & &

                                       (16.5) 

   The above equations can be separated by introducing new variables: 

x iy and x iy+ − .                                                (16.6) 

   After a simple but long calculations we get equations in a more convenient form: 

( ) ( ) ( ) ( )'' ' ' i t

c x y

e
x iy x iy i x iy E iE e

c

ωγ ω± + ± ± = − ±m ,          (16.7) 

where  

c

eB

mc
ω =                                                      (16.8) 

is a the cyclotron frequency.  
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   According to the symmetry of the equation (16.7) we are looking for the solution in a form: 

i tx iy A e ω
±± = .                                               (16.9) 

   Putting function (16.9) into equation (16.9) we get: 

( ) ( )2

c x y

e
i A E iE

m
ω ωγ ωω ±− + ± = − ±                           (16.10) 

and the functions (16.9) takes a form: 

2

( )x y
i t i t

c

e
E iE

mx iy A e e
i

ω ω

ω ωγ ωω±

− ±
± = =

− + m
.                          (16.11) 

   Above solutions are related to circular polarizations of the electromagnetic wave. The 

polarization 
x y

E iE+  is called right-hand circular polarization and marked as σ +
 whereas 

x y
E iE−  is called left-hand circular polarization 

x y
E iE±  and marked as σ −

. 

   Taking derivative of above equation we obtain two velocities of electrons rotating in 

magnetic fields: 

( )' 2

( )x y
i t

c

e
i E iE
mv x iy e

i

ω

ω ωγ ωω±

− ±
= ±

−
=

+ m
                     (16.12) 

and since: 

nevσ = −                                               (16.13) 

we obtain the complex conductivity in a form: 

2
*

c

nev ne i

E m i
σ

ω ω γ
±

±
±

= − =
− +m

,                             (16.14) 

where n  is the electrons concentration. 

   Since the complex conductivity is expressed by quantities measured in an experiment, it is 

the real conductivity σ  and the real polarisibility α : 

* iσ σ ωα= +                                               (16.15) 

we obtain expressions the following expressions for conductivity: 

( )

2

2 2

c

ne

m

γ
σ

ω ω γ
± =

± +
                                    (16.16) 

and polarisibility: 
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( )

2

2 2

c

c

ne

m

ω ω
α

ω ω ω γ
±

±
= −

± +
.                                      (16.17) 

   Since the absorption coefficient η  is proportional to conductivityσ , so that for the minus 

sign in equation (16.16) we have a resonant absorption. The Full Width at Half Maximum 

(FWHM) occurs when: 

cω ω ω γ∆ = − = .                                          (16.18) 

   A sharp resonance occurs when: 

1
c

γ ω ω
τ

= = ∆ � ,                                         (16.19) 

where τ  is a relaxation time. 
   The equation (16.19) can be expressed also in a form: 

1cς ω τ= � ,                                                  (16.20) 

where parameter ς  is equal to the mean angle path of an electron around the magnetic field 

(see also paragraph 7). It means that the sharp resonance occurs when an electron make many 

rotations around the magnetic field. In the Figure 16.1. 

   The mean angle path of an electron around the magnetic field ς  can be expressed in a form 

dependent on mobility µ  and magnetic fieldB : 

C

eB e B B

mc m c c

τ τ
ς ω τ µ= = = =                              (16.20) 

in a Gauss units. 

   In the SI units the above equation is expressed in a form: 

C

eB e
B B

m m

τ τ
ς ω τ µ= = = = .                              (16.21) 

   For most semiconductors the condition described by equation (16.20) is achieved in low 

temperatures (liquid helium T=4.2) and magnetic fields of a few Tesla. The angular frequency 

Cω  is than in the range of 
10 11~10 10C Hzω −� , it is in microwave region. Such 

experiments can be performed very easily in most of laboratories. 
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Fig. 16. 1. The evolution of absorption as a function of angular frequency in the resonance 

region for a few value of a parameter ς . 
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17. Inter bands transitions. Optical selection rules 

 

In optical inter band transitions of an electron from a valence to a conduction band two 

conservation laws have to be fulfilled: 

1
0
 The energy conservation law 

photon f i
E Eω = −h .                                                        (17.1) 

2
0
 The momentum conservation law 

i photon f
k k k+ =h h h ,                                                      (17.2) 

where iE , ikh  and
f

E , 
f

kh  are the energy and the momentum of an electron in an initial and 

final state respectively whereas 
photon

ωh  and 
photon

kh  are the energy and the momentum of 

incident photon. Energy gap of most of semiconductors is in the range of Eg=1-2eV. Photons 

with the same energy have wave vector of the range of 10
7
m
-1
 whereas electrons in the 

considered range have wave vector of the range of 10
9
-10

10
m
-1
 so the momentum 

conservation law takes a form: 

i f
k k=h h .                                                            (17.3) 

The optical transitions should obey also the selection rules dependent on symmetry of initial 

and final electron states. The full Hamiltonian of electrons in crystals under interaction of 

electromagnetic wave has a form: 

ˆ ˆ ˆ ˆ
Rcr intH H H H= + + ,                                                    (17.4) 

where ˆ crH , ˆ RH , and ˆ intH  terms in Hamiltonian Ĥ  describe an electron in a crystal, 

radiation and interaction of electron with radiation respectively. Interaction of an electron 

with radiation in quantum mechanics is introduced via a general momentum and a vector 

potential Â  of an electromagnetic field in a form: 

ˆˆ ˆ
int

e
H pA

mc
= − .                                                      (17.5) 

When the interaction is small a perturbation theory can be applied. Than a transition 

probability is described by a square of the matrix element:  
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2 2ˆ~ | | | |
fi

w m p n p< > = .                                              (17.6) 

In optical transition a dimensionless quantity called the oscillator strength is introduced. The 

oscillator strength express the strength of the transition and is given in a form: 

22 | |

( )

fi

fi

f i

p
f

m E E
=

−
.                                                    (17.7) 
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18. Direct transitions 

 

In the frame of quasi-classical many harmonic oscillators the conductivity is expressed in a 

form: 

2

2

24
( )

4

fi fi

fi fi

fi

fe

m

γ
σ

γ
ω ω

=

− +
∑ .                                         (18.1) 

 

Direct allowed transitions 

 

Direct allowed transitions are those for which matrix elements are non zero. In the calculation 

of absorption coefficient is it convenient to substitute a summation by an integration over the 

Brillouine zone: 

( ) ( ) ( ) ( )

( )

2

2
2

4

[ ]
4

BZ

f E E E dEe

cn mcn
E

δ ρπσ π
η ω

γ
ω ω

= =
− +

∫ ,                         (18.2) 

which with a good accuracy can be expressed as: 

( ) ( ) ( ) ( )
22

BZ

e
f E E E dE

mcn

π
η ω ρ δ ω= −∫

h
h .                  (18.3) 

After a simple calculation the absorption coefficient for direct transitions can be expressed in 

a form: 

5/2 *3/2 2
1/2r

2

2
( )g

m e
E

m nc
η ω= −h

h
,                                        (18.4) 

where 
*

rm  is so called reduced mass for an electron and a hole and  equals to: 

* *
*

r * *

h e

h e

m m
m

m m
=

+
.                                                       (18.5) 
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19. Direct forbidden  transitions  

 

Direct forbidden transitions are those for which the matrix element for 0k =  vanishes: 

0|  | 0kf p i =< > =$ ,                                               (19.1) 

when the initial and final states have the same symmetry.  

In some cases we have however non vanishing matrix elements for 0k ≠  which are usually 

proportional to 
2k : 

2

0|  | ~kf p i k≠< >$ � .                                          (19.2) 

So the absorption coefficient is dependent on energy in the power 3/2: 

( ) ( ) ( ) ( )( ) ( )
1

3/2
2

g g gAf A E E A Eη ω ω ρ ω ω ω ω= = − − = −h h h h h h .      (19.3) 
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20. Indirect transitions 

 

Indirect transition are those for which the matrix elements for direct transitions for any k are 

equal to zero. In this case transitions of electrons from valence to conduction bands take place 

with simultaneous additional absorption or emission of a quant of a lattice vibrations – 

phonons. 

In this case two conservation laws are: 

1
0
 The energy conservation law: 

photon phonon f i
E Eω ω± = −h h .                                                       (20.1) 

2
0
 The momentum conservation law: 

i photon phonon f
k k k k+ ± =h h h h .                                                   (20.2) 

The absorption coefficient for indirect transitions is described by a formula: 

( )
( ) ( )2 2

[ ]

1 1
phonon phonon

photon phonon g photon phonon g

E E

kT kT

E E
D

e e

ω ω ω ω
η ω

−

+ − − −
= +

− −

h h h h
h ,    (20.3) 

where the first term describes process with absorption of phonon and the second its emission. 
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21.Excitons. Effective mass approximation 

 

In low temperatures the absorption as well as emission spectrum of solid states are strongly 

affected by interaction of photo-excited electrons from the conduction band with leftover 

holes in a Fermi sea in the valence band. This interaction and energies of complex electron-

hole systems can be calculated in a frame of so called on effective mass approximation. In the 

presence of additional potentials (except crystal potentials) and excitations of electrons the 

Bloch function is not longer a good solution of the Schrodinger equations. When those fields 

are weak and slowly vary with r  one can use the wave function in a following form: 

( ) ( )( ) k k
r r u rφΨ = ,                                                    (21.1) 

where ( )k rφ  is so cold an envelope function. Without additional fields the envelope function 

is the solution of the effective mass equation: 

0 0

2
* 1

2
k km Eφ φ−− ∇ ∇ =

h
,                                                  (21.2) 

where 
*m  is an effective mass of electron or hole. 

In the case of cubic crystals with a scalar effective mass 
*m above equation can be written in 

a simplified form: 

0 0

2

*2
k kE

m
φ φ− ∆ =

h
.                                                    (21.3) 

In the presence of slowly varying fields equation the effective mass equation takes a form: 

( )
2

*
ˆ

2
slow k k

V r E
m

φ φ
 
− ∆ + = 

 

h
.                                        (21.4) 

When electron is excited from the valence to the conduction band the electron system is 

perturbated by the lack of one electron in the valence band. This is considerably different 

situation to that with additional electron in the conduction band a full valence band. Such an 

electron – hole pair couple via Coulomb interaction. In some cases this potential is slowly 

varying and we can use the effective mass approximation. The electron – hole Coulomb 

interaction can be than written in a form: 

61



 

 

( )
2

0

1ˆ
4

slow

e h

e
V r

r rπεε
= −

−
,                                                 (21.5) 

where ε  is an relative permittivity.  
Effective mass equation takes a form: 

2 2

*

0

1
( , ) ( , )

2 4
e h e hk k

e h

e
r r E r r

m r r
φ φ

πεε

 
− ∆ + − = 

− 

h
.               (21.6) 

The envelope function describes now two particles; an electron and a hole. It is convenient to 

introduce new variables – a relative electron – hole position and a position of a centre of 

mass: 

* *

* *

ee h h
e

h

h

e

r rm m

m
r r

m
r R

+
=

+
= − .                                         (21.7) 

The reduce mass and the total mass of an electron – hole pair are: 

* *
* * * *

r * *

h e
h e

h e

m m
m M m m

m m
= = +

+
.                                        (21.8) 

With this variables the envelope function can be expressed in a simple form as a product of 

two functions dependent only on these two new variables: 

( ) ( ) ( )0
,

e hk k k
r r r Rφ φ φ==

0
( , ) ( ) ( )e hk k k
r r r Rφ φ φ== .                   (21.9) 

In the effective mass equation these variables may be separated into two independent 

equations: 

( ) ( )*

2

1
2 k k

R
M

E Rφ φ− ∆ =
h

                                                 (21.10) 

and 

( ) ( )*

r

2 2

20 0

0

1

2 4 k k

e
r E r

m r
φ φ

πεε = =

 
− ∆ + − = 

 

h
.                                  (21.11) 

The solutions of those two equations are well known in a quantum mechanics. The first one is 

a free electron like with effective mass
*M  and the second one is a Hydrogen atom like with 

effective mass 
*

rm  and relative permittivity ε . The total energy can be expressed in a form: 

2 2

1 2 2

*

r

2*

1
1,2,3...

2

m

M

k
E E E Ry n

nε
= + = − =

h
. ,                  (21.12) 
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where 13,6Ry eV=  is Rydberg energy for a Hydrogen atom. Since for typical 

semiconductors 
*

r 0.1m �  and 10ε �  the so called effective Rydberg energy 

*

r*

2
Ry Ry

m

ε
=                                                      (21.13) 

is about three orders smaller and is of the range of a few milielectronvolts.  

Such an electron hole object is called an exciton. Notice, that except quantized Coulomb 

interaction energy it posses also the unquantised energy of translator motion. 
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22. Magneto-optical effects –quantum mechanical picture. Landau 

quantization  

 

    The problem of the electron subjected to external magnetic field is fully solved in quantum 

mechanics in the Schrödinger picture, it is the Schrödinger equation has an exact solution. 

The quantization of the cyclotron orbits of charged particles in the  magnetic field was for the 

first time solved by Lev Landau and so it is called the Landau quantization. The charged 

particles can only occupy orbits with discrete energy values, called Landau levels. The 

Landau levels are degenerate, with the number of electrons per level directly proportional to 

the strength of the applied magnetic field. Landau quantization is directly responsible for 

oscillations in electronic properties of materials as a function of the applied magnetic field.  

      In quantum mechanics the external magnetic field B  can be represented (as in a classical 

mechanic) by a vector potential A : 

B Arot=                                                       (22.1) 

introduced into the Hamiltonian via general momentum: 

ˆˆ ˆ
e

p p A
c

 → + 
 

.                                                 (22.2) 

   When we consider an electron in a crystal in one electron effective mass approximation the 

Hamiltonian takes a form: 

2

*

1 ˆˆ ˆ
2

e
H p A

m c

 = + 
 

.                                           (22.3) 

   Let us consider an electron in crystal, it is three dimensional system with magnetic field B  

applied along z  direction: 

( )0,0,B B= .                                                 (22.4) 

   There is some freedom in the choice of vector potential for a given magnetic field. 

However, the Hamiltonian is gauge invariant, which means that adding the gradient of a 

scalar field to A changes the overall phase of the wave function by an amount corresponding 

to the scalar field. Physical properties are not influenced by the specific choice of gauge. We 

will take the so called Landau gauge with vector potential A  in a form: 
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( ),0,0A yB= − .                                               (22.5) 

   Putting above dependence to the Hamiltonian (22.3) and then into the stationary 

Schrödinger equation: 

Ĥ Eψ ψ=                                                    (22.6) 

we get: 

2 2 2
2 2

* 2 2

1

2

e
i By E

m x c y z
ψ ψ

 ∂ ∂ ∂ − − − − =  ∂ ∂ ∂   
h h h .          (22.7) 

   The above equation differs from the equation for a free electron only by terms dependent on 

y  so the solution can be expressed as a function: 

( ) ( ) ( ), , x zi k x k zx y z y eψ ϕ += .                          (22.8) 

   Putting this function into the equation (22.7) and performing necessary calculation on 

x and z  we obtain: 

( )

( )

2 2 2 2 2 2 2
( ) 2 2

* * * 2 * * 2

( )

φ
2 2 2 2

.

x z

x z

i k x k z x z x

i k x k z

k k k e e
e By B y y

m m m y m c m c

e E yϕ

+

+

 ∂
+ − − + =


 
 ∂ 

h h h h

              (22.9) 

   Extracting the function 
( )x zi k x k z

e
+

 from both sides of above equation we obtain the equation 

for the function ( )yϕ  only. 

   Three terms in above equation can be written in a more compact form: 

2 2

2

2 2 2
2 2

* * * 2

* 2

*

*

1

2

1

2

,
2

2

x x

x

c
x

eB c

c

k k e e
By B y

m m c m c

k
m y

m eB

k
m y

eB

c
ω

 
= 

 

  

+ − +

 =   
   

 − 


−





h h

h

h

                   (22.10) 

where  

*c

eB

cm
ω =                                                              (22.11) 

is an cyclotron frequency. 
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   Making a simple substitutions: 

x
k

y
eB

c
ζ = −

h
,                                            (22.12) 

2 2
'

*2

zkE E
m

= −
h

                                          (22.13) 

and since we have an obvious equality: 

2 2

2 2yζ
∂ ∂

=
∂ ∂

,                                          (22.14) 

the equation (22.9) takes a form: 

( ) ( )
2 2

2 '

* 2

1
φ

2 2
cm y E y

m
ω ζ ϕ

ζ

 ∂
− + = 

∂  

h
.                (22.15) 

   This equation resembles the equation of a quantum oscillator. The energy of such oscilator 

are quantized and in our case equal to: 

2 2

*

1

2 2

z
n c

k
E n

m
ω = + 


+



h
h .                                    (22.16) 

This dependence is illustrated in the Fig. 22.1. The movement of an electron in the external 

magnetic field subjected along z  axis ( )0,0,B B=  is free in direction z  and quantized in a 

plane perpendicular to the magnetic field ,x y . As the energy nE  is not dependent on the 

wave vector xk  as in the case of zero magnetic field we have a strong degeneration of energy 

states. The density of states in the ideal case of a perfect crystal (without any imperfection and 

electron – phonon interaction are presented in the Fig. 22.2. As in the case of quantum 

oscillator the optically allowed transition occur only without nearest states with: 

1n∆ = ± .                                                         (22.17) 

   This transitions are called as in the classical mechanics the cyclotron resonance and appear 

only with one frequency cω  called cyclotron frequency. We can also evaluate a width of the 

energy states from the Heisenberg uncertainty principle: 

∆E τ⋅ ≈ h ,                                                        (22.18) 

where τ  is a life time of an electron on a given energy state.  
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Fig. 22.2. The dependence of the electron energy in an external magnetic field for small wave 

                 vectors zk  

 

   The resonance is detected only when the energy width is smaller than the distance between 

energy levels: 

∆ cE ω< h .                                                (22.19) 

   Putting dependence of ∆E  from equation (22.18) to equation (22.19) we get: 

c
ω

τ
<

h
h ,                                                   (22.20) 

which can be expressed in the more convenient form: 

1cζ ω τ= > ,                                                (22.21) 

which resembles the classical mechanics solution (see paragraph 16) . The requirements for 

the observation of cyclotron resonance is that the an electron should make number of circles 

around the magnetic field. 
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Fig. 22.1. The electron density of states in a magnetic field – solid lines. Dashed lines 

                   indicates electron density of states without magnetic field. 

 

   Except the condition (22.21) in order to observe cyclotron resonance in experiments 

additional condition have to fulfilled, it is the temperature have to be as low as the 

temperature broadening of the line have to be smaller that the distance between energy levels: 

c kTω >h .                                                     (22.22) 

   There are variety of effects related to Landau quantization in the magnetic field. In 

spectroscopy experiments we detect cyclotron resonance in a far infrared region as well as 

many effects observed in transitions of electrons from valence to conduction bands both in 

absorption and emission in visible, near infrared and near ultraviolet. Among them are 

cyclotron replicas of the main intensity lines going to both lower and higher energy with the 
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increase of the magnetic field. In the transport experiments so called Shubnikov de Hass 

effect is observed as the oscillations of resistivity as a function of the magnetic fields. This 

effects reflects crossing of the Fermi energy by subsequent landau levels which energies 

increase with the magnetic field. Also the integer quantum Hall effect be long to this class of 

experiments. Also the magnetic susceptibility oscillates in magnetic fields. This effect is 

called the Hass van Alphen effect. In experiments in external magnetic field we should also 

take into account that an electron posses also the spin  

1 / 2s = ,                                                          (22.23) 

which is fourth quantum number describing the internal degree of an electron state of 

freedom. The energy of an electron in a magnetic field connected with the spin is equal to: 

ˆ
B

E g Bµ µ σ= ,                                                      (22.24) 

where σ̂  is the spin operator and Bµ  is an magnetic moment of an electron so called the 

Bohr magneton equal to: 

2
B

e

mc
µ =

h
.                                                    (22.25) 

   Since the projection of the electron spin along the magnetic field is equal to: 

1 / 2zs = ±                                               (22.26) 

we have two energies related to spin connected with each Landau levels. The transition 

between Landau levels with the conservation of the spin projection are called the cyclotron 

resonance whereas the transition between the states with opposite spin but with the same 

Landau levels are called paramagnetic resonance. 

 

Further reading 

1. P. Yu, M. Cardona, “Fundamentals of Semiconductors”, Springer, Berlin 1999 

2. H. Ibach, H. Luth, “Solid-State Physics, An introduction to Principles of Material 

Science” Springer-Verlag Berlin Heildelberg 1995 

3. C. Kittel, “Introduction to Solid State”, Wiley and Sons, New York 1996 

4. W. A. Harrison, “Solid-State Physics”, Wiley and Sons, New York 1995 
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23. The typical set up for an optical experiments. Determination of an absorption  

      coefficient of bulk crystals 

 

 Typical set up for optical experiments is presented in Figure 1. In this configuration 

all main optical experiments can be performed, it is absorption, reflectivity, 

photoluminescence, photoluminescence excitation and combinations of these experiments. 

 

 

   The main parts of set up are a cryostat, a spectrophotometer and excitation sources.  

  The cryostats are used since most valuable information about physical properties of 

materials are obtained when they are in low temperatures and the studied effects are not 

influenced by interaction with vibrations of crystal lattice i.e. electron – phonon 

interactions. There are variety of cryostats used in experiments. In bath cryostats samples 

are immersed in a liquid Nitrogen or Helium in temperatures T=77K and T=4.2K 

respectively. The advantage of such cryostats is possibility of the use of high excitation 

power density however disadvantage is vaporisation of liquids and bulbs produce in such 

process what strongly increase noise of measured signal. The other type of cryostats are so 

called “cold finger” cryostats. In such cryostats sample is mounted in a vacuum on a 

holder cooled by liquid Nitrogen or Helium. Advantage of these cryostats is very easy 

operation however in this case a low density power excitation can be used.  
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   The spectrometer consists of a monochromator which split the light in a necessary spectral 

regions, followed by detectors, step motors rotating a grating and a computer from which an 

experiment is directed. Monochromators with gratings are chosen according to the 

requirements of experiments, which is spectral region, resolution, efficiency etc. Nowadays 

CCD camera are commonly used due to low cost and ability to measure the whole analysed 

spectra. Unfortunately CCD camera operates only in spectral region in which Silicon has 

strong absorption it is from λ=1.1-0.2 µm. In spectral region down to λ=1.7 µm the InxGa1-

xAs linear device can be used also to measure the whole spectra. Unfortunately this device is 

very expensive. Out of above regions other detectors have to be used. Very common in the 

were photomultipliers which usually have very strong signal but since they measure only one 

signal the spectra with their use were measured point by point which is very time consuming. 

In for infrared other detectors as thermopars and bolometer are used but their efficiency are 

very week in comparison to CCD cameras and photomultipliers.  

   The light sources should also be chosen according up to the studied spectral range. The most 

common sources are halogen lamps. They are very cheap and have very high efficiency in 

visible region (VIS) as well as in not far ultraviolet (UV) and infrared (NIR).  

In infrared a black body source is used (with customer name a globar). 

A Globar is a silicon carbide rod of 5 to 10 mm width and 20 to 50 mm length which is 

electrically heated up to temperatures ranging from 1,000 to 1,650 °C (1,832 to 3,002 °F). 

When combined with a downstream variable interference filter, it emits radiation from 4 to 15 

micrometres wavelength. Globars are used as thermal light sources for infrared spectroscopy 

because their spectral behaviour corresponds approximately to that of a Planck black body 

radiator. 

The most common material for lenses is glass since it is cheap and easy to manufacture. The 

typical glass transmit light from 0.4 µm to 2 µm. Quartz glass transmits light in a wider region 

from 0.2 µm to 4 µm. When operating beyond this region metal focussing mirrors are being 

used.  
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Determination of an absorption coefficient of bulk crystals 

 

   In the case of semiconductors and dielectrics with direct energy gap an absorption 

coefficient in fundamental absorption edge region increases very quickly with increase of 

photon energy. In Figures bellow we see that for those materials as GaAs and InP absorption 

coefficient increase in a very narrow region up to 10
-5
 cm

-1
. According to Lambert Beer law it 

means that in absorption experiments very thin samples should be used with a thickness of the 

range of micrometers. Such samples are very difficult to obtain and also very difficult to 

operate. During students laboratory a bulk samples with a thickness of about 100 µm are 
being used. 
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   In semiconductors with indirect energy gaps as Silicon the absorption coefficient above 

energy gap increases very slowly. Therefore transmission measurements of such samples 

above energy gap samples with thickness of even 1 mm could be used. Such samples are very 

easy to operate and are advised to use as a starting point for not experienced students. 

73


	Contents
	1. Lambert–Beer law
	2. Maxwell’s equations
	3. Wave equation. Complex refractive index
	4. Boltzmann equation
	5. Relaxation time
	6. Ohm’s law. Microscopic conductivity
	7. Boltzmann equation in electric and magnetic fields
	8. Hall effect
	9. Magneto-resistance
	10. Boltzmann equation for alternating fields. Complex conductivity
	11. Metallic reflectivity
	12. Plasma frequency in metals and semiconductors
	13. Free electron absorption
	14. Damped oscillators -classical approximation
	15. Oscillator strength – quantum mechanical approximation
	16. Cyclotron resonance – semi-classical approximation
	17. Inter bands transitions. Optical selection rules
	18. Direct transitions
	19. Direct forbidden transitions
	20. Indirect transitions
	21.Excitons. Effective mass approximation
	22. Magneto-optical effects –quantum mechanical picture. Landau quantization
	23. The typical set up for an optical experiments. Determination of an absorption coefficient of bulk crystals


 
 
    
   HistoryItem_V1
   Nup
        
     Trim unused space from sheets: no
     Allow pages to be scaled: yes
     Margins and crop marks: none
     Sheet size: 6.496 x 9.508 inches / 165.0 x 241.5 mm
     Sheet orientation: tall
     Scale by 95.00 %
     Align: centre
      

        
     0.0000
     10.0001
     20.0001
     0
     Corners
     0.2999
     ToFit
     1
     1
     0.9500
     0
     0 
     1
     0.0000
     0
            
       D:20110726151711
       684.5669
       CANON pojed.
       Blank
       467.7165
          

     Tall
     630
     275
     0.0000
     C
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     0
     1
     0 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
     Shift: move up by 14.17 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20101021003038
       684.5669
       CANON pojed.
       Blank
       467.7165
          

     Tall
     1
     0
     No
     1047
     129
     Fixed
     Up
     14.1732
     14.1732
            
                
         Both
         1
         AllDoc
         42
              

       CurrentAVDoc
          

     Uniform
     11.3386
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

        
     7
     73
     72
     73
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all odd numbered pages
     Font: Times-Roman 11.0 point
     Origin: bottom right
     Offset: horizontal 62.36 points, vertical 42.52 points
     Prefix text: ''
     Suffix text: ''
     Use registration colour: no
      

        
     
     BR
     
     1
     TR
     1
     0
     1005
     173
     0
     11.0000
            
                
         Odd
         73
         1
         AllDoc
              

       CurrentAVDoc
          

     62.3622
     42.5197
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

        
     0
     73
     72
     37
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all even numbered pages
     Font: Times-Roman 11.0 point
     Origin: bottom left
     Offset: horizontal 62.36 points, vertical 42.52 points
     Prefix text: ''
     Suffix text: ''
     Use registration colour: no
      

        
     
     BL
     
     1
     TR
     1
     0
     1005
     173
     0
     11.0000
            
                
         Even
         73
         1
         AllDoc
              

       CurrentAVDoc
          

     62.3622
     42.5197
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

        
     0
     73
     71
     36
      

   1
  

    
   HistoryItem_V1
   StepAndRepeat
        
     Trim unused space from sheets: no
     Allow pages to be scaled: no
     Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
     Horizontal spacing (points): 0 
     Vertical spacing (points): 0 
     Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
     Add frames around each page: no
     Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Sheet orientation: tall
     Layout: rows 50 down, columns 50 across
     Align: centre
     Registration colour: All separations
     PDF/X handling: Ignore PDF/X
     Annotations and form fields: UNKNOWN
      

        
     0.0000
     Prompt
     10.0001
     20.0001
     1
     Corners
     0.2999
     Fixed
     50
     50
     0.9500
     FormsAndFields
     0
     0 
     1
     0.0000
     0
     IgnoreAll
            
       D:20110726152028
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     509
     220
    
    
     0.0000
     AllSeps
     C
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     1
     0
     0 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base





