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Chapter 1

Density matrix

1.1 Statistical average
Quantum average value of operator G in a state Yz, t)

<é> = /wzéwde = <¢k ‘ G ‘ 1/)k> (1.1)
Statistical ensemble consists of N hypothetical physical systems of the same
Hamiltonian whose states are determined by the wave functions ¥y (z,t), where

x = r, p symbolizes a generalized variable. We use such a statistical ensemble
to calculate a statistical average value

@4

We have here two types of averaging: quantum and statistical over a given
ensemble.

> (w |G

k

N
=1

N
i) = 3 [ viwar (12)

1.2 Density matrix

Chosing a complete system of orthonormal functions ¢,,(z) we can represent

Yi(w, ) = ak(t)pn(x) (1.3)

7



8 CHAPTER 1. DENSITY MATRIX

and write the statistical average of G

. 1 & . »
(G)=5> > am/wanpde:

k=1n,m G

N
= Z % Z afnafz*Gnm = Z pmnG”m = T‘I‘(ﬁé) (14)
k=1

n,m n,m

where we have defined a density matrix g in a certain representation, that is for
a given set of basis functions {¢,}

1 N
Pmn = N g afnaﬁ* (15)
k=1

Although p is defined for a certain choice of {1}, the average value - an ob-
servable quantity - does not depend on this choice, what one can easily show
transforming {1, } into another orthonormal and complete basis {/,}

Yy 1
w% =U w'" (1.6)

where U is a unitary operator. In this new representation the density matrix
reads
P =U""1pU (1.7)

and
G'=U"'GU (1.8)

The averaged G’ value
Te (§6') =T (01007160 =T (071560 ) =
- (péUU—l) - (pé) (1.9)

is the same as the the averaged G. Therefore, we have shown that the averaging
does not depend on a particular choice of a basis representation. Summarizing,
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we have defined a quantum — statistical average of an operator G

<é> _ (ﬁ@) (1.10)
where p is a density matrix. We note that the normalization condition
Wk [ e) =1, (ol | 0h) = Onm (L.11)
leads to
= (el = 3 anah (on ) = 3 ol =Yl (a2)
n,m n

and in consequence to

N N
Tp= Z|ak| %;ZM’;F:%Zl:l (1.13)

1 n k=1

which means that p can be regarded as a probability density matrix. Let’s
consider a density matrix of a pure state 1 when all wave functions of a statistical
ensemble are identical, i.e., ¥ = ¢ and

N
1 * *
pmn = E A = Qmay, (1.14)
k=1

Calculating p? matrix element

= P = Y amajaa;, =
l l
=am (Z a?@z) a; = ama), = pmn (1.15)
l

we obtain p? = p for a pure state system. If we take the energy representation,
that is a set of eigenfunctions ¢,

IfIQDn :gSOn (1.16)

Hy = <<pm ‘ H ’ apl> =E0mi (1.17)
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the time evolution of p

., Op v 1 T A (8]
ihr = [H } - [Hp(Hﬂ =0 (1.18)
that is for any matrix element p,,,
. apmn _ r A _ r A AT _
0= =gt = [f.p] = (om [ H|n) = (om |9 | ) =

= <<pm‘ﬁ(<pz><soz\ﬁlson>—<som|ﬁ\<pz><soz(ﬁ‘son>)=
l
- Z (Hmlpln - pmlHln) - Z (57n,5lmpln - pmlgn6ln) -
l l

= (Emn —&n)pmn  (1.19)

and for nondegenerate states we get a diagonal density matrix

where
1Y 2
k
Pn = Pnn = N kg_l |an| (1.21)

Pn is a probability of finding among the statistical ensemble a system in a state
|on), in other words, it is a probability that a system resides in a quantum state
|on). Therefore, in a basis of energy eigenfunctions we can represents p as

p=_1en) pn (onl (1.22)

We will use the energy representation of the density matrix throughout this

book. At the end let us note that 0 < |a’fL|2 < 1 for each k and according to
(1.21) we have 0 < p,, < 1. The density matrix element takes its maximal value,

prn = 1, only if |aﬁ > — 1 for each k, that is when all systems of the statistical
ensemble are in the state |@,,) and this means a pure state system for which

S (1.23)



Chapter 2

Entropy

The entropy can be thought off as a measure of the disorder in a system and is
obtained by state counting. The entropy of an N particle system is proportional
to the logarithm of the number of states available to the system and is defined
by the Gibbs formula

S =—kgTr(plnp) (2.1)

where kp = 1.38 - 10723 [J/K] is the Boltzmann constant. In the energy repre-
sentation we have

n,m

and the entropy is given by a straight summation over the energy states

S=—-kpY pulnp, (2.3)

Very often it is more convenient to perform an integration instead of a summa-
tion using a substitution for a sum over the states of an N-particle system

S 7(23;3;)V / RN (2.4)

where V' is a volume of a system and s is a particle spin, we can rewrite (2.3)

in a form 2 DY
S+
8 = ka5 [ o) np(p)ap (2.5)

11



12 CHAPTER 2. ENTROPY

where p = (py,...,Py). The density matrix, which becomes a continuous
momentum function p(p), obeys a normalization condition

(2s+ 1)V .

TN dSNpP(p) =1 (2.6)

and can be called a probability density in the 3/N-dimensional momentum space.
We need to elucidate that applying the replacement (2.4) one must pay a partic-
ular attention to possible singularities of an integrated function and while a use
of an integral is allowed for fermions or classical particles in a case of bosons one
must include the lowest energy state element in addition to an integral (2.4).
This issue will be discussed thoroughly in Chapters 7 and 10. The entropy def-
inition (2.5) is very usefull, as it can be applied after a slight modification to
quantum as well as classical systems. Although all particles obey quantum laws,
a classical approach is a convenient approximation for systems whose quantum
features can be neglected. Therefore, one must use an appropriate classical
states counting procedure to have the same number of states as in a quantum
system and because a single quantum state of N particles corresponds to N!
states of distinguishable classical particles the number of classical states should
be diminished by a factor N! which accounts for a number of N particles per-
mutations. For that purpose we introduce a coefficient ¢y of an action units
which discriminates quantum and classical systems: ¢y = R3N for quantum,
en = N!R3N for classical. We can now introduce a probability density p(p,r),
where r = (r1,...,7y), in the 6 N-dimensional momentum and position space,
that is the I'-space, which gives a probability of finding a classical system in
a state with particles momenta and positions given by p and r vectors respec-
tively, and for a quantum system is defined as p(p, ) = p(p). The normalization
condition on the I'-space reads

/ Wdr ) =1, (2.7)
CN

where we have used a simplified notation p = psp, 7 = r3n. We note, that in a
quantum system the probability density is solely a momentum function and the
position integral gives simply volume to the N-th power, which together with
the ¢y coefficient form the density of states in the momentum space V /h3N.
According to (3.9) the entropy is defined

dpdr
S =t [ Lo, ) nplp,r) (2.8)



Chapter 3

Thermodynamics

3.1 Fundamental laws

We will use the first law of thermodynamics, that is the energy conservation
law,

dU = 6Q — PdV + pdN (3.1)
and the second law of thermodynamics

ds > % (3.2)

where the equality holds if changes in the thermodynamic state are reversible,
and the inequality applies to spontaneus or irreversible process. In this book
we deal with reversible processes, except for the last paragraph, and we have

_ %@

ds T

(3.3)

unless it is not otherwise stated. Therefore, we can combine both thermody-
namic laws into a single equation

TdS =dU + PdV — udN (3.4)
which determines a basic thermodynamic function - the entropy.

13



14 CHAPTER 3. THERMODYNAMICS

3.2 Thermodynamic functions

A thermodynamic definition of the entropy in the relation (3.4) yields
1 P I
== —dV — LaN
ds TdU + TdV Td

(3.5)

We note, that the entropy S = S(U,V,N) is a function of three variables:

internal energy U, volume V' and number of particles IV, hence an infinitesimal
change of the entropy

S

oS oS
e B — —— e N -
a5 <8U>MN“]+(aV>MN&/+(aN>UVd (36)

yields the following thermodynamic identities
0s
o )y n B
03
oV )un B

(g_]i) UV - _% 39

A change of the internal energy U, which according to Eq. (3.4) reads

el
—
@
\]
N

P
T

dU = TdS — PAV + udN

(3.10)
defines U as a three variable function U = U (S, V, N). Therefore, its differential
ou ou ou
dU = | == ds — dv — dN 3.11
(55),05+ () v+ (5)., )

is determided by the following relations

(g_@ e T (3.12)
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(g—x)s,v - (314

Subsequently, we define the Helmholtz free energy
F=U-TS (3.15)
whose differential change
dF =d(U —TS)=dU — TdS — SdT (3.16)
depends on the internal energy differential (3.10) and reads
dF = —-S8dT — PdV + pdN (3.17)

Therefore, we have the free energy as a function of 7', V, and N variables
F = F(T,V,N) and its differential

OF OF OF
F=— T — — N 1
d (W)md +<8V>T,Ndv+(aN)T,vd (3.18)

leads to the following thermodynamic identities

() s o
(gé)ﬁN:_JD (3.20)
(g—f\;)nv - (321

A thermodynamic definition of the grand potential (thermodynamic potential)
AT, V,u)=F — uN (3.22)

combined with Eq. (3.17) gives a differential change of the grand potential
dQY = —-SdT — PdV — Ndu (3.23)

which is a function of T, V., and p. A differential of a three variable function
Q=QT,V,n)

00 o0 o0
dQ = — dT + <—> dV + (—> d 3.24
<8T>V,u ov T op ™V : ( )
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leads to thermodynamic identities

() 29
(g—‘?)m =_P (3.26)
(3), = o

Up to now, we have defined the differentials of the internal energy, entropy,
free energy and thermodynamic potential. Using a scaling property of extensive
quantities we will derive an explicit internal energy formula and subsequently
obtain the rest of defined thermodynamic functions. First, we note that the
internal energy U = U(S,V, N) is a function of extensive quantities: S, V, N
which are proportional to the mass and a size of a system, therefore U itself is
also an extensive quantity. Let us do a scaling transformation of the system by
extending the size of a system A times

S — AS

V. — AV

N — AN
which also gives

u — XU

We may write this transformation as follows
UAS,A\V,AN) = AU(S,V,N) (3.28)

Taking a derivative with respect to A at A = 1 of the right-hand side of (3.28)

d d

—UAS,A\V,AN) = —XU(S,V,N)=U(S,V,N) (3.29)
dA dA

and of its left-hand side

d 0 dAS
UM AVAN) = <mU()\S, AV, AN))VN <K) +

0 AV
<WU()\S, AV, AN)) " <K> +
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(2 vosavom) () o

AN Ve
that is
Auosavan) = (“Zupsavan)) st
D ASAVAN = Grg Vs A AN |
9 0savan)) v (2 vasavan)) N (331)
o WA ) VA (Gap VIS ARAN | N6

Hence, we obtain

oU oU oU
N) = [ 2= - -— N .32
VS, V.N) (85>V,NS+(aV)S,NM(aN)V,N (3.52)

and using the thermodynamic identities (3.12)-(3.14) we finally get a formula
which defines the internal energy

U(S,V,N)=TS — PV +uN (3.33)
which yields the explicit formulas for the Helmholtz free energy
F=U-TS8=—-PV +uN (3.34)
and the thermodynamic potential
Q=F—uN=-PV (3.35)

or
Q=F—uN=U-TS—puN (3.36)

The entropy function is to be determined microscopically within the statistical
physics approach.






Chapter 4

Microcanonical ensemble

4.1 Density matrix

A microcanonical ensemble consists of all available states of an isolated system,
that is states of a constant energy FE and a fixed number of particles N. We
define the density matrix p in the energy representation {v,}, f[gon = Eppn,
for which p,n = prndmn and the diagonal elements read

o = ‘;‘j;; (4.1)

where I'(E) = 3 dg, g is a number of the energy F states. Taking into account

n
a small, compared to the energy, discernibility of the energy measurement, A <
FE, we write a physically justified definition of the microcanonical ensemble
density matrix

1
—— for E<E,<E+A
pn = { T(E) " (4.2)

0 otherwise

where now I'(E) is a number of states in the energy interval F < E,, < E + A.
We note, that

Trp = anpn = ﬁ Xn:%n,E = % =1 (4.3)

which means that p is a properly defined probability density matrix. We shall see
that the microcanonical ensemble extremizes the Gibbs entropy, that is obeys

19



20 CHAPTER 4. MICROCANONICAL ENSEMBLE

the second law of thermodynamics. We use the Langrage multipliers method to
look for an extremum of the entropy (2.8) for a constant energy states

S = by df;lr

E<H(p,r)<E+A

p(p,)Inp(p,7) (4.4)

subject to the normalization condition (2.7)

dpdr

CN
E<H(p,r)<E+A

p(p,r) =1, (4.5)

For the sake of simplicity, from now on we will drop off the limits in the integral
notation minding that all integrals are taken in the same limits as in (4.5) unless
other limits are specified. We take a variation

dpd
ssw+a( [T -1)] =0, (16)
CN
which reads dod
r
/ fN [~kpInp(p,r) — kp + o] dp(p,7) = 0. (4.7)
Since dp is an arbitrary quantity, we have
a—kp
p(p,r) =e ¥8 = const (4.8)

A Lagrange multiplier « is determined from the normalization condition (4.5)
which for a constant density matrix gives

ooy = ([ ) Ty (49)

CN

where I'(E) is a number of states of the energy E.Therefore we have obtained
the microcanonical ensemble probability density (4.2).

4.2 Entropy

The Gibbs entropy can be now straightforwardly evaluated
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dpdr
S = _kB/ b p(p,T) h’lp(p,’f') =
CN

—kp / dfsrrl(E) InT~Y(E) = kg nT(E) (4.10)

and concluding, we may say that we have obtained a useful formula for the
entropy in the microcanonical ensemble

S = kpInD(E) (4.11)

We can also rederive the entropy formula by taking a trace in the Gibbs defini-
tion (2.3)

S=—-kpY palnp, =
n

—kp ;pn In ﬁ = kpIn[(E) En:pn —kpln[(E) (4.12)

4.2.1 Useful formulas

Sometimes it is more convenient to use a volume Q(E) occupied by the available
states of the energy E in the I'-space instead of a number of states I'(F), that
is Q(E) is a thin shell volume

Q= / dpdr (4.13)
E<H(p,r)<E+A
In such a notation we have
Q(E)
cN
We shall now present a somewhat more convenient method of computing the
entropy by defining a volume ®(E) in the I'-space occupied by the states of

the energy not exceeding the energy E, which is usually easier to evaluate than

S =kpln (4.14)

O(E)=P(E,V,N) = / dpdr, (4.15)
H(p,r)<E

which can be represented by a sum of the F; energy thin shell volumes (Fig.
4.1)

S

A
O(E,V,N) =Y Q(E;,V,N) (4.16)
i=1
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where Q(E;, V, N) is the energy E; thin shell volume. We note that the largest

(B, V1

Figure 4.1: Q(E;,V,N) shell volume and ®(E,V,N) volume of states of the
energy not exceeding F

shell volume Q(E;, V, N) is that within the energy interval (E, E + A), thus we
can write

E
or by taking a logarithm which is a monotonic function
E
nQE)<In®(FE)<InQE)+1In N (4.18)

Because ®(F) is a volume in the 6 /N-dimensional space In ®(E) ~ N and the

energy F of a system is also proportional to the number of particles In N In N

we get in the thermodynamic limit

E
N

m®([E) N Nooo

V—oo

0, (4.19)
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and
In®(E) = Q(E). (4.20)
Therefore in the thermodynamic limit the entropy (4.14) reads
®(E,V,N
= by ZEVN) (4.21)
CN

where ®(E,V, N) is volume of states of the energy not exceeding E.

4.2.2 Properties

1. Entropy S(E) = S(U,V,N) is a continuous and differentiable function
of U, V, N.

2. Entropy is an additive function, that is, for a system consisting of independent
subsystems A, B the entropy S(U,V,N) = S(Ua,Va,Na)+ S(Up, Vs, Np).

A B

Ua,Va, Na Ug, Vs, Np

I"' 4 —number of states i, I's — number of states ifB

Proof: Let us show it for the classical entropy

D4ty LY S S HLL
NA!Ng!h3(Na+N5) N 41h3Na B HNB!hSNB -

= S(UA,VA,NA) + S(UB, VB,NB). (4.22)

S(U,V,N)=kpIn — kpln

3. Entropy is an extensive quantity: S(AU, AV, AN) = AS(U,V, N), for A > 0.
Proof: For the classical entropy

S(AU,AV,AN) = kg In %, (4.23)
where ®(AU, \V,AN) is a volume in a 6AN-dimensional I'-space.
DU, AV, AN) ~ AV )M RN (4.24)
since the internal energy
U= ipi ~ Np? (4.25)

n=1
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we have )
U 2
. <N) (4.26)
and for the extended system
AUN?  (UN\?
PA = <)\_N> = <N) ) (4.27)
therefore .
OAU, AV, AN) ~ AV <%> : (4.28)

The entropy of the extended system reads

oy
AVHAN [ —
o (5)

SOV, AVAN) = ki In —mn st

(4.29)

and using the Stirling’s approximation, In N! ~ N In N — N, we have the entropy

vz

()
S(AU AV, AN = kpAln —— 7 4 kAN A — kAN In AN + kAN,

13N
(4.30)
which is equivalent to

v|Z

v (5)
S(AU, AV, AN) = Mg In TJXN — ASOU, AV, AN)s_1 = AS(U, V. N)
' (4.31)

4.3 Ideal classical gas
We use an example of an ideal classical gas to demonstrate the method of the

microcanonical ensemble. In order to determine the entropy [3] (pp. 299-300,
348)

(4.32)
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we need to compute the volume ®(FE) in the T'-space occupied by states of the
energy less than F, that is

o(£) = [ar [ary [ap,-- [ apy (4.33)
v %
where the momenta are limited by
N o 2
pi
4.34
=35 (434)

Defining a radius R = v2mE we can write
O(E)=VVN,, (4.35)

oo oo N
E)= /dp1-~- / dp 0 <32—2p3> (4.36)

is a volume enclosed by R in a 3N-dimensional momentum space, thus it can
be represented as

where

®, = Ay RN, (4.37)
We obtain A3y coefficient by evaluating the integral
T oAb, e
dR—Le " 4.
[angre . (439)
0
where do,
=3NAsnR*N 1. 4.39
iR 3N (4.39)

do,
We can do that without using an explicit form of — iR P but its definition (4.36)
[ do Ao, dE 7 do
p . —R> _ —R? p —R* _
/deRe /deEdR /dEdE
0 0

0
eo d N
2 2| —R?
—/dEd—/dp1-~-/de@ (R —Elpi>e =
0 =
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0 N
= /dEQm/dp1-~-/de5 <32 — Z;ﬁ) B =
0 =1
o0 N )
:/dR2/dp1-.-/de5 <R2 —Zzﬁ) o =
0 =1

N
- >}
:/dpl/dee i=1 —
oo oo oo oo 0o oo <7 ]XV: p2 +p2 +p? )
= /dpu/dply/dplz/dea:/dey/deze PR R
— 00 — 00 —00 —00 —o0 N
00

o0 o0

:/dplweip%w /dplyeip%y /dplzeipzz"'

oo oo

— 00 (o ] — 00
(o ]
—pi —pi —pa
deare Na deye Ny deze Nz —
— 00 — 00 — 00

. 3N
= ( / dpepz) =77 (4.40)

— OO

On the other hand using (4.39)

/ dR=—Le 7 = 3N A3y / dRRN-Te = §NA3NF SN (4.41)
dR 2 2
0 0
where -
I(z) = / t* tetdt (4.42)
0
is the gamma function. Therefore, comparing (4.40) and (4.41) we get
3 N Ay <§N> =7, (4.43)
2 2
that is
2
Asy = (4.44)

TGN 1)
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Therefore, the volume in the momentum space reads
3N 3N 3N
3N 3N ormE)
S— T RV T g = BBy
L(3N+1) I'(3N+1) I'(3N+1)
and the volume in the I'-space
N(rmE)*
o(E) = v (fm ) (4.46)
L (3N +1)

We are now in a position to calculate the entropy

S:]{iBhl

VN (2rmE)*% ]

4.47
NIR3NT (3N + 1) (4.47)
Because I' (3N + 1) = (2N)! and for large N we can use the Stirling’s approx-
imation

Y
lnN!%NlnN—NorN!z( ) ,
we have

4.48
- (4.43)
3 3N\ T
I'f=N+1)~|— 4.49
and the entropy
VN (@2rmE)*
S =kpln (LN)N (4.50)
PPN
N3N (53) 2
The entropy formula can be rearanged, using again the Stirling’s approximation
as follows
3 ArmE\ ?
™m
== it _ 1=
S 2NkB+Nk51n V(gth) kpIn N!
3
dtmE\ 2
==-N Nkpl —_— — NkpIn N + Nkp =
5 kg + NkplIn V<3h2N> kpIn N + Nkp
3
5 V [4dmrmE\?
=Nk Nkglhn | = [ —— 4.51
g B BnN(SfﬂN) (451)
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and defining the internal energy U = E the entropy reads

5 (Y (4xmU 2
2 N \ 3h2N

We use the above equation to obtain the temperature and pressure. Taking a
partial derivative % of (4.52) at constant V and N we get the equation

S = Nkp (4.52)

37— 3
V (4mmU \ ? V (4rmU\? 3 1 [(OU
1= Nkp | — (220 () 2y (2 4.
k5 N(3h2N> N(3h2N> U (as)m’ (4.53)
which simplifies to
3 oU 3
U=-NEk — = —NkpT 4.54
2 B(as)VN 27 P (4.54)

ouU
05

where we have used a thermodynamic relation 7' = < > . We have ob-
V,N

tained the internal energy of a monatomic ideal gas

U= gNkBT (4.55)

in agreement with the energy equipartition theorem. A similar procedure of
taking a partial derivative % at constant S, N yields a relation

o N (4mmUN\TF [ 1 (4rmU %+K 4rmU\* 3 4 (U
~ V \U3m2N N \ 3h2N N \ 3r2N ) 2 WV )sn

=

(4.56)
which is equivalent to
3 ou
U=V |—— 4.57
(7)., o
. . . ou
Using a thermodynamic identity P = — | — , we get
ov SN
3
U= §PV (4.58)

Finally, combining (4.55) and (4.58) we obtain the ideal classical gas equation
of state
PV = NkgT (4.59)
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We can also find the heat capacity at constant volume

ou o (3 3
Cy = (a_T>V = 8_T <§Nk'BT> = §N]{iB

and the Helmholtz free energy

F=U-TS=—-NkgT — NkgTn

V [ 2mm 3
N (?’“BT> =

vV 3

= —~NkpT = NkpTln — — 5N/cBTln(mkaT) + NEkgTlnh?

which yields the chemical potential

_(oF\  _
"=\on )., ~

— kT — kBTln% + kT — ngTln(%kaBT) +kgTInh® =

3
]CBTIH

b

(QkaBT)%

where n = % is a particle concentration.

29

(4.60)

(4.61)

(4.62)






Chapter 5

Canonical ensemble

5.1 Subsystem of a microcanonical system

We consider a system consisting of N particles in a thermal contact with a
much larger system containing Ny particles, Ny > N, which we call a heat
bath. Although both systems are separate and their particles do not mix, that
is particle numbers N and Ny and volumes of the systems V', Vj are constant,
they can exchange the energy.

heat bath

The energy FE of a smaller system determined by the Hamiltonian H(p,r) = E
is much smaller than the energy of the heat bath Ey — E, so in slowly varying
energy functions we can assume Fy — E ~ Ey = const, although F is allowed
to change. Both systems can be considered subsystems of a constant energy Ej
system described by a microcanonical ensemble whose number of states I'y, (Ep)
because of a spatial separation of the subsystems is a product of the numbers

31
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of states I" and I'y in the 6 N- and 6 Ny-dimensional spaces respectively
L (Eo) = T(E)o(Eo — E). (5.1)

The variation of the microcanonical ensemble entropy S(Fo) = kpInT,,(Ep)
with respect to the energy F must fulfill the extremum condition

5S(Eo) =0 (5.2)
SkpInT,, (Ey) =0 (5.3)
§In[[(E)To(Ey — E)] =0 (5.4)
SInT(E)+6InTo(Ey— E) =0 (5.5)
1 OI(E) 1 Oy (Ey — E) B
[(E) 0E  To(Ey—E) 8EE00— E) 0B =0 (56)
for an arbitrary  E value, that is,
1 Or(E) 1 Oo(Ey — E)
L(E) 0E To(Ey—E) 8(Ey—E) 0 (5:7)
L I(E) 0 InTo(Ey—E) =0 (5.8)

L(E) 0E  8(E,—E)

Because Ey > F we can assume that the energy of the heat bath Fy — E ~ Ej
therefore | or(E) L9
————~ = — ———kpInTy(Fy). 5.9
T(E) 0E  hp oy 2 moEo) (5.9)
On the right-hand side of Eq.(5.9) we have the energy derivative of the heat
bath entropy So(Eop) = kpInT'o(Ep) which defines the absolute temperature T'

of the heat bath . 950(Eo)
. o(£o
1= (TEO )Ny. (5.10)

1 oI'(E 1
() _ . (5.11)
T(E) 0E  kpT
Let us note that T is a common temperature of both systems since Eq. (5.9)
yields

Therefore

0 0
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It means that both systems remain at the same temperature, in other words,
the systems are in a thermal equilibrium. Eq. (5.11) is a simple differential
equation

dr dE
—_ = — 5.13
T = T (5.13)
which integrated gives
E
Inl'= — +1 14
n T +InC, (5.14)

where C' is a constant. Finally, a number of states of the energy E in the
6 N-dimensional space reads

[(E) = CesT. (5.15)

If we limit our considerations to the states of a fixed energy F then we still deal
with a microcanonical ensemble and the probability density is determined by
the normalization condition

Som et = [ Topr) =1 (516)

CN
H(p,r)=E

where p is constant for a constant energy sheet, that is, it reduces to the micro-
canonical density for a constant energy constraint. We can express this condition
by the relation p(p,r) = p(H(p,r)). Therefore, for a given energy we get

plp,r) =T~ 1(E) (5.17)

We can now include all states of the energy F not exceeding the heat bath energy
Ey and based on Eqgs. (5.15), (5.17) we write the normalization condition

dpdr _ He.n
o1 / L =TT =1 (5.18)

CN
H(p,r)<Eo

O dpdre, Be)

H(p,r)<Eqo

(5.19)
cN

where we have extended the integral to include all states of the energy smaller
than the heat bath energy. Although the above integral should be limited by
the energy of the heat bath we can extend it to infinity as in fact only a narrow
range of energy matters in the calculation of this integral or in other words we
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may say that the energy Ey has been chosen much larger than the energy E of
a considered system so we can assume it to be infinite. In summary, we have
obtained the probability density

p(p,r) = We”?, (5.20)

where

On(V.T) = C = /dpdr Sia (5.21)

is called the partition function or the statistical sum for a system consisting
of N particles at the temperature T enclosed in a volume V. The probability
density (Eq. (5.20)) defines a canonical statistical ensemble. Concluding, we
write Qn (V,T) explicitely for a classical system

dpdr _H@n
QN(V,T)Z/—N,pthe BT (5.22)
and for a quantum one
NV.T) =V / e (5.23)

5.2 Density matrix

The density matrix elements in the energy representation are given by (5.20)
and for the energy F,, state

1 _
Pmn = pn6m71, = Q_Némne REn (524)

and the partition function reads

Ze—ﬁEn _ Zgn,e—ﬁEn,
n

n'

1
where ﬁ = k‘—T’
B

sum over states  sum over energy levels

where we have discriminated between two possible summations: over all avail-
able states or over all energy levels in which we have included a possible degener-
acy of an energy level. We can construct now a density matrix for a normalized
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and complete set of eigenfunctions ¢, > [¢n) (on] =1,
n

1 1 3 1 3
A —BE, _ —BH _ —BH
= — e = —¢ = —¢e 5.25
P= On En |on) (¢onl O~ Eﬂ o) (@nl On (5.25)
Therefore, we obtain
1 N
p= O~ e PH (5.26)

where the partition function
On = ZefﬁEn _ Z <% ‘ o—BH ‘ %> _
= Z (e_ﬁﬁ) = Tre P4 (5.27)
n nn

is determined by a trace of the density matrix. Quantum statistical average
value of an observable G : <G> =Tr (ﬁé’) is given by a trace of a G and p

o) =

product

(G)=Tr {QiNeﬁﬁé} - & > {en

n

e*'@ﬁé

— & ZefﬁE" <<pn G <pn> = & ZGnnefﬁE” (5.28)
where
Gun = gofbégondT = <<pn G ‘ g0n> (5.29)
and
Hen = Enpn (5.30)

5.3 Entropy and other thermodynamic functions

A fundamental thermodynamic function - entropy
S =—kgTr{plnp} (5.31)

in the canonical ensemble is given by a relation

S = —kpTr {p (— InQy — ﬂH)} - % <H> +kplnQy (5.32)
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where a statistical average of a Hamiltonian represents an average energy of a

system, that is an internal energy U = <H > Therefore, we obtain a relation

U=TS—kgThhQy (5.33)

which compared with a phenomenological thermodynamic definition of the Helmholtz
free energy (3.15) gives a statistical definition of the free energy

F = —k‘BTanN(V, T) (534)

where we have explicitely expressed a particle number N, volume V and tem-
perature T' dependence of the free energy. We can use I to express the partition
function Qn = e ¥ and the density matrix

p=ePE-H) (5.35)
A statistical formula for the internal energy follows from its definition

U=Tr {ﬁﬁ} = Y Eupn = QLN N Eue (5.36)
n n

sum over states

Using an identity
0 0
oT @y oT n ( ~ ¢ )

1 E, 1 _BE, 1 1 _BE,
—Q—NE(‘@)(‘W)G ~TprEgy 2 B (63D

we obtain

) )
U= kBTza—T mQnN(V,T) = 35 nQn(V,T) (5.38)

Finally, with a use of (5.33) and (5.38) we can derive the entropy formula in the
canonical ensemble

S:kBTi 1nQN+kB anN (539)

oT

which leads P
S = k-2 (T QN (V,T)) (5.40)

oT
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We have shown that the statistical and phenomenological definitions of the
thermodynamic functions are consistent. Moreover, using a statistical approach
we can confirm some basic thermodynamic identities. Comparing the statistical
definitions of the entropy (5.40) and the free energy (5.34), given in the canonical
ensemble that is for a constant volume and a constant number of particles, we

get
oF
(5_T>V,N =_5 (5.41)

In summary, the thermodynamic functions can be expressed in the canonical
ensemble by the statistical sum @y

F(V,T)= —kgThQn(V,T) (5.42)
S(U,V) = kga%Tln Qn(V,T) (5.43)
U(S,V) = kBTQ% nQn(V,T) (5.44)

5.4 Ideal classical gas

We will use the canonical ensemble method in a discussion of an ideal classical
gas defined by the Hamiltonian

1 N
_ 2 2
i % i—1 Pi (545)

As the basic quantity that determines the thermodynamic functions is the par-
tition function we start our considerations with an evaluation of Qx(V,T). The
partition function of a system of a volume V'

VYT 1 o (03 + 93, +92)
QN = NN / exp [—%Z kel dp1z- - dpNa
0o i=1
3N
VN __
dp1y- - dpnydprz- - dpy. = T / e TFET dp (5.46)

— 00
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is determined by the Gauss integral

oo

d —\z? _ |
/ xe A

—0o0

3

and reads
VN 3N
QN = W (27ka'BT) 2

For further evaluations we need a logarithm of the partition function
3N 3
In@Qy=NInV + Tln(QkaBT) —InN!—Nlnh
which for N > 1 in the Stirling’s approximation reads

N
m@Qy =NV + 3Tln(27rkaT) —NInN+ N —NInh?

or
nQy = Nln% + gNln(Qﬂ'mk:BT) —Nlnh®>+ N

Now, we can write down the free energy

F = —k‘BTanN = —NijTln%

— gNk:BTln (2rmkpT) + NkgTInh® — NkgT

the internal energy

0 3N 1 3
=kpT?—1 —kpT? (=) ———2 -2
U B oT HQN B < 9 ) 27rkaT kaB 2NkBT

and the entropy
0 \%
S = kBa_T (TIHQN) = Nk?B IHN
3
+ 5 Nkpln (2mmkpT) + ;NkB — NkpInh® 4+ N =

ormkp): 5
Nh3 2

:NkBInV—l—gNk:BlnT-i—NkB [ln(7+—

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)
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It is instructive to check that the obtained functions fulfill the thermodynamic
relations ) Py
F=U-TS d === . 5.55
e T <8U> . (5.55)
We note also, that the results agree with the ones obtained within the micro-
canonical approach.






Chapter 6

Grand canonical ensemble

6.1 Density matrix

We define the grand partition function as a weighted sum of a partition function
QN (V,T) carried over a varying number of particles N

0(z,V,T) = > 2NQn(V.T), (6.1)

N=0
where 2 = e = 5T is a fugacity and p is a chemical potential. We may also

write

0(z,V,T) = i PHNQN(V,T) (6.2)
N=0

A quantum statistical average of an operator G in the grand canonical ensemble
is defined also as a weighted average over canonical ensembles corresponding to
varying numbers of particles

oo

<é> = % Z 2N Tr {ée_BﬁN} (6.3)

N=0

where AH ~ is a Hamiltonian of an N-particle system. In the energy representa-
tion, Hy |¢N,i> = EN,i |(pN7,'>, we have

41
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<é> é f: Z<@N@ G‘(le>e—ﬁENﬂi
N=0
0 i NGy PPN = % i G ”e“NkBETN, 6
N=0 i Fart

and defining a probability wy; of an N-particle system to reside in the Ey ;
energy state

1 /”'N ENZ
wN,i = ge kBT (6.5)
where
> WN—-EN i
0=> > e Fat (6.6)
N=0 i

we can write

<é> = i > Gy, (6.7)

N=0 1

If we assume, that for any N {G’, fIN} = GHy — HyG = 0, that is both opera-
tors share the same set of eigenfuctions, we can assign to (6.7) an interpretation

of an expected value of G. Probability wpy,; can be regarded as a diagonal
element of the density matrix of the grand canonical ensemble

N PTG
p=ge B(H =) (6.8)

where we use a symbol H for a Hamiltonian with a varying number of particles.
In fact, p fulfills the normalization condition

Trﬁ:%Tre B(H-uN) —%iZ<¢N,J‘ O(H =) ‘¢N’j>:
N=0 j
1 i Ze_ﬁ(EN_,j—uN) 1 i oBnN Ze_ﬁEN*-f -
0 N=0 j ¢ N=0 J
i ZNQN =1 (6.9)
N=0

| =
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and using p we can represent an average value of G given by (6.7) as a trace of
a product G and p over the energy states of all possible N-particle systems

(G) = Tr {ﬁé’} (6.10)

Eq. (6.8) defines a density matrix for a grand canonical ensemble. Obviously,
for a fixed number of particles N = N’

0(z,V,T) = 2N Qun/(V,T) (6.11)
and the grand canonical density matrix
A 1 —BH 1 N' —BH 1 —BH
= —zV e N — - 2V e N = ——¢ N/ 6.12
’ N Qe QN (6.12)

reduces to the canonical density matrix, which means that the grand canonical
ensemble reduces to the canonical one.

6.2 Entropy and other thermodynamic functions

The entropy in the grand canonical ensemble
S =—kpTr {ﬁ (—1n9 — lneﬁ(ﬁ_”m)} =
kpn® + kpTr {ﬁ (ﬁ(ﬂ — uN))} =

kpn6 + % (U—uN) (6.13)

where U = Tr {ﬁf[ } represents the internal energy and N = Tr {/3]\7 } stands
for the average particle number, allows us to formulate a statistical definition
of the grand potential (thermodynamic potential) in agreement with (3.36) as

Q=—kpThd(z,V,T) (6.14)

From the above definition we have the grand partition function § = e=#¢ and
the density matrix o
p = (@ HTuN) (6.15)

Therefore, a quantum statistical average of an operator G in the grand canonical

ensemble reads _ L
<é> T {eﬁ@*’”“mé} (6.16)
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Note that Q) plays the same role for the grand canonical ensemble as F' for the
canonical ensemble. It is usefull to have an operational formula for the average
particle number and the internal energy within the grand canonical ensemble,
as we have done it in the canonical ensemble, therefore we evaluate N right
from the definition using the energy representation

*_100 N 7 —BH _100 N —BEN.i _
N_EZZ Tr{Ne }—522 NZe Noi —
N=0 N=0 i
1o~ N 1 0 <~ »n 1 90 o)
N=0 N=0
and obtain 5
N=z <— Inf(z,V, T)> (6.18)
0z TV

From now on we will use a symbol N instead of N for an average particle
number. Similarly, we calculate the internal energy

_100 N iy —BH _100 N —BENi _
U_EZZ Tr{He }—522 ZEN’ie =
N=0 N=0 i
1 & N < 9 BENZ)
PO REOE
9N=0 i 9
1[0 &< n <a )
—= | = z =—|(—=—1n# 6.19
(more) =-(Gm)., e
and obtain 5
U=— <%ln0(z,v, T)>Z7V (6.20)
or
0
_ 2 2
U=kpT <6T lnG(z,V,T))Zy (6.21)

Taking into account relations (6.21) and (6.18) formula (6.13) yields
S=kph(z,V,T)+

0 I 0
kT <8_T(1n 0(z,V, T)>Z7V — T <& Inf(z,V, T)>T7v (6.22)
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where, as explicitely stated, the grand partition function is considered a func-
tion of fugacity and temperature. Applying a fugacity definition, z = e*,
which involves the temperature and the chemical potential, we can regard
0(z,V,T) = 0(z(1,T),V,T) = 0(11, V,T) a function of the chemical potential
and temperature, whose partial derivative with respect to temperature reads

b (0 1) VD)) =

w,V

s

0
Since (a—;)u = —#z, we have

b (5 0G:(0. 7). vm)w _

<8%(1n9(z,V,T)>Zy -y (%(lne(z,v,ﬂ) (6.24)

N

and the above expression can be used instead of the two last terms on the
right-hand side of (6.22) which gives

S=kpln0(u,V,T)+ kT <i(ln9(,u, V, T)> (6.25)
oT PR

so the entropy in the grand canonical ensemble reads

)
S = ki (T f(u, V. 1)) (6.26)

We can also get rid of the z variable in the formula (6.18) which determines an
average particle number and use a p variable instead

N:z(élrﬂ) (%> =
o v \9%7 /) 1

z (3 1119) ksT =kpT (3 1119) (6.27)
o v * O TV
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0
where we have used (a—z> = [z. Taking into account a definition of the
HJ) T

thermodynamic potential (6.14) we obtain

0
N = ksT 0 (6.28)

and equations (6.14), (6.26) and (6.28) yield the thermodynamic identities

o0
(8_T) . =5, (6.29)

which agree with a phenomenological definition of Q2. Applying the grand canon-
ical ensemble method we can also study the N dependence of the free energy
searching for the entropy extremum with respect to V. Taking a variation of
0(z,V,T) with respect to N, which also extremizes the entropy (6.22), where

e uN—F(T,V,N)
0(z,V,T)=> e Far (6.31)
N=0
we obtain
1 & OF AN F
00 = — = <—> e 5T §N (6.32)
er | (5%),.

The extremum condition 60 = 0 for any § N leads to

(g_‘f[)V,T - (639

which is consistent with phenomenological thermodynamics.



Chapter 7

Ideal quantum gas

7.1 Fermi-Dirac and Bose-Einstein distributions

A state of an ideal gas can be defined by a set of occupancy numbers {n,}, where
np is a number of particles in a single particle state p. For spinless particles
{np} uniquely defines the state of a system

1,2,... (b
ny — 0,1,2, ( osolns) (7.1)
0,1 (fermions)

Therefore, we can use a summation over all possible sets {n,} in a calculation
of a total energy of a system

E{np} = Z Epnp (7.2)

total particle number

N=> np (7.3)

which yield the partition function @y and the grand partition function 6. We
obtain for the partition function

QN(V.T) = e P =} e7/En) (74)
n {np}

47
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and for the grand partition function

0(z,V,T) = > 2NQn(V,T) =

Z 2N Z e—ﬁXp:Epnp _ Z Z H (Zefﬁsp)"p (7.5)

N=0  {ny} N=0{ny} P

(&)

A double summation > > is equivalent to independent summations over
N=0 {np)

each np, therefore we get

§e V) = Y (o)™ (e =

no N1

Z (Zeﬁgo)nol [Z (zeﬁgl)m] c= H Z (ze*ﬁgp)np (7.6)

no ni P Np

The feature of substituting a summation over sets of occupancy numbers with
a series of independent summations over the occupancy numbers, that we have
used above in the evaluation of the grand partition function is really clear in
the second quantization language in which the grand partition function

6 =Tr {e_ﬁ(ﬁ_“m} (7.7)
in the Fock space reads

0= (1. n0ole® N0y ng) (7.8)

MN1y--5MNoo

Using the energy representation and assuming that H and N share the same
set of ortonormal eigenstates we have

0= Z <n1,...,noo|explﬁ(uZni—Z&nZ)]|n1,...,noc> (7.9)

MN1y..sNoo

and finally

SID O | GRS 1D S AT

N1y Moo @
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For a Bose gas

Z (ze_ﬁgp)np = Z (ze_ﬁgl’)np (7.11)
Np np=0

we deal with a geometric series in (7.6) and under the condition that ze=#¢» <
1 & 2 < % for any &, > 0, that is z < ¢ = 1, we obtain

_ng Np _ 1 o 1
> (ze 7)™ = 1— 20 P 11— Bty (7.12)

Np

We note, that for bosons in order to keep a finite value of the grand partition
function we had to limit the fugacity e®* < 1 which yields a nonpositive chemical
potential © < 0. In a case of a Fermi gas we are left with a two number
summation in (7.6)

Z (ze_ﬁgp)np = Z (ze_ﬁgl’)np (7.13)

and obtain
> (2e77%)"" =1 4 ze P = 1 4 Pu=E) (7.14)

Np

We can now write down the grand partition function for quantum particles (7.6)

1
————  (bosons)
Bz, V,T) = { » L=z (7.15)
[1(1+ ze #&) (fermions)

p

Having the grand partition function we obtain the equation of state

— > In(1 — ze#€) (bosons)

PV
— =Inf(z,V,T) = P 7.16
kT nd(z ) S n(1 + ze P¢») (fermions) (7.16)
P
and the average number of particles
2o~ PEp
P > 1o 7% (bosons)
N=z—In0(z,V,t)=< P ey (7.17)
0z ze PoP .
> (fermions)

p 1+ ze 5%
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The average number of particles N can be regarded as a sum over states of the
average state occupancy numbers (np)

N=> (np) (7.18)

therefore, with a notation

(np) =n(p) = f(p) (7.19)

where f(p) is called a distribution function, we write the average occupancy
numbers

! bosons
- - n
fp) = e —1 . (7.20)
m fermions

For bosons f(p) is called the Bose-Einstein distribution, whereas for fermions
- the Fermi-Dirac distribution function. The average occupation number can
be also obtained in a direct calculation. If we consider a system consisting of
a single state p and construct a grand canonical ensemble which corresponds
to different occupations of this state, then the average occupation number (np)
using the grand canonical method of averaging reads

1
(np) = o Z 2" pe” Perne (7.21)
p 7lp
where
Op = Z ZMee Frne (7.22)
np

and the sum runs over possible occupancy numbers. It is straightforward to see
that
10

As the sum for fermions consists only of two terms n, = 0,1 we get 0, =
1+ ze P& and (n,) = (271’ + 1)71. For bosons the partition function
becomes a sum of an infinite geometric series, n, = 0,1, 2, ..., and reads 0, =
(1 — ze=#»)=1 then the relation (7.23) yields (n,) = (=t —1)~1
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7.2 Equation of state

We are particulary interested in the thermodynamic limit of the above equations,
N
that is, for V. — oo, N — oo with n = v kept constant. For a large volume

of a system we can replace a sum over momenta and spin s projections ¢ with

an integral
(2s+ 1)V / 3
— —— [ d 7.24
> ) P (7.24)
p.o
Therefore, in the thermodynamic limit we can write, for fermions

P (2s+1) 3 _
—=———"2 [ d°pIn (1 B 2
T Grh) / pln ( + ze ) (7.25)
which constitutes the equation of state and
1 (2541) [ 4 1
—=—2 [ dp——s— 2
v (2mh)3 / b T epEtT (7.26)

which presents the equation for the chemical potential, where v = n=! is a

proper volume, that is, a volume per particle. For bosons, we obtain respectively

P (254+1) 3 _ge,
T @nh)? /d pln(l ze )

2 1
_ (24D In (1 — 2 tefr=0) (7.27)
Vv
and
1 (25+1) [ 4 1 (25 +1) 1
- = - . 7.28
v (27h)? / P Tepe —1 Vo oz lefEe=0 — ] (7.28)

We have separated here terms of the lowest energy, that is £,—¢, before replacing
a sum with an integral. It is obvious that both terms aside the integrals in (7.27)
and (7.28) can be divergent and their values can be significant, however when
integrated they may vanish since the assigned measure weight in the integral
is proportional to p?dp and vanishes for p = 0.The real physical spectrum is
discrete and the integral is only a useful approximation which simplifies the
calculations, nevertheless its application cannot hide a real physics. There is no
need to pay such a particular attention to a zero momentum terms for fermions
as they do not lead to any singularity. Note, that we have not assumed any
dispersion relation yet.
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7.3 Density of states

Momentum integrals
(2s+ 1)V
d*pF 7.29
27rh / ( )

can be converted into the energy integrals which involve a density of states
function v(£) which counts a number of states per an energy unit

/ F(EW(E)E (7.30)
0

With a use of the density of states function we can express the equations which
determine the state of a system. As they look different for fermions and bosons
we will specify them for each kind of particles separately. For fermions, the
chemical potential equation

n:/eﬁl(’(ﬂ (7.31)

€-m 41
0

which yields u = p(5,n) or determines a particle concentration, and the equa-

tion
o0

/ In(1 4 ze P& (E)dE (7.32)

0

P
kT

yield the equation of state. For bosons, we obtain respectively

T u&de (2s+1) 2
n= / FEWm 1TV 1-2 (7.33)
0
and
i = _/]n(l — zefﬁ“:)l/(g)dg — M In(1 — 2) (7.34)
ksT
0

Since, quite often we will work within such an approach, below we derive the
density of states function for various dimensionalities of a system.
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7.3.1 Three-dimensional density of states

For a three-dimensional gas of noninteracting particles with a spin s and a
dispersion relation & = p?/2m we have

(2s+ 1)V 3 (2s+1) V / 0
d —
27rh / dp 27rh F(¢ p=
@s+1)V [
M 4m pF(S(p))pdp:47T S+ V/F V2mEmd€ =
(2wh)3
0
1 oo . o0
NP L / F(E)ErdE = / FEW(E)AE  (7.35)
(2wh)3
0
where
V(&) = 13p(€) = aspVVE (7.36)
is a density of states function for an isotropic three-dimensional system and
4/2
asp = WL emd (25 +1) (7.37)

7.3.2 Two-dimensional density of states

For a two-dimensional gas with a parabolic dispersion:

S Fep) = E g / F(E(p)d®p =
((2;+1 27TS/ p))pdp =

((2;7; 2ms / F(£)made = / F(&)rap(E)dE  (7.38)

where S is a system surface area and

I/2D(5) = a2DS (7.39)
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is a density of states function for an isotropic two-dimensional system and

2
Qap = Z—g”@s +1) (7.40)

7.3.3 One-dimensional density of states

For a one-dimensional gas with a parabolic dispersion:

ZF 28+1L/F€pd— 28+1L/F
2mh
0
(2s+1) 7 md& 7
222t )y [ e F(e 7.41
) o Jip(€ (7.41)

where L is a system length and
I/1D(5) = alDLé'*% (742)

is a density of states function for an isotropic one-dimensional system and

aip = Y™ (254 1) (7.43)

2
h
7.4 Thermodynamics

In this section we will derive basic thermodynamic functions for a three dimen-

2
sional gas of free particles which obey a parabolic dispersion relation £(p) = ;;
m
We start, however, with the equation of state for fermions and bosons.
7.4.1 Equation of state
For the Fermi gas
P ar |
»2
T (25 + 1)h—7T /dpp2 In(1+ ze™ £ ) (7.44)
4 o0
@2s+1)—= [ dpp? ——F—— (7.45)

h3

A z 1ezm +1
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Defining fermionic functions

I (1)1,
) = /dxac ln 1+ ze xz) = Z # (7.46)
A =1 2
o > 1 I+1,1
=, 7.47
f3() Z@z 3(2) f/ z~ 1egﬁz—ﬁ—l ; I3 (7.47)
we can write the state equation and the chemical potential equation respectively
P 1
kuT = ng (2) (7.48)
1 1
i ng(z) (7.49)

where we have introduced a thermal wavelength

1 h
(25 +1)3 V2mmkpT
which sets a length scale of the order of magnitude of the de Broglie wavelength
h h h

g = 1= . Y 7.51
¥ V2mé&(p) V2mkpT (7.51)

(7.50)

Note, that Ay agrees with a formerly introduced thermal wavelength Ay for
classical spinless particles when s = 0. Similarly for a Bose gas

oo

P 4 »? 2 1
T (28—5—1)h—7;/dpp2 ln(l—ze*gm)— wln(l—z) (7.52)
s 0
and
in [ 1 2s+1) =
=(2s+1)— [ dpp? 7.53
(25 + )hso/”’ze%_ﬁ T o)

or expressed with a use of the bosonic functions

o0

4 .2 2z
93 (2) = — 7T/d;zc:r ln 1—zex):Zl—r (7.54)

0 I=1
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03(2) = 22 gy (2) = Zl—l (7.55)
we have P ) (25 4+ 1)
T /\—%gg(z) T In(l —z) (7.56)
1 1 (2s+1) =z

o= /\—:S,’g%(z)—l- v 1> (7.57)
We note, that the equations for a Fermi gas (7.48) and (7.49) do not change when
we take a thermodynamic limit, however, such a limiting procedure requires a
separate analysis in the case of bosons. Although we will discuss this issue
thoroughly in Chapter 10, we just briefly state here, that the logarithm term in
(7.56) vanishes for V' — oo and it turns out that the second term on the right
hand side of (7.57) vanishes in the thermodynamic limit for any z but z = 1 for
which it gives a finite value. Concluding, we can write the state equation for
bosons in the thermodynamic limit

P 1
kT = Egg(z) (7.58)

1 1 2 1
~= Fg%(z)—i- lim @s+l) = (7.59)

V—oo 1% 1—2

7.4.2 Thermodynamic potential and internal energy

A thermodynamic definition of the thermodynamic potential 2 = —PV gives
us a formula

—kpT

0 —7 fs (2) (fermions)
V= —knT (25 +1) (7.60)
? gs(2) kpTIn(1 —z) (bosons)
Ay U2 14

If we calculate the thermodynamic potential directly using its statistical defini-
tion
O =—kpTho(z,V,T) =

— kT ][] (1 + ze*“(f’)) — —kpT> In (1 + eBW*f(P))) (7.61)
p P
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then we get it determined by an integral
Q= FhkpTaV / In (1+ze %) VEdE (7.62)
0

where the upper sign concerns fermions and the lower sign corresponds to
bosons. Integrating by parts we get

7 2 7 3\’
/1n(1ize—55p) VEdE = g/(55) In (1 + ze~P€) d€ =
0 0
3 e 2 7 3 Zeiﬁg
— Z2¢3 —BE z 5
E2In(1+ze )Oigﬂ/c‘) lie—ﬁgdg
0
2 [ gl 2 T
_ igﬁ/m _igﬁ/f(é’)é e (7.63)
0 0
therefore
2 .
0= —gaV/f(S)é'EdS (7.64)

and when we compare it to the internal energy

E(p)
U= ZS(P)”IJ = Z —1eBE(P) + 1 =
P P
0o < o s
av/m\/?dg _ aV/f(é’)SzdS (7.65)
0 0

we see that
2
Q= —§U (7.66)

and also obtain a relation between pressure and the internal energy

2
PV = U (7.67)



58 CHAPTER 7. IDEAL QUANTUM GAS

Finally, we can write the internal energy

U 3;‘\93@(2) (fermions)
Vo ’ 7.68)
v ) 3ksT C3(2s+1) - (

N 93 (2) 5V kgTIn(1 —2) (bosons)

Concerning our discussion of the equation of state, we can write the thermody-
namic potential and the internal energy in the thermodynamic limit

fs(2)  (fermions)

Q
e (7.69)
v k? gs(z) (bosons)

Ag T2

<lS

7.4.3 Entropy

The thermodynamic potential or the internal energy can be used to determine
the entropy

@), GO,

For fermions we have

)

and since
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we obtain
v [D
S:Nch/\—g ifg(z)—f%(z)lnz (7.74)
For bosons
o [T 2541
S=Vkp (— {—gs (z) — Tln(l — z)}) =
oT | A\372 V Vi
51 1
Vis |3 5795(2) — 30 () ns=
2s+1 2s+1 =z
—2z)— 1 .
In(1 - z) A nz] (7.75)
therefore
v oD
S = Nk;B)\—2 §g%(z) —g%(z) Inz| —
(25 + kg [m(l )+ 1f lnz] (7.76)
In summary, we can write the entropy formula
v o[D .
e {if% (2) — fa (z)In z] (fermions)
S B S
Nkp
2 1
% ng(z) —g:(2)In z:| _as+ {ln(l —-2)+ . i . Inz| (bosons)
) (7.77)
Finally, in the thermodynamic limit we get
v oD .
e [§f§ (2) = f2(z)In z] (fermions)
S s
N = (7.78)

% [gg;(z) —9:(2) an} (bosons)
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7.4.4 Free energy

The internal energy and the entropy determine the free energy, F' = U — TS,
which reads for fermions and bosons, respectively

% [—f% (2) = fa(z)In z} (fermions)
F B S
NkgT v 2s+1 1[5 z
X {—gg(z) —g:(2)In z} - [5 In(1—2)+ T Inz| (bosons)
(7.79)
and in the thermodynamic limit
% [—f% (2) = fa(2)In z} (fermions)
F s
NioT (7.80)
% [—g%(z) —gz(2)In z} (bosons)
7.4.5 Heat capacity Cy
A heat capacity at a constant volume Cly
ou ou
Cy = (_> _ (_) (7.81)
o' )y n or)y.,,
for fermions is given by
3 o [T
o= 3vin (7 39, -
3 51 0z
- e 2 o p— - 2
M PP T HOR ) (8T)V’n (7.82)
where we have used a property
0 1
=13 = 21y () (7.83)
A partial derivative ( g—;) we obtain from the condition
Vin
1
n= 732, (7.84)
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for a constant n as a_n = 0 and using
or)y,,
0 1
—f3(2) = 23(2) (7.85)
we get
31 11 0z
which yields
0 32 fa(z
(—Z> __32/30) (7.87)
oT Vin 2T f% (2)
and finally, the heat capacity of a Fermi gas at a constant volume reads
2
3 v |5 3f3(2)
=—_Nkp— |=fs(z) — =2 .
Cv =3 kB)vE [in(z) Zfé(z)] (7.88)
Following the same rules for bosons we have
3 o\|T 25 +1
Cy = §V/cB <8_T L\—gg;(z) - Tln(1l — z)})vn =
3 51 T (0 0z
27 s 5 (590) (37),,
2s+1 2s+1 T 0z
— In(1 — — .
R S R g (a:r)v’n (7.89)

0
and similarly to fermions we have used a—gg(z) = %g%(z) Again, a partial
2

0z
derivative (—) is determined by the chemical potential equation
Vin

or

()+23—|—1 z 1
n—=——3gs|\z2 = —
PERG v o1-2z 37

for (@) = 0 it yields
Vin

)

2s+1 1 2541
V 1-—=z \%

(z) + (7.90)

(M)

3 1 11 0z 2s +1 1 0z
0=3mmo)t 579 (a?)wﬁ TARTEE (a—ﬁm (7.91)
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therefore
3 5 v 2s+1
Cv o Nks [5)\393(2) - In(1—2z)—

v g2 (2) + 2s+1 =z
3 A7e N 1-
B0 gy ()2t | (93)
223 v () + 25+ 1 z

PERE N (1-z22

Concluding, we gather the formulas for the heat capacity at a constant volume
of free fermions and bosons

3o [5, ) 3/3(2)
S| fs(2) =2
223 _2 2 2f%(z)
Cy
N o i 2s+1 =z
Nkp Y
3v |5 3 PEEL Ak 2541
5)\—2 59%(2)—593(2) v 25 + 1 P TN n(l—z)
(7.94)
One can show, that in the thermodynamic limit (7.94) reduces to
_ 9/ \n
30 [5 3 f3(2) .
. 2% §f% (2) — 3 f;(z) (fermions)
v _ (7.95)
Nkp - 9 -
30 [5 395(2) .
2% igg(z) - 59%(2) (bosons)

(fermions

(bosons)



Chapter 8

Degenerate quantum gas

A gas degeneracy means a deviation from the classical gas behavior and occur-
rence of quantum features. It starts when a particle de Broglie wavelength A;p
is of the order of magnitude of an average interparticle distance d

Aip ~d (8.1)

therefore when the de Broglie waves of particles begin to overlap and interfere.
Weakly degenerate gas for which

AaB < d (82)

reveals small quantum corrections to the equation of state which very often are
negligible and the system can be considered classical. On the other hand for a
strongly degenerate gas we have

Aap > d (8.3)

and the quantum effects prevail. Strongly degenerate quantum system is de-
scribed solely by a quantum statistics. Knowing that the de Broglie wavelength
Aap is of the order of magnitude of the thermal wavelength A; we can use a
modified degeneracy criterion with (As/d) as a degeneracy parameter

A

j < 1 weak degeneracy (8.4)

Es =1 degeneracy (8.5)

63
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As
i > 1 strong degeneracy (8.6)

A degeneracy condition Ag = d defines a moment when a significant degeneracy
of a system takes place and physics is no longer determined by a mere small
correction to classical equations but it obeys quantum laws. The degeneracy
condition yields a degeneracy temperature T,

As h3
1=22 = n (8.7)

Vo (25 +1) (2rmkpT,)

o

1 h K2
kgT = ﬁ—n% ~ —ni (8.8)
(2s+1)sm m

For temperatures T' < T, we have a degenerate gas (electrons in metal), while
for T' > T, we have a weakly degenerate gas or even an ideal classical gas. The
average interparticle distance d determines a proper volume v, that is a volume

. 1 .
occupied by a single particle, v = d° or a particle concentration n = — = d 3,
v
and becomes large for a low particle concentration

d=n"3 2% (8.9)
The thermal wavelength is small for high temperatures

1 T—o0
—_—

e via 0 (8.10)

Therefore, a weak degeneracy condition

<>\s ~ %) < (d ~ n*%) (8.11)

is achieved in systems of a low particle concentration at high temperatures. The
opposite case of a strongly degenerate gas determined by a constraint

<)\S ~ %) > (d ~ n*%) (8.12)

corresponds to low temperatures

1 720

Ao~ e 0
VT

00 (8.13)
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and high particle concentrations
d~n5 2220 (8.14)

Having the degeneracy parameter \;/d we can write the chemical potential
equations for fermions and bosons, respectively

)\3 e -1 l+lzl
S AOED P s (8.19
=1
A2 (2s+1) =z g

and based on these equations we can obtain an equivalent degeneracy condition
determined by a value of the fugacity z. We see that the weak degeneracy,
As < d, for both fermions and bosons corresponds to z < 1 which means a
negative chemical potential ;1 < 0 and |u|/kgT > 1. For a weak degeneracy
limit we can neglect a term proportional to N—! in the Bose gas equation as it
is negligibly small for a large N and vanishes in the thermodynamic limit when
N — oo. From now on, as far as the weak degeneracy limit is concerned, we
will drop off this small term and consider a modified equation

/\3

- =93(2) (8.17)

A strong degeneracy, As > d, corresponds to z > 1 for fermions, that is to
w/kgT > 1. We note, that for bosons z < 1 and the left hand side of the
chemical potential equation (8.17) is upper bounded

xg(_w 2

v N 1—=z

> = g3 (1) ~ 2,612 (8.18)

Therefore, we see that in order to fulfill A; > d criterion we need z ~ 1 and in
the thermodynamic limit z = 1.

8.1 Weak degeneracy

For a weak degeneracy
z=eM <1 (8.19)
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and we can easily evaluate the integral, where the upper sign concerns fermions
and the lower sign corresponds to bosons,

[oVEde 7ze—ﬁf\/?d5 -
2-1lefE £ 1 14 2ef8
0 0

e PE [1:|Zzefﬁ£+...] VEUWE =

Il
w
o —

thus, neglecting the higher order terms, we have

n =

gﬂ_%az [1 F 2%] (fermions/bosons) (8.21)

In the zeroth order approximation z = zg

n= @67%(%0’ (8.22)
which gives
2n s nh3
°= Jral (25 + 1)(2rmkpT)3 (8.23)

Therefore in the zeroth order of approximation

29 = n\3 (8.24)
Fugacity in the first order approximation
n = Eﬂ*%az [1 T is] (8.25)
2 22
o [ea] e [ies]
1= ———7)7-" _— = Z _— =
JmalksT)? 23 T2
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20 20
= =2 |1+ 5| (826
LF & ZO[ 22] (520
22
(8.27)

therefore the chemical potential
w=kgT {lnzo + In (1 + ;—g)] = kgT {lnzo + ;—g]

which is the chemical potential in the first order approximation (first iteration).

In this approximation
B
zg = eFsT (8.28)
thus 1
= ot — (8.29)
22kgTe*rsT
where
nh3
o =kpTInzy = kgTIn - (8.30)
(2s 4+ 1) (2mmkpT)>
8.2 Strong degeneracy
(8.31)

For a strongly degenerate Fermi gas
z=eM>1

which yields p > 0 and p > kpT. We start with the evaluation of an integral

/F(S)%dé‘ (8.32)

0

where F'(€) is a differentiable slowly varying function of the energy which can

be approximated by the expansion
(8.33)

F(&) =F(u) + (£ +p)F'(n) + wpl(m

f(€) is the Fermi-Dirac distribution function
1
(8.34)

f(g) - eﬁ(‘sfﬂ) +1
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1 4
05+ fE=p=4% :
0
&

Figure 8.1: Fermi-Dirac distribution and its derivative

which for a degenerate gas is plotted in Fig. 8.1

of BelE—n) B
9~ (Ew 1)
B(E—p)
1 Bt H _ B o2 [g(é’ - u)] (8.35)

eB(E—p) (e%g(gfﬂ)_,_ef% (5,#)>2 4

We compute the integral (8.32) using a new variable

= B(E — 1) (8.36)
£ = % + (8.37)

de = %dx (8.38)
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af afdx_ ﬁ

08 OrdE Ox (8.39)
hence
Jrotgs ] r(se0) 2%

—Bu

/ F (u + % + u) %dm (8.40)
Bu

Because for a strongly degenerate Fermi gas

_ M
B = T >1 = —fu— —o0 (8.41)

we can substitute —oo for the lower limit in the integral (8.40) which reads

[ (e 5) oo [ o gruoz] S

ooy [ W) [ o0f L 1) [ 08
=F(u) 9z T+ /l‘a dm+2 72 / 8d =
F// °
=F(u)[f(x =00) — f(x = —o0)] = 3 5(2 2 /m cosh™2 2 dx (8.42)
where we have used of L of .
gr _t9r _ 2 -2
9r ~ 7 0€ 1 cosh 5 (8.43)
of . .
and noted that x% is an odd function
of . 1 [ e
x%dx =7 /xcosh 2d:r—() (8.44)
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1F//
—F(p) — = (1) / 4y? cosh 2 yd(2y) =
8
F () /°° v 7 (1)
— F(p) — dy = — - — 8.45
(k) B2 cosh™2y Y Fw) 6 (2 (8.43)
where we have used
2 2
Y T
dy = — 8.46
/ cosh? y =% (8.46)
Therefore, we have obtained
7 2
/F(E)ﬁdé‘ = —F(p) — ZKT2F" () (8.47)
o€ 6
0
In the zeroth order approximation in temperature
F(E)=5dE =—F A4
[ Fe)seds = ~F i) (8.45)
0
., Of L
SO we may write 9 —0(E — ). In the second order approximation
7 2
/ F(E)g—gdé‘ = —F(p) — %k?gTzF”(M) (8.49)
0

where is a small parameter. If F' is a power function of the energy, like

£7 in a calculation of the number of particles or £2 in the internal energy
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calculation, we can estimate a second derivative with respect to the energy
F"(p) ~ F(p)/p? and obtain the order of magnitude of the second order term

772 2
TR ) ~ P (P21 (5.50)

8.2.1 Chemical potential and particle concentration

The condition for the chemical potential reads

o0
B VEdE .
nE ) BED 1 (8.51)
0
and we can easily evaluate this integral
2 5\
0o o [ 22 d o
vewe (352> . £3) y(&)de =
1= et =5 ) () S =
0 0 0
2 27 40f 2 21
1
_5§ g _—/gé—dg:_ 2 - A 2k2T2 (85) =
3 Qf( )0 3 285 3M2+367T B 2 -
0
2 5 021 55,53 1 25 272 k372
ghE T T kel ==kt g5 8.52
L TR S Sy L ST R
Therefore -
2 5 wEkpT
- 2 To 8.53
n a{3u2+12\/ﬁ} (8.53)

We define the chemical potential po in the zeroth order approximation (for
T=0)

2 3
n = agug (8.54)
that is )
3n\ 3
= (== 8.55
w=5) (5.59)
and substitute
4+/2 :
a —ﬂm%(Qs—i— 1) (8.56)
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which gives us

3nh3 5 n2 /3n\?
Ho (2'4\/27rm%(28+1)) 2m (87r> (8.57)

Note, that we can obtain the same result by taking a direct product of the
density of states in the momentum space and the volume occupied by the ground
state in the momentum space

2 4,

= ) gpr (8.58)
2V 4

= ﬁgﬂpi’; (8.59)

_ 8T p%
= =33 (8.60)

where pp is the Fermi momentum
_p (3 : (8.61)
Pr = o .

p% h? [ 3n 5 8.62
R il (s?) (8.62)

The Fermi energy £p = po = (T = 0) is the maximal energy of occupied
states at T' = 0, states with energy larger than Ep are empty, see Fig 8.2,

(vn)g—o = fim,
Np)p_q = lim ——— = lim ————— =
PIT=0 " 79 ei’;; L 10 eSiB;F 1
1 for & <&
0(Er — &) = Orep SCF (g 63)
0 for Sp > Ep
8.2.2 Fermi temperature and Fermi energy
We apply the following condition for a gas degeneracy
z < e — classical or weakly degenerate electron gas (8.64)

z > e= 271~ 1- degenerate electron gas (8.65)
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Y2
Fermi
surface )
unoccupied
states
occupied
stateg Py
Dz 2
sphere for £, = L
2m

Figure 8.2: Fermi sphere

z > e ~ 1 — strongly degenerate electron gas

Lo Ho
z=ekBT > e =¢e*BTF

where =1 and TF is the Fermi temperature
BLlF
2
h? (3n)\?
kpTp = o= — [ —
BLF = [0 o (87r)
Note, that

h2
k‘BTF = En

(SN

1/3 h? -
. 5 (8_7T) ~ EnS ~ kBTe.

Therefore, gas is degenerate for temperatures
T < Tr — degenerate electron gas
and gas is classical (weakly degenerate) for

T > Ty — classical electron gas
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For metals the Fermi energy

£ = 12 (3”) (8.72)

2m \ 87

with one free electron per atom and an interatomic distance ¢ = 1.5 A =

1.5-1071%m
n=t=_1
a3 (15)3

-10%° m~3, (8.73)

J
electron mass m = 9.11- 1073 kg, h = 6.63 - 10734 Js, kp = 1.38 - 10_23K we
get

Er~026-107'7 J~ 10 eV (8.74)

and
Er  0.26-10717
kg 1.38-10-23

Conclusion: electrons in metals form a degenerate electron gas.

Tr = K~19-10' K~ 10" K (8.75)

8.2.3 Temperature dependence of the chemical potential
In the second order approximation, that is when we keep terms of the order of

kT
magnitude <L) we have the following condition for the chemical potential
I

e
nma Bt BEE] a2 [ 2 (M)
which yields
3n\ % 72 (kgT\* w5 72 (kpT\” B
= (%) [1—1— 5 (T) = o |1+ 5 (7) (8.77)

We have obtained a self-consistent equation for the chemical potential which can

2
be solved through a series expansion with respect to a small term (i> ~

() = (%) =
Ho - \Tr
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(8.78)

Therefore, we have obtained a temperature dependence of the chemical potential

T\’ T\’
with the order of magnitude of (ki> = (—) .
0 Tr

8.3 Role of system dimensionality

8.3.1 Two-dimensional ideal gas

The chemical potential equation

roas
0

where we have used a two-dimensional density of states, v2p(€) = aapV with
V' = S representing the system surface area, is easily integrated for fermions

n=-— QQTD In [e'@(’“g) + 1} = aopkpTIn[l + 2] (8.80)
0
and for bosons
a o
n= % In [e'@(’“g) . 1} = —aopkpT In[l — 2] (8.81)
0

where we note, that n > 0 since 0 > z > 1. We have obtained the above
equations for an arbitary value of the fugacity, which means that we can easily
establish the chemical potential for an ideal two-dimensional gas based on an
analytical formula. Then we can obtain the equation of state through a relation

P = +kpTasp / In (1 £ ze P¢)de (8.82)
0
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When we introduce an average interparticle distance d

1 -2
n=-=d (8.83)

and define a two-dimensional system the thermal wavelength

1 h
Asop = . 8.84
(25 +1)2 V2rmkpT (8.84)

we can write the chemical potential equation in the form

(A*‘;D )2 =In[l+2| (8.85)

where we have used a relation between the density of states and the thermal
wavelength aspkpT = )\ng and note that

25 4+ 1)kpT = A2 (8.86)

S2p

2mm
CngkBT = —2(

We see that the weak degeneracy limit corresponds to z < 1 whereas the strong
degeneracy is determined by z > 1 for fermions and z = 1 for bosons. For a

weak degeneracy, z < 1,
As 2 22
2L = — 8.87
(P22) =273 (8.87)

and solving this equation in an iterative way keeping up to the second order

y 2
terms in (%) we get

2 4
S¢ 1 S2D
z= (%) +3 (AT) (8.88)

and the chemical potential

1 1
uw=kgT {ln 20 +In <1 + 520)] ~ kT {ln 20 520} (8.89)

where

AR
Z():< 5D> = e (8.90)
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is the fugacity in the zeroth order approximation and corresponds to

nh?

=kpT1 =kpT1 . 8.91
po = BB 20 = BB A o T ) 2mmkT (891)
Therefore, one can write the chemical potential
1 _ho_
W= pp £ §k;BTekBT (8.92)

The equation of state for a weakly degenerate gas is obtained by an expansion
with respect to a small term ze #€ of (8.82)

(oo}
1
P = +kgTasp / (:tze“ T 5z2e2ﬁ5) d& (8.93)

and rearanged into

o
P 1
T = 202 / (eﬁf F 5ze%f) de (8.94)
0
Substituting z = zy we obtain
P 1|7 17
G /e_xdx ¥ 520/6_2“dx (8.95)
0 0

and after the integral the equation of state of a weakly degenerate gas reads

Po 20
= = 8.96
T - T (8.96)
or written for IV particles
PV 20
=1F=. 97
NkgT T 22 (8.97)

A quantum correction to the classical equation of state PV = NkpT reads
NkpTzy/4 and since zg ~ (kBT)_1 is temperature independent.
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8.3.2 One-dimensional ideal gas

Applying a one-dimensional density of states
np(E) = a1pVE, (8.98)

where V' = L is the system length yields the chemical potential equation

T oebde
-2
= - 8.99
n alD/eﬁ(g_“):tl ( )

0

where the upper sign concerns fermions and the lower sign corresponds to
bosons. Introducing the interparticle distance d = n~! and the thermal wave-
length in one dimension

1 h
P P 8.100
TP (25 + 1) 27mkpT ( )
we have
Asip z /m%dm
= — 8.101
d /T e £ z ( )
0

-1
where we have used a relation a;p = (\/7kpTAs,, ) - We note, that again a
weak degeneracy corresponds to z < 1 and for a weakly degenerate gas we have

o o

[ee]
—2d
%/Q;:I:: ~ % /x_%e_xdxq:z/x_%e_%dx
0 0 0

. %r (%) {1 = %z] =2z [1 == %z] (8.102)

=

Thus we have

and an iterative solution for z yields

z= <ATD> + % (A‘ED)z (8.104)
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and the chemical potential

1 1
w=kgT {lnzo +1In (1 + \/—?Z()):l ~ kT {ln 20 £ ﬁzo} (8.105)

A
where zp = <%> is the fugacity in the zeroth order approximation and

corresponds to i

nh
=kpTIn 8.106
Ho = BB M s ¥ 1) ormks T (8.106)
Therefore, one can write the chemical potential
4 L pyrersr (8.107)
H=Ho=x —=Kples .
V2
Equation of state of a weakly degenerate gas
P 1| T 17
v 1 1
= — x”2e "dr F -2 /m_ﬁe_zmdx (8.108)
kT  /m / 2
b 0 0
after the integral reads
Pv 1 1 20
=—I (=] |1F—= 8.109
kT  /m <2> { :FQS] ( )
and since I' (1) = /7" we have
Pv 20
ToT =1F PR (8.110)

where the quantum correction to the classical equation of state

~\kgT (8.111)

[N

/cBT;—g ~ kT (kpT)~
2

vanishes at zero temperature.






Chapter 9

Thermodynamics of a Fermi
gas

We start with the grand potential
Q=—kpThd(z,V,T) =
— kT[] (1+2e7%%) = —kpT Y In (14 705)) (9.1)
p p

and using the density of states we can write

oo

0= —kBTaV/ln (1 + eﬁ(“_gp)) VEAE (9.2)
0
We evaluate the above integral
oo 2 (oo}
Blu—Ep) _2 2\’ Blu—E0)) 4€ —
/ln(1—|—e )\/?dé’ 3/(52) 1n(1+e )dS
0
2 s T2 4 —Bebi- £>
_ fo3 B(p— 5) .
o 352 In (1+e 352 1 4 efln— 5p)
2 [ &lae
=§ﬁ/em - ﬁ/f 9.3
0

81
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and comparing it with the internal energy

o0

U:ngﬁ,,:zemgp# / Su) S VEdE =
P

0
00

£3de 7 .
B / PE— 11 aV/f(é’)Ezde (9.4)
0

0

we get
2 2
Q=—kpT-0U =-=U (9.5)
3 3
From the thermodynamic definition of the grand potential
Q=-PV (9.6)
we have )
PV = §U (9.7)

which is the same relation as holds for the Boltzmann gas. Using the identity
(9.5) we can represent the entropy as a temperature derivative of the internal

energy 90 5 ) 5 /o
S=- (8_T>V - (a7 (‘§U>)V,,L =3 (a_T)v 09

In the following subsections we discuss thermodynamic properties a Fermi gas
in a low and strong degenaracy regimes.

9.1 Weak degeneracy

The internal energy is determined by an integral which for a weakly degenerate
system can be approximated as follows

o0 ngg (o)
_ > _ ey —pe 3o
U—on/Zileﬁg_'_l—aVz/e A [1—ze A —|—...]52d8_
0 0
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oo
where we have used a definition of the gamma function I'(z) = [ 2"~ ‘e~ *du for
0

the evaluation of the integrals above

/x%e*mdx = /;vgflefzdx =T <g> (9.10)
0 0
/x%e_zmdx:/

0

5 17 . 1
(g) : e_yd—y = — y%e_ydy = —-T (§) (9.11)
3

2 25 2
0
5 3 . N . .
and T 5) = Z\/F . Taking the fugacity in the second order approximation
2n 3
_ 2 _ 3 ;
z =2+ WZO’ where zp = mﬁ?, and keeping up to the first order terms

in zp we obtain the internal energy

5
2

3
U= SNkpT {1 + QZO} (9.12)
and by a virtue of relation (9.5) the equation of state
2
PV = U = NkgT {1 + @] (9.13)
3 22

We note that the pressure exceeds that of an ideal classical gas.

9.2 Strong degeneracy

The internal energy integral for a strong degeneracy system can be evaluated
by the integration by parts

U:aV/f(S)é‘?dé':aV—/f(é')dS% =
0 0
2 o 2 [osdf . 2 T sdf
saV[(€)E 73 v/g edE = 5aV/5 e =
0 0
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Taking into account a temperature dependence of the chemical potential

’/T2 kBT 2
= 1 _ _— .1
I Mol 12<M0> (9.15)
and its dependence on the particle concentration
2 3
a§u§ =n (9.16)
kpT\*
we get, with the order of magnitude of (%)
0
572 (kpT\?| 3 572 (kpT\”
U=-nV 14+ — | — ==-N 14+ — | — 9.17
nV o +12<N0> 5#0[4-12(#0 (9.17)

3
At T =0wehave U = Uy = gN,uo and we can calculate the energy per particle

2
Uy 3 3 3h? (3n)\°
- = — - — = —_— e .].

N T M =5 = o <87r) (9.18)

for electrons (s = 3). Pressure of a degenerate Fermi gas

12 2 572 (kT \?
P=_—_-U=-= 1 — — 9.19
V3o 5T <M0> (9-19)
For T =0 we have P = P,
Po= 2 = 2 (2 n (9.20)
0= 5= 5\ 8 '

for electrons s = % Note a nonzero pressure even for T' = 0 — Pauli exclusion

principle. The entropy of a strongly degenerate Fermi gas

O 9 [ s 2 o [ .o
0 0
2 MO g 2 7_8f(5) E—p oy
= kBaV/a(kBT)é' A€ = ThpaV ST ) Tt €€ (9.21)
0 0
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and using
of E—pof
= .22
OkgT ~—  kgT OE (9.22)
we get
2 aV | [ Of [os( 0Of B
S=3keT /5 ( ae)d‘g ”/g ( ae)dg
0 0
2 oV 5 57‘(2 k‘BT 2 5 2 k‘BT 2
= —kp—— |u2 — | = —uz |14+ — | = =
3BkBTM< 8</~L>>M<+8<u)
_2aV a5 o (ksT\® 7w, (kpT\*| _
R I L s" \Tu -
2 aV s (kgT\° =2 2 kpT
= kp——p2 [ 22 ) =k 2kT_—kN .2
3BkBTN(M> 3Bavu3 B(uo>(93)
2
agfio =n (9.24)
1= po (9.25)
Finally
T
S:—kBN(kB ) (9.26)
Ko
Note, that
lim S =0 (9.27)
T—0
Heat capacity at a constant volume C'y
dU = TdS — PdV (9.28)
dU = 6Q — W = CydT (V = const) (9.29)
0Q ou oS
()-8, 0, e
dr aT ), aT ),
3 572 (kT \’
2
Cy _ 3y 05 s A NkBkB—T (9.32)

5 6" o 2 Ko
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or alternatively using the entropy for a monatomic Fermi gas (9.26)

ds d (ﬂ_QkBNk:BT> 2 kT

Cv 5 o B (9-33)

a7~ ~dT 2 Lo



Chapter 10

Bose-Einstein condensation

10.1 Macroscopic occupancy of the lowest energy
level

2
We assume a spin s = 0 and &, = ;;, then the state equation reads
m

P 1 1

and the chemical potential (8.17)

1 1 =z

1
i_1_ z 10.2
R O R (10.2)
with the thermal wavelength for spin s =0
Ao = __h (10.3)
0 V2mmkpT '

the same as for classical spinless particles. We focus now on (10.2). It is easy
to see that the last term on the right hand side of the equation is proportional
to an average number of particles in the lowest, p = 0, energy level

1 1 z
p— = 10-4
z1lefép=0 — 1 711 1—2 ( )

(o) =

87
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therefore we can write

1 o 1 <7L0>

o= /\89%(2) + % (10.5)
or < > )\3

3o/ _ Ao

The fugacity z = e for bosons changes in the range 0 < z < 1, that is p < 0.
For this domain range the g 3 (z) function is a monotonic upper bounded positive
function and its upper limit at z = 1 can be obtained via a series expansion

>

| N

93()=2_ (10.7)
=1 "7
which for z = 1 gives
(1)—§:i— ) ~ 2.612 (10.8)
S =1 ERACY A ‘
where ((z) is the Riemann zeta function. Note, that a gz (2) derivative
d 1 1= 2
el = == — 10.9
£ = 0= (10.9)
is divergent at z = 1. Since for any 0 < z < 1 we have g3(2) < g3(1) =
3
¢ (§> ~ 2.612 we obtain
¥ A3
0 gy(2) > 20— g () (10.10)

and if the temperature and volume per particle (the thermal wavelength is
temperature and proper volume dependent) fulfill the condition

A3
~>g3(1) (10.11)

2 S0 (10.12)
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This result means that a finite fraction of all particles occupies a lowest energy
level £(p = 0). This is the effect of Bose-Einstein condensation (BEC), which
is particularly spectacular for the thermodynamic limit, i.e., in large systems
when volume V' — oo, number of particles N — oo and a concentration of

N
particles n = v const, then
{no) (no)

and we obtain

. {no)
Jim 90 >0 (10.14)

which means that (ng) — oo, that is the occupancy of the lowest energy level
(no)

becomes macroscopic, or in other words, a finite fraction of all particles

resides in the lowest energy level. As the occupancy of the lowest energy level
is given by

z
1—2

(ng) = — 0 (10.15)

its divergency leads to the fugacity z — 1 or the chemical potential u =
—Inz — 0. It means that in our discussion of a Bose-Einstein condensation
in the thermodynamic limit we should use z = 1. In this case a condition
]
= =0(1) (10.16)

defines a moment when the condensation begins, that is a phase transition:
Bose gas to BEC takes place. The Eq. (10.16) defines a surface in the P, v, T
space which seperates gas and BEC phases. Explicitly, using Ag definition the

condition (10.16) reads

3

hig = (§) (10.17)
v(2mrmkpT)? 2

1

At a given particle concentration n = — it determines the critical temperature
v

Tc

W

2
T > (10.18)
27kaBC‘ (

W
(][9]
~—
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For temperatures T' < T a macroscopic occupancy of the lowest energy level
takes place. Alternatively, at a given temperature we obtain a critical density

ne = ¢ (;) (”;frgg) ’ (10.19)

1
or a critical proper volume vo = — which lead to the BEC phase transition.
n

c
At the critical temperature T the thermal wavelength Ag becomes of the order
of magnitude of the average interparticle distance d

i~ e~ (<(3))' - (45(9) -
d(2.612)% ~ 1.377d  (10.20)

We remember, that \g ~ A\gp, so at T we have A\gg ~ d which means that the
de Broglie waves of single particles start to overlap and interfere. As we continue
on decreasing the temperature the thermal wavelength increase and the overlap
becomes more and more significant until a complete interference into a single
wave when the zero temperature is reached. We show this process in Fig. 10.1.

10.2 Uniqueness of the lowest energy level

We will show that the condensation can occur only at the lowest energy level.
Although we can always extract a finite number of terms from the integral in
(7.28) and instead of Eq. (10.5) deal with

n:)\%g%(zH<T‘l})>+(<7‘l/}>+<7‘1/2>+...+<”_vf>> (10.21)

in the thermodynamic limit, every but the (ng) term vanishes. If we take, for
instance, a term

() 1 1
TR e (10.22)

2
where &,, = g”"

is the energy level determined by the quantum number m, then
using the relations z < 1 and &, > 0 we can establish an upper limit on (n,,)

() . 1 1
Vo T Vefim -1

(10.23)



10.2. UNIQUENESS OF THE LOWEST ENERGY LEVEL 91

(a) d> g, T > Tc (b) d~ MgB, T ="TC

(c) d< AaB, T K T

Figure 10.1: Bosons and their de Broglie waves at different temperatures.

which can be upper bounded through a Taylor’s expansion

1 1 1 1 1 kT
R < e = —
Veln -1 S VIitpEn—1 V Em

(10.24)

Applying a periodic boundary condition on the plane wave function ¥ (r) =
exp (ipr/h)
P(r) =y(r+ R) (10.25)

where R is any of the three vectors (L, 0, 0), (0, L, 0), (0, 0, L) and L3 =V
is a volume of system, we obtain the momentum

_2mh

7 (m1, ma, ms) (10.26)

p
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and the energy
(27h)? m

5m = p
2m V3

(10.27)

where m = m? + m3 + m3. Therefore, a quantized energy level gives the (n,,)
occupancy '
(nm) _ 12mkgTVi 1

< ~ 10.28
v vV (27h)2m Vs ( )
which vanishes in the thermodynamic limit

It is noteworthy, that the presented limiting procedure does not work in two or
one dimensional systems, where particles are spread all over all accessible states
and the Bose-Einstein condensation does not take place.

10.3 Chemical potential

We have established that in the thermodynamic limit the fugacity z = 1 for the
BEC phase, that is for temperatures determined by a condition

b¥: 3
20> Z 10.30
=26 <2> (10.30)
. A3 3 o .
In the gas phase, that is when — < ( 3 ) the fugacity is given by a relation
v
A3

Let us note, that due to the above condition there is no finite occupancy of the
lowest energy level in a gas phase as

(no) _ X _
Summarising we can write
3
1 for 20 > ¢ ; (BEC)
/{J (10.33)

z = )\3 3 3
solution of 70 =gz (z) for 70 << (5) (gas)
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Finally, using the relation 4 = kpT'Inz we can determine the temperature
dependence of the chemical potential

0 for T < Te:
= \3 10.34
solution of 70 =gz (") for T >Te ( )

where the critical temperature is determined by

A, (g) . (10.35)

v

10.4 Condensate

The Bose-Einstein condensate consists of particles in the state of zero momen-
tum whose number (ng) represents a finite fraction of a number of all particles
N = nV, where n is a particle concentration. Based on

1 - <TL()> 1
v + A—gg%(z) (10.36)
we obtain the total particle number
V
N = (no) + Fg% (2). (10.37)
0

We know that for the condensate, that is for 7" < T, the fugacity z = 1 and a
fraction of all particles in the condensate reads
(no) . 93(1)

o) _ 4 ’
N nA3

(10.38)

where Ag = Ao(T'). Since gz (1) = nA(T¢) determines the critical temperature
we get the temperature dependence of the lowest energy level occupancy
(no) . A(Tc)

= 1 7)\3(11) (10.39)

and using \o(T) = ———= we obtain

V2mkpT
(o) _ (l) (10.40)
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that is the fraction of all particles in the lowest energy level, in other words,
the fraction of particles which create the condensate, see Fig. 10.2 . This result
holds when the chemical potential vanishes, whereas there is no condensation
for a negative pu. So we can write

0 for p <0
= ' — T
N 1—<T—C> for p=20

Similarly, evoking a definition of the critical proper volume

jeo

(10.41)

(no)
N

Figure 10.2: Occupancy of the lowest energy level as a function of temperature
for a fixed particle concentration

2 (10.42)

1
we derive using (10.38) a dependence of (ng) on the proper volume v = —
n

(no) _, v
TO =1— = (10.43)
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plotted in Fig. 10.3. For an arbitrary chemical potential value we have

(no) 0 for pu <0
N Y1- forp=0 (10.44)
(e

(no)
N

Figure 10.3: Occupancy of the lowest energy level as a function of proper volume
for a fixed temperature

10.5 Equation of state

We know, that in general we deal with two phases of a Bose system: a Bose
gas and a Bose-Einstein condensate. The phase transition is determined by the
critical proper volume ve for a fixed temperature or by the critical temperature
Tc at a given interparticle distance.

BEC f <
Phases at a given temperature: P e (10.45)
Bose gas for v > ve
BEC for T < T
Phases at a given proper volume: o © (10.46)
Bose gas for T' > T¢
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We need to elucidate that in a so defined BEC phase the Bose-condensate forms
a part of a system and coexists in a thermal equilibrium with a Bose gas until
the temperature falls down to zero and the whole system will condensate. We
have derived the temperature dependence of the condensate volume in a former
section. Presently, we will study the state equation (10.5). To discuss the
properties of the system in the thermodynamic limit we need to take a V —
oo (v = const) limit in (10.1)

P o1
T /\—89% (2) — Vlgnoo v In(1 — z). (10.47)

Note, that for a gas phase we have z < 1 and

.1 oz (ng)
i s = o a0

therefore the state equation for a Bose gas reads

P 1

— = —gs 104
b = 309 (10.49)

Below the Bose-Einstein phase transition, that is for T" < T or v < ve, the
fugacity in the thermodynamic limit, limy,_, .z = 1, and we deal with the
following limits in (10.1)

V—o0o

1
lim v In(1 - z) (10.50)

In order to evaluate the above expression we evoke the result for the occupancy
of the lowest energy level in the BEC phase

1
hm 22— im0 o (10.51)

1 1 =z
VEI;oVn<V1—z) 0 (10:52)
Now, when we look at (10.52) as at a sum of three terms

. 1 1 1
Vlgnoo [_V InV + v Inz— v In(1 — z)] =0, (10.53)
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we get immediately that
1
im —In(l—z)=0. 10.54
Vlgnoo v n(l—z)=0 (10.54)
and the equation of state (10.1) below the BEC phase transition reads

P 1

— = —=gs(1 10.
b = 3010 (10.55)

Summarizing, we have obtained the state equation for bosons in the thermody-

namic limit 1
A—gg%(z) for v > ve (Bose gas)

- = 10.56
BT (10.56)

Fg%(l) for v < ve (BEC)
0

where g5 (1) = ¢ (2) =~ 1.342.

10.6 Thermodynamic properties

We use general results of Chapter 7 to determine the thermodynamic functions
of a Bose gas and a Bose-Einstein condensate phases.

10.6.1 Internal energy

1
ngng(z) for v > ve (Bose gas)
0
v (10.57)
iv/\—ngg(l) for v < ve (BEC)
In particular, we see that in the BEC phase the internal energy
3
3 5 2mm \ 2 5
= - — || = T)2 10.58
v=3ve(3) () er) (10.58)
and pressure given by PV = %U is only temperature dependent
3
5 2mm \ 2 5



98 CHAPTER 10. BOSE-EINSTEIN CONDENSATION

For T > 0 it is also a pressure of the Bose gas which coexists in a thermal
equilibrium with the condensate. Note, that the Bose condensation takes place
in a real space (not only in the momentum space), that is, we can distinguish
the part of a system which underwent a phase transition. The balance between
these two coexisting phases requires a constant pressure throughout the whole
system.

10.6.2 Entropy

Using the chemical potential equation for the gas phase, g%(z) = A3 /v, and
taking into account that z =1 in the BEC phase we get

—%gg (2) =Inz for v > vc (Bose gas)
g 27572
= = 10.60
5/\_89%(1) for v < ve(BEQ)
For the Bose-Einstein condensate
3
5 s 5 2mm \ 2 3

and at T' = 0 the entropy S = 0 in agreement with the Nernst rule. We may also
conclude, that the condensate which is the only existing phase at 7" = 0 has zero
entropy, therefore the obtained entropy describes the gas in thermal equilibrium
with the condensate. Note, that the entropy is a continuous function of v or 7.
Both formulas in (10.60) become equal at z = 1 that is when we cross ve or Tc.

10.6.3 Specific heat ¢y

15k 9kp 93l
Z)\—gg%(z)—Z—B 1(2) for v > ve (Bose gas)

v =952 v g3(2) (10.62)
Z}\—ggg(l) ~ T3 for v < ve(BEQ)

For low temperatures, T' < To, cy ~ T%, whereas when the temperature is high

lim 2= lim e™s7 =0 (10.63)

T—o0 T—o0
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and for z — 0 we may write

1593(= g3z
lim ¢y = lim ke 115 ;) 29 () (10.64)
T—o0 =0 v | 4gs(z) 4g1(2)
where we have used \j = vgs(2). Because
_ .4 10.65
03(2) = 22 g3(2) (10.65)
_ .4 10.66
03(2) = 22 g3 (2) (10.66)
and g1 (2 =0) = g3 (2 =0) = g3 (2 = 0) = 0, we may write
95(2)  995(2)
m (2227 975 3 (10.67)
T=0| 4 ¢5(2) 4g3(2)| 2
2 2

d
where for shortness we used a notation ¢'(z) = —g(z). We note, that for high
z

temperatures a Bose gas behaves like a monatomic classical gas and obeys the
equipartition rule

. 1 . dU 3kp
#&W_V#$<ﬁ9_57 (10.68)
3
U = iNkBT (10.69)

10.6.4 Free energy

Having the internal energy and the entropy we can write down the Helmholtz
free energy F' = U — T'S formula

r —%ng(z) +TInz for v > ve (Bose gas)
A 2
_ i (10.70)
Nkp —3T9s(1) for v < ve(BEQC)

g
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10.7 Role of a system dimensionality [7]

Knowing the physical nature of the BEC we can work out a short and convenient
way to obtain the critical parameters. Writing the Eq. (7.28) for u = 0 we get

the equation
oo

n= a/@ (10.71)
0

eFsT — ]

which determines the critical particle concentration nc = no(T') as a function
of the temperature or the critical temperature T = T(n) as a function of the

. : £ i :
concentration. Introducing = = T we get for the critical concentration

B
3 kpT\
mrp
= — (2 1 10.72
ne=¢(3) v (52]) (10.72)
where we have used
o0
Va'dz B 3 3
/e-”—l_r 5 ¢ 5 ) (10.73)
0
3 s
T (5) =3 (10.74)
and
4/2
o= }\L/:;ﬂ'm%(Qs +1). (10.75)

Therefore for spinless bosons

ne=<(3) () (10.76)
or
27 h? n s

We will use the above method of establishing the critical Bose condensation
critical parameters in a short discussion of the BEC in arbitrary dimension,
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that is for a D-dimensional gas of bosons which obey the dispersion relation
€ = Ap? and carry spin s. The critical concentration

(2s+1) 7 dPp
pu 1 -
nc (27Th)D ekBLT . ( 078)

— 00

in the D-dimensional spherical coordinates for an isotropic system reads

oo

(2s+1)B / pP—1dp
ne = 10.79
(QWH)D ek;T -1 ( )

where B is a dimension dependent constant which results from the angle integral,
and for physically relevant dimensions

2  for D=1,
B =127 for D=2, (10.80)
4r  for D = 3.
Using the dispersion relation
1
N7
== 10.81
r=(%) (10:81)
and
1 1.1,
dp = ;A sEodE (10.82)
we have
2s+1)B A5 [ £2-1d€
= . 10.83
AN C7 L 059
0
Now, letting x = o Ve obtain the condition (constraint) for the critical
B
concentration
0o x%—l
ne = c/ - 1da; (10.84)
0
25s4+1) A~ - D
(2s+1) (kpT)? (10.85)
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Bose-Einstein condensation occurs if the above formula yields a finite critical
concentration nc, that is only when the integral

o0
D_q

/:;_ -dar < 00 (10.86)
0

is convergent. For its estimation we split (10.86) into two integrals

001.271 § ‘,L.Qfl 001.271
/em_ldm:/ex_ldx—k/em_ldx (10.87)

0 0 o

where § > 0. Obviously, the second integral is convergent,

5
xo 1 D
5 1.271 5 D ) for ; #1
7 D _ I
/em_lde/ma de =4 5 0 (10.88)
0 0
lnx\é for — =1
0 g

D D
We conclude, that for — < 1 the integral is divergent whereas for — > 1 it
o o
is convergent. It means that the Bose-Einstein condensation occurs for — > 1
g

D
and there is no such a condensation for — < 1. The ratio of the dimensionality

g
of the system and the power coeflicient in the dispersion relation decides about
a possibility of system to Bose-condense.

N
—_

no for

BEC = (10.89)

SRS

>1

SRS

yes for

If we look now at the gas of parabolic dispersion, o = 2, in one, two or three
1
dimensions, we note that for D =1, — = 2’ for D=2, — =1, for D = 3,
o o
D 3

—~ =3 Such a gas cannot Bose-condense in D = 1 and D = 2 dimensions.
o
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Nevertheless, photons whose dispersion £ = ¢p can condense in D = 2 dimen-

sions: — = 2.
ag






Chapter 11

Kinetic equation approach to
nonequilibrium processes [5]

11.1 Boltzmann equation and collision integral

We take a quasiclassical approach assuming that particles, although subject to
quantum statistics, have a determined momentum as well as a position. Such
an approach can be carried out when we discuss the wave packets instead of
plane waves. For the quasiclassical particles the distribution function in general
depends on particles momenta, positions and time as we speak of nonequilib-
rium processes, f = f(r,p,t). A time change of the distribution function is
set by collisions of particles with lattice defects or impurities, phonons or other
particles. These scattering processes, if induced by external fields like an elec-
tric field or a temperature gradient, lead to sudden changes in the occupation
of allowed states and in this way affect the Fermi-Dirac distribution. Quantita-
tively a time evolution of the distribution function is determined by a collision
integral I(f) through the Boltzmann equation or the kinetic equation which in
the most general form reads of

3 = 1) (11.1)
Taking into account the momentum, position and time dependence of the dis-
tribution function we can write the kinetic equation in a more explicit form

0 of d of d
of ofdr 0fdp _

ot Torar Tapar 1Y) (11.2)

105
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This equation can be applied for small external perturbations to the system
like an electric or magnetic field or an increment in temperature which can be
included through a perturbational nonequilibrium correction f; to the Fermi-
Dirac distribution, i.e., f = fo + f1. For a wave packet propagates with a

E(p)

dr
group velocity v = we have i v. A time change of a quasiparticle

p
d€(p) _ 0E(p) dp

energy = ————— in an electric field is determined by the Coulomb
dt Jp dt
. . d€(p) . .
interaction v eFE and we can write for a time change of a momentum
d
(quasimomentum) @ _ eE. Therefore, the kinetic equation of a nonuniformly

heated system in the presence of an electric field reads

af  of of

The collision integral in an isotropic medium for elastic collisions can be repre-
sented by a simple formula

I(f) = —=—, (11.4)

where fi1 = f — fo is a nonequilibrium counterpart of a distribution function
and 7 is an average life time of quasiparticles or an average scattering time,
that is an average time between two consecutive collisions of a quasiparticle. 7
is a natural time-scale in a system, we cannot consider particles existing longer
than 7. Applied to a momentum, or rather a quasimomentum, time chage this
statement shows that a quasiparticle acceleration cannot last longer than 7.
When a defect or impurity scattering potential is isotropic, that is, it does not
depend on any particular direction and its magnitude w(#) depends solely on a
deflection angle 6 we obtain

~— [wen- cos ) (11.5)

and we can write the kinetic equation in a form

of of of _ =T
TR e

(11.6)
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11.2 Electrical conductivity

In the presence of a stationary and uniform electric field the kinetic equation
(11.6) reduces to
of f—Jo

Assuming a weak electric field we look for a linear in the electric field nonequi-
librium correction f; to the distribution function f = fy + f1, where f1 < fo
and fi; ~ E. Therefore, keeping up to the linear terms in £ we get

fo N
B = (11.8)

Since the Fermi-Dirac distribution is energy dependent we can straightforwardly
evaluate its momentum derivative

dfo  0fo 0 5’f0

A A 11.
op 9 op Yoe (11.9)

and obtain

fi= —eEvTa—J;? (11.10)

We are now in a position to calculate an electric current density

. B &p _
=2 [o s =2 [oth s g >3‘

2e/vf0(2d;£) /vf1 / I Gt h (11.11)

where we have used the property that fj is an even and v is an odd momentum
function. Substituting the nonequilibrium distribution function formula we get

_ ofo_d&p dfo o
J= —262/ (vE)T € @rh)p ——62/ (’UE)T% (S)dEE (11.12)

In the first approximation neglecting a small correction of the order of magni-

tude of ("BT) ~ —§(€ — u) and the energy integral reads

%
o

Q
Jj= ez/v('vE)ﬂ/(u)d— = 62/1) vEcosl T v(u)— (11.13)
4m 4
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If we fix the z-axis of a coordinate system along the electric field, E = (0,0, E),
then

j = Ev? ()T (1)v(p)x
Tdo [T o
- df sin O(cos ¢ sin 0, sin ¢ sin 0, cos ) cosf  (11.14)
0 T Jo
therefore we obtain the Ohm’s law
j=0E (11.15)

with the electrical conductivity o given by the integral

dQ
_ .2 [, 2. 2 _
oc=e /v cos” O1v(p) pp
1
cos® 1 1
=] = 2 (e (1116)

—1

Thus, we have obtained the electrical conductivity

1
o= 562 [ ()T (v ()] (11.17)
which is determined by the values of the velocity, life time and density of states
at the Fermi level.

11.3 Thermal conductivity

In a nonuniformly heated system the kinetic equation (11.6) reduces to

of f—=Jo
vV = - 11.18
or T ( )
We consider a small temperature gradient and look for a nonequilibrium correc-
tion f; ~ VT to the Fermi-Dirac distribution, f = fo+ fi1. A partial derivative
on the left hand side of the equation above in the linear approximation with
respect to VT’

0F 08 G~ o i
vg— aTVT'U— aTVTv—i— aTVTv_
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9fo ¢ dfo

—(wVT)=—-=—=(vVT) (11.19

SL(0VT) = —2 S (wVT) (11.19)
where ¢ = £(p) — p is a quasiparticle energy. Therefore the nonequilibrium cor-
rection to the equilibrium Fermi-Dirac distribution is determined by the kinetic
equation

dfo ¢ N
se FWVT) === (11.20)
and reads 9
fi= (UVT)T%a—J;) (11.21)
We calculate now a kinetic energy flux
dS
q= 2/guf (%%3 (11.22)

which again is determined by f1, as (v fy is an odd momentum function

d3p
=2 — 11.23
q / (vfi @h)? ( )
After using an explicit f; formula we come to an integral

_ 2T 9fo _ (2 0fo dQ
q= 2/C T%”(”VT) = /v(vVT)w(E)T%EdE (11.24)

d3p
(2mh)3

which after the energy integration turns into an angle integral over the Fermi
surface

_7r2k?3T dQ2

[V

and similarly to the electric current flow gives the thermal flux determined by
the Fourier law

q= (11.25)

q=—kVT (11.26)

where k is the thermal conductivity given by the following integral

7T2 2
ko= ];BT / UQ(M)T(M)V(u)g B %WzkéT@z(u)T(ﬂ)V(u) (11.27)

Therefore, we have obtained the thermal conductivity

5 = ST RETV ()70 (1) (11.28)
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determined by values at the Fermi level of the same quantities which determine
the electrical conductivity. A comparison of these two coefficients leads to the
Wiedemann-Franz law of a universal ratio

K 2

. s S
given by the Lorentz constant ——. In conclusion, it is important to note that

e
crucial for this law to hold is the assumption of elastic scattering.

11.4 Free electron gas

Although not applicable to real metals, the free electron gas model gives useful
estimations of both electrical and thermal conductivities. For a dispersion & =
p?/2m the chemical potential = p2/2m, and the velocity at the Fermi surface
v(p) = po/m. As we have shown

mpg 3n
= = —— 11.
v(n) = 5 =3 . (11.30)

The electrical conductivity formula gives

1 2,1 2 ¢2
o = e (r(pv(n) = S —pr(pvin) = g%m;gu (11.31)
that is )
;o el (11.32)
m

and the Wiedemann-Franz law gives the thermal conductivity

71'2 7T27’l7'

= —o0 = ——T 11.33
P32 3 m ( )
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