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Abstract: Bayesian networks are a popular and powerful tool in artificial intelligence. They 
have many applications in commercial decision support. The point of this paper is to provide 
an overview of the techniques involved from this perspective. It presents a simplified mathe-
matical overview of important background theory and examines an application of Bayesian 
networks to talent retention for international firms in China. In developing this case study, we 
examine the full process of utilizing this technology and the outputs that can be generated.

Keywords: Bayesian networks, decision assistance, business analytics, stochastic modeling.

1. Introduction

We begin by giving a simplified mathematical overview of what Bayesian networks 
are and the flavors they come in. We then look at how they can be created or learnt 
from data and the situations that lead to the use of ensemble models. Then we look at 
how an application of such a technology would proceed, using the human resources 
example of talent retention for international firms in China, examining the full 
process rather than technology specific elements. Finally, we look at the outputs that 
would be generated from such an application. This article is an emended version of 
the paper given at the AITM’2012 conference.

2. Bayesian networks

Recall from probability theory that two random variables, X and Y, are independent if and 
only if )()(=),( YPXPYXP . Analogously, X and Y are conditionally independent 
given a  third random variable Z if and only if )|()|(=)|,( ZYPZXPZYXP , 
which is equivalent to:

1  Selected parts of this article were published under non-exclusive copyright in Proceedings of the 
Federated Conference on Computer Science and Information Systems FedCSIS 2012 [Ashcroft 2012].
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	 ),|(=)|( ZYXPZXP .	 (1)

Also recall that the chain rule for random variables says that for n random 
variables, nXXX ,..., 21 , defined on the same sample space S:

1 2 1 2 1( , , ... ) = ( | , , ... )n n n nP X X X P X X X X− −

1 2 1( | ,... )n nP X X X− −

2 1 1... ( | ) ( ).P X X P X  

(2)

Imagine we had five random variables: },,,,{ EDCBA . From the chain rule, 
we know that:

( , , , , ) = ( | , , , )P A B C D E P E A B C D

( | , , ) ( | , )P D A B C P C A B

( | ) ( ).P B A P A  

(3)

We can represent these five conditional independencies by means of a directed 
acyclic graph (DAG) and a set of conditional distributions, where: 
–– each random variable is mapped to a node of the DAG;
–– each node has conditional distribution for its variable associated with this node;
–– each node has incoming edges from the nodes associated with the variables on 

which the node’s conditional distribution is conditional.
Such a representation is a Bayesian network. It satisfies the Markov Condition: 

A direct acyclic graph (DAG), G, with nodes GN , a joint probability distribution, 
P, of random variables PD , and a bijective mapping GP NDf ⇒:  satisfies the 
Markov Condition if and only if for all PDv∈ , where )(= vfn , v  is conditionally 
independent given P of the variables that are mapped to the non-descendants of n 
given the variables that are mapped to the parents n.

Table 1. Conditional independencies for the random variables 
of the DAG in Figure 1

Node Conditional independencies
A  –
B C and E, given A
C B, given A
D A and E, given B and C
E A, B and D, given C

Source: own elaboration.

If we know no more than the decomposition given to us by the chain rule in 
equation 3, the associated Bayesian network’s DAG will be complete (since each 
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variable is conditional on all those prior to it in the decomposition order). However, 
imagine that we knew that certain conditional independencies exist as specified in 
Table 1. From the definition of conditional independence, we know that:
–	 )|(=),|( ACPABCP ;
–	 ),|(=),,|( BCDPABCDP ;
–	 )|(=),,,|( CEPABCDEP ;
accordingly: 

( , , , , ) ( | ) ( | , )P A B C D E P E C P D C B=

( | ) ( | ) ( ).P C A P B A P A  
(3)

Whenever we simplify the conditional distributions in virtue of a  known 
conditional independence relation, we remove an edge on the DAG of our Bayesian 
network representation. In this case, the resulting network is given by Figure 1.

A

CB

D E

Figure 1. A DAG with five nodes

Source: own elaboration.

Loosely speaking, what we have done is to pull the joint probability distribution P 
apart by its conditional independencies. A Bayesian network is an encoding of these 
conditional independencies in the DAG topology coupled with the simplified 
conditional distributions. Note that the conditional independencies are encoded by 
the absence of edges.

The reason why Bayesian networks are useful is that this structure gives us 
a means of performing tractable calculations locally on the network whilst using all 
information of the joint distribution. It has been proven that every discrete probability 
distribution (and many continuous ones) can be represented by a Bayesian Network, 
and that every Bayesian network represents some probability distribution. Of course, 
if there are no conditional independencies in the joint probability distribution, 
representing it with a  Bayesian network gains us nothing. But in practice, while 
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independence relationships between random variables in a  system that we aim to 
model are rare (and assumptions regarding such independence are dangerous), 
conditional independencies are plentiful.

3. Discrete and continuous Bayesian networks

Bayesian networks come in a number of varieties according to the restrictions, if 
any, placed on the forms that the conditional probability distributions can take. We 
will concentrate on discrete Bayesian networks, where continuous variables are 
discretized during preprocessing. Discrete Bayesian networks: 

a) deal with continuous variables by discretization into many arbitrarily sized 
intervals; various methods can be used for choosing the intervals, including 
automated clustering methods;

b) are not limited by linear and/or Gaussian noise assumptions;
c) are unrestricted by an a priori structure beyond that imposed by discretization, 

which is both good and bad: 
–– they follow the data when it leads;
–– cases unencountered in the learning data will take the a priori distribution, which 

is generally uniform; there are situations where this is undesirable (e.g. where 
closely related cases all strongly evince a particular structure); methods exist that 
provide variance estimates which help indicate when dangerously novel cases 
are encountered;
d) permit efficient and accurate variance estimation on a posteriori probability 

distributions;
e) permit the use of exact inference algorithms;
f) permit, when combined with decision-theoretic extensions, the use of exact 

utility maximization algorithms for generating decision policies (including on meta-
models);

g) can be used as the automated basis for the production of general Bayesian 
networks (see below). 

Other common forms include Gaussian and hybrid discrete/Gaussian networks. 
Automated algorithms exist for the automatic learning of, and exact inference on, 
such networks. These, though, require Gaussian variables to be linear combinations 
of their parents with Gaussian noise (potentially conditional on the values taken by 
their discrete parents in hybrid networks).

General Bayesian networks, where any conditional probability distribution in the 
network can be of any type, are possible. Currently, no automated learning algorithms 
or exact inference algorithms are known for such networks, but sampling methods 
do exist for inference. When such networks are desired, it has been suggested that 
discretized variables be used for the structural learning process [Monti, Cooper 
1997]. After the conditional independencies are discovered by this process, bespoke 
conditional distributions for each variable given its parents can be fitted to the non-
discretized data given domain knowledge.
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4. Learning

4.1. Learning a network from expert causal knowledge

Importantly, a causal network is a conditional independence encoding of the type 
described previously. Thus, if we have knowledge of the causal relationships 
pertaining between the variables we are modeling, then we can immediately produce 
the DAG structure of the Bayesian network. In such cases, domain experts may also 
directly specify the conditional distributions. Where this does not occur, we need to 
learn the conditional distributions from data. Discrete and Gaussian networks have 
efficient automated algorithms for parameter learning.

4.2. Learning a network from data

Where no expert knowledge is available, we can learn the conditional independencies 
encoded in the network from data. One strategy arises from the idea of searching 
the space of possible sets of conditional independencies for such an optimal set. 
The simplest method is to search the space of network tolopologies; however, since 
multiple topologies can encode the same set of conditional independencies, a more 
advanced algorithm is to search equivalence classes of topologies/conditional 
independence sets [Chickering 2002a]. Algorithms exist which guarantee that as the 
size of our learning data approaches infinity, the probability of learning the globally 
optimal model (with a single iteration of the algorithm) approaches 1 [Chickering 
2002b].

A second strategy arises from Information Theory, and involves the maximization 
of the mutual information [Williamson 2000]. This approach is of interest for 
providing a  principled method of according greater importance to particular 
variables (normally those to be predicted or which we desire decision policies for) in 
the learning process [Gruber, Ben-Gal 2012].

4.3. Meta-models

When a  single network structure fails to dominate alternatives, we can collect 
multiple high scoring networks. We may, for example, collect all networks that 

are at least 
x
1

 as probable as the best network for some x. These networks can be 

weighted by their relative probability and inference can be performed over the entire 
set. Effectively, we now reason using not just our best hypothesis of the system 
structure, but a set of plausible hypotheses, weighted for their plausibility. This can 
be a very powerful method, and all the inference algorithms discussed below can be 
run on such a meta-model.
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4.4. Missing data

Structural learning can be performed with missing data items in the learning set. 
Common algorithms for dealing with this are the Gibbs Sampler and Expectation 
Maximization.

5. System analysis

5.1. Markov Blanket

The Markov Condition entails other conditional independencies. Because of 
the Markov Condition, these conditional independencies have a  graph theoretic 
criterion called D-Separation (see [Gruber, Ben-Gal 2012] for a detailed definition). 
Accordingly, when one set of random variables, Γ , is conditionally independent 
of another, ∆ , given a third, Θ , then we will say that the nodes representing the 
random variables in Γ  are D-Separated from ∆  by Θ .

The most important case of D-Separation/Conditional Independence is when 
a node is D-Separated of the entire graph given its parents, its children and the other 
parents of its children. Because of this, the parents, children and other parents of 
a node’s children are called the “Markov Blanket” of the node.

This is important. Imagine we had a variable α , whose probability distribution 
we wish to predict and whose Markov Blanket is the set of nodes Γ . If we know the 
value of every node in Γ , then we know that there is no more information regarding 
the value taken by α . This can be generalized to look for the nodes that provide 
no additional information regarding the set of nodes we are interested in, given the 
variables we are certain, we will be always able to observe their values.

In this way, if we are confident that we can always establish the values of some 
of the variables that our network is modeling, we can often see that some of the 
remaining variables are superfluous, and we need not continue to include them in 
the network nor collect information on them. Since, in practice, collecting data on 
random variables can be costly, this can be very helpful.

5.2. Causal analysis

The connection between causality and conditional independence has led to the use of 
Bayesian networks in causal analysis, often in conjunction with manipulation tests. 
See [Neopolitan 2004] for details.
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Figure 2. The Markov Blanket of node L

Source: own elaboration.

6. Inference

Inference is the practice of obtaining a  posteriori probability distributions for 
variables of interest, given the available evidence. Once a  Bayesian network has 
been created/learnt, we can use the network to calculate the a posteriori probability 
distributions for a subset of variables, Γ , given the observation that a second subset, 
∆ , has taken particular values. In the discrete and Gaussian cases, we are also able 
to obtain accurate estimations of the variance of such a  posteriori distributions, 
permitting the calculation of “error bars” around the probability estimates.

Efficient exact algorithms exist for both the discrete and Gaussian cases. In 
the general case, or if a discrete network is sufficiently complex, exact inference 
algorithms are intractable. In such cases we turn to sampling techniques. The most 
important (largely for its extension in the application of particle filters in the case of 
general Bayes filters) is importance sampling.

7. Automated decision-making

Bayesian networks can be extended with utility, decision and information nodes 
to produce “Influence Diagrams”. The utilities are entered by domain experts and 
specify the value to the user of the system being in particular states. Variables under 
the user’s control are designated decision variables. Additionally, an information 
order is stipulated, which is based on the partial order in which the decisions must be 
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made as well as the specification of information variables, which are variables not 
under the user’s control – if they are not currently known, they will be known before 
the performance of a particular set of decisions. Often this is because they will be 
known only after the performance of earlier decisions.

So extended, inference is performed on Junction Trees whose topology respects 
the information order and which have both probability and utility potentials 
associated with the clusters and intersection sets. Transmission of information 
through this structure now also includes a utility maximization procedure for each 
decision variable. The result is the output of decision policies which specify the 
value to which each (relevant) decision variable ought to be set to maximize the 
expected utility given the evidence that we will obtain at the time of the decision. 
Details of the algorithm can be found in [Jensen, Nielsen 2007].

8. An implementation example

Talent retention has become a  significant issue for international firms in China. 
High quality local employees often quickly switch companies, and employees who 
are trained by their employers often seek better positions once their skill set has 
been enhanced. I  am involved in efforts to assist a  number of companies which 
systematically hire and retain quality employees. I will seek to explain the life cycle 
of such a project in terms of the following:

1)	 establishing variables of interest,
2)	 collecting data,
3)	 encoding domain knowledge,
4)	 creating a predictive model,
5)	 collaborative utility estimation,
6)	 test model,
7)	 implementation of access system,
8)	 post-implementation.

8.1. Establish tasks and variables of interest

The first task is to establish which variables may be of interest. The list of variables 
to be collected in our example might look like the following: 

a)	 employee-related:
–– employment history;
–– education;
–– language ability;
–– age;
–– sex;
–– relationship status;
–– demand for applicant’s skills;

Informatyka Ekonomiczna 3(25)_2013.indb   16 2013-02-06   10:14:46



Using Bayesian networks in business analytics…	 17

b)	 position-related:
–– salary;
–– professional training at years 1,2,3,+;
–– language training at years 1,2,3,+;
–– overseas opportunities at years 1,2,3,+;
–– position type;
–– hours;
–– holidays;
–– career path opportunities at years 1,2,3,+;

c)	 company-related:
–– Chinese managerial viability (including head office);
–– prestige;

d)	 outcome:
–– hire,
–– length of employment,
–– average company satisfaction with employee over length of employment.

 As such this model is to be used only for evaluating new hires, it makes sense 
to model it statically. If the task were, instead, to evaluate policies towards current 
staff over the coming six months, it would make sense to use a  dynamic model. 
We must also establish which variables are under the control of the end-users (the 
participating companies).

8.2. Encode domain knowledge: pre-learning

Expert knowledge can be encoded in the network. This will take the form of 
specifying relationships between variables (edges in the network) that are required 
or prohibited, and concrete or defeasible parameters for the conditional probability 
distributions that relate the variables. In certain circumstances, the network will be 
entirely created from expert knowledge in this fashion. In our example, the current 
demand for the applicants’ skills is something that is unlikely to have been tracked 
previously, so it is something that can only be incorporated into the intial model 
by encoding domain knowledge about its relationship to other variables. As data is 
collected, this initial specification will evolve.

In practice, where data exists, it is often better to leave the learning process 
unconstrained and add known relationships only insofar as they were too weak in the 
learning data for the learnt model to pick up.

When this is not the case, it is usually important to involve an expert in Bayesian 
networks to perform the encoding of expert knowledge. This is particularly true 
in the cases in which the entire network is not going to be created from expert 
knowledge, and where naive encoding using known causal relationships can hamper 
the efficiency of the learning algorithm and/or result in unnecessarily complex 
models.
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8.3. Collect data

Where the network is not entirely based on expert knowledge, data will be required 
to be learnt from the model. Even when only using expert knowledge, it is useful to 
have data to test the validity of the model.

In our case, the data is internal to the company and it is likely that participating 
companies will need little assistance in collecting it. It will be essential, though, to 
ensure data security and confidentiality. Participating companies will not want their 
data to be viewed by other participants or outside entities, nor will individuals wish 
for their personal records to be reconstructible from the finished product.

8.4. Create network(s)

Where the network is not entirely based on expert knowledge, the model or meta-
model will be learnt from the data collected. During this process, a  number of 
methods permit us to test whether we have sufficient data. If we do not, we must 
obtain more (or switch to a less data-intensive method).

Further, during learning, redundant variables will be found and eliminated. As 
explained earlier, the topology of a  Bayesian network indicates which variables 
provide no information regarding the state of the variables of our interest, given the 
variables which we can be certain of, always knowing their values. In our case we 
might find that the individual’s gender is correlated with our variables of interest, 
but only insofar as it is related to a persons level in their company (perhaps men 
are more common in managerial positions). Given we know someone’s position in 
the company, their sex contains no additional information regarding whether they 
will be a satisfactory employee nor whether they are likely to leave the company. 
As it is the employees of companies who will be using the models, the employees’ 
position in their company can always be established and the gender of the employee 
is redundant.

We will also determine whether a  single network dominates the possible 
hypotheses regarding the system being modeled, and thus whether we should utilize 
a meta-model made up of multiple networks as explained earlier.

8.5. Encode domain knowledge: post-learning

In certain circumstances, additional domain knowledge will be encoded in the model 
post-learning. This may include specifying utility values or transforming the network 
from a discrete network to a general Bayesian network.

In our case, the utilities involved will be different for different end-users and 
even for the same end-users in different circumstances. Accordingly, the utility 
values should be alterable and specifiableby the end-users.
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8.6. Test model

The model should be used and evaluated in a  pilot program where it will be 
incorporated into the access system (see below), encounter new real life cases and be 
used by real end-users. The guidance which the system offers should be useful (not 
trivial). End-users should find the access system easy to use, and the “reasoning” 
behind decisions understandable. Difficulties found here can be incorporated into 
access system revision or user training.

8.7. Implementation of access system

The access system is the software used to enter data into and query the finished model 
for decision assistance and predictions. It must be deployed and end-users must be 
trained in its use. For us, this means installing, in all participating companies, the 
finished software application, which would be a non-technical wrapper that permits 
all required interactions with the network, as well as providing training courses to 
end-users.

End-users must be able to enter new data, and the model must adapt to this data. 
In our case, data regarding new hires will occur automatically as end-users work 
with the program. But data regarding policies to employees, satisfaction with and 
of employees, and employee retention will need to be specifically entered. It will be 
necessary to ensure that the finished application permits such data-entry, and should 
alert designated individuals if such data-entry does not occur.

Bayesian networks can be set to automatically adapt the parameters of their 
conditional probability distributions to new data. On the assumption that the 
underlying system is stable, this generally suffices. If this assumption is questionable, 
an ongoing structural learning process should continue to model the relationships 
found in recent data to ensure that no abrupt alterations of the system have occurred 
and hence that the network remains valid for the domain. Our system is certainly 
subject to shocks from outside the variables we have included – for example the 
Chinese economy could enter a prolonged downturn – and so ideally such a process 
should be included as part of the final application and automatically operate as data 
becomes available. At the very least, it should be possible for humans to periodically 
implement such a process.

8.8. Post-implementation

The access system will require ongoing support and maintenance. As new individuals 
become end-users, they will need training. Finally, to ensure the model stays accurate 
in changing circumstances, ongoing data acquisition and collation will be required.

In our case, this means providing software support and training for novice end-
users, such as new HR employees. The low level data acquisition program should be 
able to be implemented by participating companies.
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9. Outputs

So what might we expect to obtain from such a system? Let us imagine a 26-year old, 
unmarried male without children. He has an engineering degree from a high-quality 
Chinese institution and is professionally competent in English. His last job was low-
level management, and he specifies an expected salary of RMB7000/month. He has 
held three jobs in the last four years.

1. Should the prospective employee be hired?
2. If he is hired, what sort of contract and conditions should he be given to 

maximize the expected value of the hire, measured in terms of satisfaction with his 
contribution and retention whilst minimizing costs?

For example, he might be offered a number of attractions at a specified future 
time – perhaps an overseas placement opportunity after two years, or ongoing 
professional education paid for by the company from year 1 to 3, etc. It may be 
that he should not be offered additional language training, since this is unlikely to 
increase either his or the company’s satisfaction but, if successful, this will greatly 
increase the risk that he will leave (because he was headhunted!).

A more sophisticated situation is where certain characteristics remain unknown 
(perhaps at a resume sifting stage). The company may decide not to trust applicants’ 
claims about their language ability or plan to have applicants take additional tests. 
Decision policies will be given to specify whether an applicant should be hired and, if 
so, the details of the contract for each of the possible values of the unknown variables 
will be specified. For example, the applicant in question might be hired only if he 
performs outstandingly in the test (since there might be a high-risk of him leaving), 
but in such a case he could be offered a lucrative salary and numerous inducements 
to stay (since he would be a valuable employee if he could be retained). An example 
of a decision policy representing the above, and assuming that an appropriate test 
outcome variable was included, is given in Table 2.

Table 2. Decision policy for an applicant, given test result

Test score Hire Salary Overseas
placement

Professional
training

Language
training

<60  No – – – –
–70  No – – – –
–80  No – – – –
–90  No – – – –

–100 Yes 14,000 After two years After three years No 

Source: own elaboration.

The network would also be able to produce a  posteriori predictions for the 
variables of interest, given current knowledge and on the assumption that the decision 

Informatyka Ekonomiczna 3(25)_2013.indb   20 2013-02-06   10:14:47



Using Bayesian networks in business analytics…	 21

policies specified are followed. It could also be run with the decision variables treated 
as chance variables or set to other options to obtain a posteriori distributions given 
current knowledge, or to test alternative decision policies.

If we imagine the “average company satisfaction with employee over length of 
employment” variable takes values from 1 to 10 (representing some suitable function 
from yearly reviews) and the “length of employment” variable takes the values 1 to 
5 and > 5 (representing the employee leaves the company before that many years), 
then we might be given the distributions represented in Tables 3 and 4.

Table 3. A posteriori probabilities for variable “average company satisfaction 
with employee over length of employment”

Value A priori probability
1 ≈0
2 ≈0
3  .01
4  .02
5  .04
6  .08
7  .10
8  .43
9  .22

10  .10

Source: own elaboration.

Table 4. A posteriori probabilities for variable “length of employment”

Value A priori probability
1  .08
2  .07
3  .05
4  .01
5  .01

>5  .78

Source: own elaboration.

10. Summary

Bayesian networks are a popular and powerful tool in artificial intelligence. They 
have many applications in commercial decision support. The point of this paper 
was to provide an overview of the techniques involved from this perspective. We 
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proceeded by giving a simplified mathematical overview of what Bayesian networks 
are and the flavors they come in. We then looked at how they could be created or 
learnt from data and the situations that led to the use of ensemble models. Then we 
looked at how an application of such a technology would proceed, using the human 
resources example of talent retention for international firms in China, examining 
the full process rather than technology specific elements. Finally, we looked at the 
outputs that would be generated from such an application.
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WYKORZYSTANIE SIECI BAYESOWSKICH 
W ANALIZACH BIZNESOWYCH: PRZEGLĄD METOD 
ORAZ KRÓTKIE STUDIUM PRZYPADKU

Streszczenie: Sieci bayesowskie są popularnym i skutecznym narzędziem sztucznej inteli-
gencji. Mają one wiele zastosowań we wspomaganiu decyzji biznesowych. Celem niniejszego 
artykułu jest dokonanie przeglądu techniki sieci bayesowskich z takiej właśnie perspektywy. 
W  artykule przedstawiono zarys najważniejszych matematycznych podstaw teoretycznych 
sieci bayesowskich oraz omówiono ich zastosowanie do zatrzymywania utalentowanych pra-
cowników w międzynarodowych firmach w Chinach. W ramach studium przypadku, przea-
nalizowano cały proces wykorzystywania sieci bayesowskich oraz omówiono dane, które 
mogą być wygenerowane przy ich użyciu.

Słowa kluczowe: sieci bayesowskie, wspomaganie decyzji, analizy biznesowe, modelowanie 
stochastyczne.
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